numpydantic/tests/test_interface/test_hdf5.py

240 lines
6.6 KiB
Python
Raw Permalink Normal View History

import json
2024-10-04 02:57:54 +00:00
from datetime import datetime
2024-09-03 23:54:31 +00:00
from typing import Any
import h5py
2024-10-04 02:57:54 +00:00
import numpy as np
2024-05-15 03:18:04 +00:00
import pytest
from pydantic import BaseModel
2024-05-15 03:18:04 +00:00
from numpydantic import NDArray, Shape
2024-05-15 03:18:04 +00:00
from numpydantic.interface import H5Interface
from numpydantic.interface.hdf5 import H5ArrayPath, H5Proxy
from numpydantic.testing.interfaces import HDF5Case, HDF5CompoundCase
2024-05-15 03:18:04 +00:00
2024-09-23 20:28:38 +00:00
pytestmark = pytest.mark.hdf5
2024-05-15 03:18:04 +00:00
@pytest.fixture(
params=[
pytest.param(HDF5Case, id="hdf5"),
pytest.param(HDF5CompoundCase, id="hdf5-compound"),
]
)
def hdf5_cases(request):
return request.param
def test_hdf5_enabled():
assert H5Interface.enabled()
2024-05-15 03:18:04 +00:00
@pytest.mark.shape
def test_hdf5_shape(shape_cases, hdf5_cases):
shape_cases.interface = hdf5_cases
if shape_cases.skip():
pytest.skip()
shape_cases.validate_case()
2024-05-15 03:18:04 +00:00
@pytest.mark.dtype
def test_hdf5_dtype(dtype_cases, hdf5_cases):
dtype_cases.interface = hdf5_cases
dtype_cases.validate_case()
2024-05-15 03:18:04 +00:00
def test_hdf5_check(interface_cases, tmp_output_dir_func):
array = interface_cases.make_array(path=tmp_output_dir_func)
if interface_cases.interface is H5Interface:
assert H5Interface.check(array)
2024-05-15 03:18:04 +00:00
else:
assert not H5Interface.check(array)
2024-05-15 03:18:04 +00:00
def test_hdf5_check_not_exists():
"""We should fail a check for a nonexistent hdf5 file"""
spec = ("./fakefile.h5", "/fake/array")
assert not H5Interface.check(spec)
def test_hdf5_check_not_hdf5(tmp_path):
"""Files that exist but aren't actually hdf5 files should fail a check"""
afile = tmp_path / "not_an_hdf.h5"
with open(afile, "w") as af:
af.write("hey")
spec = (afile, "/fake/array")
assert not H5Interface.check(spec)
2024-05-15 03:18:04 +00:00
def test_hdf5_dataset_not_exists(hdf5_array, model_blank):
array = hdf5_array()
with pytest.raises(ValueError) as e:
model_blank(array=H5ArrayPath(file=array.file, path="/some/random/path"))
assert "file located" in e
assert "no array found" in e
2024-09-23 20:28:38 +00:00
@pytest.mark.proxy
def test_assignment(hdf5_array, model_blank):
array = hdf5_array()
model = model_blank(array=array)
model.array[1, 1] = 5
assert model.array[1, 1] == 5
model.array[1:3, 2:4] = 10
assert (model.array[1:3, 2:4] == 10).all()
2024-09-23 20:28:38 +00:00
@pytest.mark.serialization
@pytest.mark.parametrize("round_trip", (True, False))
def test_to_json(hdf5_array, array_model, round_trip):
"""
Test serialization of HDF5 arrays to JSON
Args:
hdf5_array:
Returns:
"""
array = hdf5_array((10, 10), int)
model = array_model((10, 10), int)
instance = model(array=array) # type: BaseModel
2024-09-24 00:30:06 +00:00
json_str = instance.model_dump_json(
round_trip=round_trip, context={"absolute_paths": True}
)
json_dumped = json.loads(json_str)["array"]
if round_trip:
assert json_dumped["file"] == str(array.file)
assert json_dumped["path"] == str(array.path)
else:
assert json_dumped == instance.array[:].tolist()
2024-09-23 20:28:38 +00:00
@pytest.mark.dtype
@pytest.mark.proxy
def test_compound_dtype(tmp_path):
"""
hdf5 proxy indexes compound dtypes as single fields when field is given
"""
h5f_path = tmp_path / "test.h5"
dataset_path = "/dataset"
field = "data"
dtype = np.dtype([(field, "i8"), ("extra", "f8")])
data = np.zeros((10, 20), dtype=dtype)
with h5py.File(h5f_path, "w") as h5f:
dset = h5f.create_dataset(dataset_path, data=data)
assert dset.dtype == dtype
proxy = H5Proxy(h5f_path, dataset_path, field=field)
assert proxy.dtype == np.dtype("int64")
assert proxy.shape == (10, 20)
assert proxy[0, 0] == 0
class MyModel(BaseModel):
array: NDArray[Shape["10, 20"], np.int64]
instance = MyModel(array=(h5f_path, dataset_path, field))
assert instance.array.dtype == np.dtype("int64")
assert instance.array.shape == (10, 20)
assert instance.array[0, 0] == 0
2024-09-03 00:05:32 +00:00
# set values too
instance.array[0, :] = 1
assert all(instance.array[0, :] == 1)
assert all(instance.array[1, :] == 0)
instance.array[1] = 2
assert all(instance.array[1] == 2)
2024-09-03 05:14:47 +00:00
2024-09-23 20:28:38 +00:00
@pytest.mark.dtype
@pytest.mark.proxy
2024-09-03 05:40:17 +00:00
@pytest.mark.parametrize("compound", [True, False])
def test_strings(hdf5_array, compound):
2024-09-03 05:14:47 +00:00
"""
HDF5 proxy can get and set strings just like any other dtype
"""
2024-09-03 05:40:17 +00:00
array = hdf5_array((10, 10), str, compound=compound)
2024-09-03 05:14:47 +00:00
class MyModel(BaseModel):
array: NDArray[Shape["10, 10"], str]
instance = MyModel(array=array)
instance.array[0, 0] = "hey"
assert instance.array[0, 0] == "hey"
assert isinstance(instance.array[0, 1], str)
2024-09-03 05:49:13 +00:00
instance.array[1] = "sup"
assert all(instance.array[1] == "sup")
2024-09-03 23:54:31 +00:00
2024-09-23 20:28:38 +00:00
@pytest.mark.dtype
@pytest.mark.proxy
2024-09-03 23:54:31 +00:00
@pytest.mark.parametrize("compound", [True, False])
def test_datetime(hdf5_array, compound):
"""
We can treat S32 byte arrays as datetimes if our type annotation
says to, including validation, setting and getting values
"""
array = hdf5_array((10, 10), datetime, compound=compound)
class MyModel(BaseModel):
array: NDArray[Any, datetime]
instance = MyModel(array=array)
assert isinstance(instance.array[0, 0], np.datetime64)
assert instance.array[0:5].dtype.type is np.datetime64
now = datetime.now()
instance.array[0, 0] = now
assert instance.array[0, 0] == now
instance.array[0] = now
assert all(instance.array[0] == now)
@pytest.mark.parametrize("dtype", [int, float, str, datetime])
def test_empty_dataset(dtype, tmp_path):
"""
Empty datasets shouldn't choke us during validation
"""
array_path = tmp_path / "test.h5"
2024-10-04 02:57:54 +00:00
np_dtype = "S32" if dtype in (str, datetime) else dtype
with h5py.File(array_path, "w") as h5f:
_ = h5f.create_dataset(name="/data", dtype=np_dtype)
class MyModel(BaseModel):
array: NDArray[Any, dtype]
_ = MyModel(array=(array_path, "/data"))
@pytest.mark.proxy
@pytest.mark.parametrize(
"comparison,valid",
[
(H5Proxy(file="test_file.h5", path="/subpath", field="sup"), True),
(H5Proxy(file="test_file.h5", path="/subpath"), False),
(H5Proxy(file="different_file.h5", path="/subpath"), False),
(("different_file.h5", "/subpath", "sup"), ValueError),
("not even a proxy-like thing", ValueError),
],
)
def test_proxy_eq(comparison, valid):
"""
test the __eq__ method of H5ArrayProxy matches proxies to the same
dataset (and path), or raises a ValueError
"""
proxy_a = H5Proxy(file="test_file.h5", path="/subpath", field="sup")
if valid is True:
assert proxy_a == comparison
elif valid is False:
assert proxy_a != comparison
else:
with pytest.raises(valid):
assert proxy_a == comparison