mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-11-12 17:54:29 +00:00
Add support for strings in hdf5
This commit is contained in:
parent
f699d2ab7b
commit
0e6ea07d5e
4 changed files with 73 additions and 7 deletions
|
@ -1,5 +1,27 @@
|
||||||
"""
|
"""
|
||||||
Interfaces for HDF5 Datasets
|
Interfaces for HDF5 Datasets
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
HDF5 arrays are accessed through a proxy class :class:`.H5Proxy` .
|
||||||
|
Getting/setting values should work as normal, **except** that setting
|
||||||
|
values on nested views is impossible -
|
||||||
|
|
||||||
|
Specifically this doesn't work:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
my_model.array[0][0] = 1
|
||||||
|
|
||||||
|
But this does work:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
my_model.array[0,0] = 1
|
||||||
|
|
||||||
|
To have direct access to the hdf5 dataset, use the
|
||||||
|
:meth:`.H5Proxy.open` method.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
|
@ -10,7 +32,7 @@ import numpy as np
|
||||||
from pydantic import SerializationInfo
|
from pydantic import SerializationInfo
|
||||||
|
|
||||||
from numpydantic.interface.interface import Interface
|
from numpydantic.interface.interface import Interface
|
||||||
from numpydantic.types import NDArrayType
|
from numpydantic.types import DtypeType, NDArrayType
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import h5py
|
import h5py
|
||||||
|
@ -102,7 +124,14 @@ class H5Proxy:
|
||||||
with h5py.File(self.file, "r") as h5f:
|
with h5py.File(self.file, "r") as h5f:
|
||||||
obj = h5f.get(self.path)
|
obj = h5f.get(self.path)
|
||||||
if self.field is not None:
|
if self.field is not None:
|
||||||
obj = obj.fields(self.field)
|
if h5py.h5t.check_string_dtype(obj.dtype[self.field]):
|
||||||
|
obj = obj.fields(self.field).asstr()
|
||||||
|
else:
|
||||||
|
obj = obj.fields(self.field)
|
||||||
|
else:
|
||||||
|
if h5py.h5t.check_string_dtype(obj.dtype):
|
||||||
|
obj = obj.asstr()
|
||||||
|
|
||||||
return obj[item]
|
return obj[item]
|
||||||
|
|
||||||
def __setitem__(
|
def __setitem__(
|
||||||
|
@ -222,6 +251,22 @@ class H5Interface(Interface):
|
||||||
|
|
||||||
return array
|
return array
|
||||||
|
|
||||||
|
def get_dtype(self, array: NDArrayType) -> DtypeType:
|
||||||
|
"""
|
||||||
|
Get the dtype from the input array
|
||||||
|
|
||||||
|
Subclasses to correctly handle
|
||||||
|
"""
|
||||||
|
if hasattr(array.dtype, "type") and array.dtype.type is np.object_:
|
||||||
|
if h5py.h5t.check_string_dtype(array.dtype):
|
||||||
|
return str
|
||||||
|
else:
|
||||||
|
return self.get_object_dtype(array)
|
||||||
|
elif h5py.h5t.check_string_dtype(array.dtype):
|
||||||
|
return str
|
||||||
|
else:
|
||||||
|
return array.dtype
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def to_json(cls, array: H5Proxy, info: Optional[SerializationInfo] = None) -> dict:
|
def to_json(cls, array: H5Proxy, info: Optional[SerializationInfo] = None) -> dict:
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -126,7 +126,10 @@ class Interface(ABC, Generic[T]):
|
||||||
if isinstance(self.dtype, tuple):
|
if isinstance(self.dtype, tuple):
|
||||||
valid = dtype in self.dtype
|
valid = dtype in self.dtype
|
||||||
elif self.dtype is np.str_:
|
elif self.dtype is np.str_:
|
||||||
valid = getattr(dtype, "type", None) is np.str_ or dtype is np.str_
|
valid = getattr(dtype, "type", None) in (np.str_, str) or dtype in (
|
||||||
|
np.str_,
|
||||||
|
str,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
# try to match as any subclass, if self.dtype is a class
|
# try to match as any subclass, if self.dtype is a class
|
||||||
try:
|
try:
|
||||||
|
|
|
@ -127,8 +127,13 @@ def hdf5_array(
|
||||||
_ = hdf5_file.create_dataset(array_path, data=data)
|
_ = hdf5_file.create_dataset(array_path, data=data)
|
||||||
return H5ArrayPath(Path(hdf5_file.filename), array_path)
|
return H5ArrayPath(Path(hdf5_file.filename), array_path)
|
||||||
else:
|
else:
|
||||||
dt = np.dtype([("data", dtype), ("extra", "i8")])
|
|
||||||
data = np.zeros(shape, dtype=dt)
|
if dtype is str:
|
||||||
|
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
|
||||||
|
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
|
||||||
|
else:
|
||||||
|
dt = np.dtype([("data", dtype), ("extra", "i8")])
|
||||||
|
data = np.zeros(shape, dtype=dt)
|
||||||
_ = hdf5_file.create_dataset(array_path, data=data)
|
_ = hdf5_file.create_dataset(array_path, data=data)
|
||||||
return H5ArrayPath(Path(hdf5_file.filename), array_path, "data")
|
return H5ArrayPath(Path(hdf5_file.filename), array_path, "data")
|
||||||
|
|
||||||
|
|
|
@ -78,8 +78,6 @@ def test_hdf5_shape(shape_cases, hdf5_array, compound):
|
||||||
|
|
||||||
@pytest.mark.parametrize("compound", [True, False])
|
@pytest.mark.parametrize("compound", [True, False])
|
||||||
def test_hdf5_dtype(dtype_cases, hdf5_array, compound):
|
def test_hdf5_dtype(dtype_cases, hdf5_array, compound):
|
||||||
if dtype_cases.dtype is str:
|
|
||||||
pytest.skip("hdf5 cant do string arrays")
|
|
||||||
_test_hdf5_case(dtype_cases, hdf5_array, compound)
|
_test_hdf5_case(dtype_cases, hdf5_array, compound)
|
||||||
|
|
||||||
|
|
||||||
|
@ -157,3 +155,18 @@ def test_compound_dtype(tmp_path):
|
||||||
assert all(instance.array[1, :] == 0)
|
assert all(instance.array[1, :] == 0)
|
||||||
instance.array[1] = 2
|
instance.array[1] = 2
|
||||||
assert all(instance.array[1] == 2)
|
assert all(instance.array[1] == 2)
|
||||||
|
|
||||||
|
|
||||||
|
def test_strings(hdf5_array):
|
||||||
|
"""
|
||||||
|
HDF5 proxy can get and set strings just like any other dtype
|
||||||
|
"""
|
||||||
|
array = hdf5_array((10, 10), str)
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape["10, 10"], str]
|
||||||
|
|
||||||
|
instance = MyModel(array=array)
|
||||||
|
instance.array[0, 0] = "hey"
|
||||||
|
assert instance.array[0, 0] == "hey"
|
||||||
|
assert isinstance(instance.array[0, 1], str)
|
||||||
|
|
Loading…
Reference in a new issue