mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
oop still have to do bytes conversion
This commit is contained in:
parent
067ffa0342
commit
0f1e0d0caf
2 changed files with 8 additions and 3 deletions
|
@ -9,7 +9,8 @@ but it can be persuaded to store data in ASCII or virtualized utf-8 under somewh
|
||||||
|
|
||||||
This PR uses h5py's string methods to expose string datasets (compound or not)
|
This PR uses h5py's string methods to expose string datasets (compound or not)
|
||||||
via the h5proxy with the `asstr()` view method.
|
via the h5proxy with the `asstr()` view method.
|
||||||
This also allows us to set strings with normal python strings.
|
This also allows us to set strings with normal python strings,
|
||||||
|
although hdf5 datasets can only be created with `bytes` or other non-unicode encodings.
|
||||||
|
|
||||||
Since numpydantic isn't necessarily a tool for *creating* hdf5 files
|
Since numpydantic isn't necessarily a tool for *creating* hdf5 files
|
||||||
(nobody should be doing that), but rather an interface to them,
|
(nobody should be doing that), but rather an interface to them,
|
||||||
|
@ -27,7 +28,7 @@ class MyModel(BaseModel):
|
||||||
array: NDArray[Any, str]
|
array: NDArray[Any, str]
|
||||||
|
|
||||||
h5f = h5py.File('my_data.h5', 'w')
|
h5f = h5py.File('my_data.h5', 'w')
|
||||||
data = np.random.random((10,10)).astype(str)
|
data = np.random.random((10,10)).astype(bytes)
|
||||||
_ = h5f.create_dataset('/dataset', data=data)
|
_ = h5f.create_dataset('/dataset', data=data)
|
||||||
|
|
||||||
instance = MyModel(array=('my_data.h5', '/dataset'))
|
instance = MyModel(array=('my_data.h5', '/dataset'))
|
||||||
|
|
|
@ -122,7 +122,11 @@ def hdf5_array(
|
||||||
compound: bool = False,
|
compound: bool = False,
|
||||||
) -> H5ArrayPath:
|
) -> H5ArrayPath:
|
||||||
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
|
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
|
||||||
|
|
||||||
if not compound:
|
if not compound:
|
||||||
|
if dtype is str:
|
||||||
|
data = np.random.random(shape).astype(bytes)
|
||||||
|
else:
|
||||||
data = np.random.random(shape).astype(dtype)
|
data = np.random.random(shape).astype(dtype)
|
||||||
_ = hdf5_file.create_dataset(array_path, data=data)
|
_ = hdf5_file.create_dataset(array_path, data=data)
|
||||||
return H5ArrayPath(Path(hdf5_file.filename), array_path)
|
return H5ArrayPath(Path(hdf5_file.filename), array_path)
|
||||||
|
|
Loading…
Reference in a new issue