mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-09 21:44:27 +00:00
update readme
This commit is contained in:
parent
6ebed2b804
commit
1ae235cec6
1 changed files with 357 additions and 68 deletions
425
README.md
425
README.md
|
@ -5,123 +5,412 @@
|
|||
[![Coverage Status](https://coveralls.io/repos/github/p2p-ld/numpydantic/badge.svg)](https://coveralls.io/github/p2p-ld/numpydantic)
|
||||
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
|
||||
|
||||
Type and shape validation and serialization for numpy arrays in pydantic models
|
||||
A python package for specifying, validating, and serializing arrays with arbitrary backends in pydantic.
|
||||
|
||||
This package was picked out of [nwb-linkml](https://github.com/p2p-ld/nwb-linkml/), a
|
||||
translation of the [NWB](https://www.nwb.org/) schema language and data format to
|
||||
linkML and pydantic models.
|
||||
**Problem:**
|
||||
1) Pydantic is great for modeling data.
|
||||
2) Arrays are one of a few elemental types in computing,
|
||||
|
||||
It does two primary things:
|
||||
- **Provide types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
||||
for specifying numpy arrays in pydantic models, and
|
||||
- **Generate models from LinkML** - extend the LinkML pydantic generator to create models that
|
||||
that use the [linkml-arrays](https://github.com/linkml/linkml-arrays) syntax
|
||||
but ...
|
||||
|
||||
## Parameterized Arrays
|
||||
3) if you try and specify an array in pydantic, this happens:
|
||||
|
||||
Arrays use the npytying syntax:
|
||||
```python
|
||||
>>> from pydantic import BaseModel
|
||||
>>> import numpy as np
|
||||
|
||||
>>> class MyModel(BaseModel):
|
||||
>>> array: np.ndarray
|
||||
pydantic.errors.PydanticSchemaGenerationError:
|
||||
Unable to generate pydantic-core schema for <class 'numpy.ndarray'>.
|
||||
Set `arbitrary_types_allowed=True` in the model_config to ignore this error
|
||||
or implement `__get_pydantic_core_schema__` on your type to fully support it.
|
||||
```
|
||||
|
||||
And setting `arbitrary_types_allowed = True` still prohibits you from
|
||||
generating JSON Schema, serialization to JSON
|
||||
|
||||
## Features:
|
||||
- **Types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
||||
for specifying arrays in pydantic models
|
||||
- **Validation** - Shape, dtype, and other array validations
|
||||
- **Interfaces** - Works with {mod}`~.interface.numpy`, {mod}`~.interface.dask`, {mod}`~.interface.hdf5`,
|
||||
{mod}`~.interface.video`, and {mod}`~.interface.zarr`,
|
||||
and a simple extension system to make it work with whatever else you want!
|
||||
- **Serialization** - Dump an array as a JSON-compatible array-of-arrays with enough metadata to be able to
|
||||
recreate the model in the native format
|
||||
- **Schema Generation** - Correct JSON Schema for arrays, complete with shape and dtype constraints, to
|
||||
make your models interoperable
|
||||
|
||||
Coming soon:
|
||||
- **Metadata** - This package was built to be used with [linkml arrays](https://linkml.io/linkml/schemas/arrays.html),
|
||||
so we will be extending it to include arbitrary metadata included in the type annotation object in the JSON schema representation.
|
||||
- **Extensible Specification** - for v1, we are implementing the existing nptyping syntax, but
|
||||
for v2 we will be updating that to an extensible specification syntax to allow interfaces to validate additional
|
||||
constraints like chunk sizes, as well as make array specifications more introspectable and friendly to runtime usage.
|
||||
- **Advanced dtype handling** - handling dtypes that only exist in some array backends, allowing
|
||||
minimum and maximum precision ranges, and so on as type maps provided by interface classes :)
|
||||
- (see [todo](https://numpydantic.readthedocs.io/en/latest/todo.html))
|
||||
|
||||
## Installation
|
||||
|
||||
numpydantic tries to keep dependencies minimal, so by default it only comes with
|
||||
dependencies to use the numpy interface. Add the extra relevant to your favorite
|
||||
array library to be able to use it!
|
||||
|
||||
```shell
|
||||
pip install numpydantic
|
||||
# dask
|
||||
pip install 'numpydantic[dask]'
|
||||
# hdf5
|
||||
pip install 'numpydantic[hdf5]'
|
||||
# video
|
||||
pip install 'numpydantic[video]'
|
||||
# zarr
|
||||
pip install 'numpydantic[zarr]'
|
||||
# all array formats
|
||||
pip intsall 'numpydantic[array]'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Specify an array using [nptyping syntax](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
|
||||
and use it with your favorite array library :)
|
||||
|
||||
Use the `NDArray` class like you would any other python type,
|
||||
combine it with `Union`, make it `Optional`, etc.
|
||||
|
||||
For example, to specify a very special type of image that can either be
|
||||
- a 2D float array where the axes can be any size, or
|
||||
- a 3D uint8 array where the third axis must be size 3
|
||||
- a 1080p video
|
||||
|
||||
```python
|
||||
from typing import Union
|
||||
from pydantic import BaseModel
|
||||
from numpydantic import NDArray, Shape, UInt8, Float, Int
|
||||
import numpy as np
|
||||
|
||||
from numpydantic import NDArray, Shape
|
||||
|
||||
class Image(BaseModel):
|
||||
"""
|
||||
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
|
||||
"""
|
||||
array: Union[
|
||||
NDArray[Shape["* x, * y"], UInt8],
|
||||
NDArray[Shape["* x, * y, 3 rgb"], UInt8],
|
||||
NDArray[Shape["* x, * y, 4 rgba"], UInt8],
|
||||
NDArray[Shape["* t, * x, * y, 3 rgb"], UInt8],
|
||||
NDArray[Shape["* t, * x, * y, 4 rgba"], Float]
|
||||
NDArray[Shape["* x, * y"], float],
|
||||
NDArray[Shape["* x, * y, 3 rgb"], np.uint8],
|
||||
NDArray[Shape["* t, 1080 y, 1920 x, 3 rgb"], np.uint8]
|
||||
]
|
||||
```
|
||||
|
||||
### Validation:
|
||||
And then use that as a transparent interface to your favorite array library!
|
||||
|
||||
### Interfaces
|
||||
|
||||
#### Numpy
|
||||
|
||||
The Coca-Cola of array libraries
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
# works
|
||||
frame_gray = Image(array=np.ones((1280, 720), dtype=np.uint8))
|
||||
frame_gray = Image(array=np.ones((1280, 720), dtype=float))
|
||||
frame_rgb = Image(array=np.ones((1280, 720, 3), dtype=np.uint8))
|
||||
frame_rgba = Image(array=np.ones((1280, 720, 4), dtype=np.uint8))
|
||||
video_rgb = Image(array=np.ones((100, 1280, 720, 3), dtype=np.uint8))
|
||||
|
||||
# fails
|
||||
wrong_n_dimensions = Image(array=np.ones((1280,), dtype=np.uint8))
|
||||
wrong_n_dimensions = Image(array=np.ones((1280,), dtype=float))
|
||||
wrong_shape = Image(array=np.ones((1280,720,10), dtype=np.uint8))
|
||||
wrong_type = Image(array=np.ones((1280,720,3), dtype=np.float64))
|
||||
|
||||
# shapes and types are checked together
|
||||
float_video = Image(array=np.ones((100, 1280, 720, 4),dtype=float))
|
||||
wrong_shape_float_video = Image(array=np.ones((100, 1280, 720, 3),dtype=float))
|
||||
# shapes and types are checked together, so this also fails
|
||||
wrong_shape_dtype_combo = Image(array=np.ones((1280, 720, 3), dtype=float))
|
||||
```
|
||||
|
||||
### JSON schema generation:
|
||||
#### Dask
|
||||
|
||||
High performance chunked arrays! The backend for many new array libraries!
|
||||
|
||||
Works exactly the same as numpy arrays
|
||||
|
||||
```python
|
||||
class MyArray(BaseModel):
|
||||
array: NDArray[Shape["2 x, * y, 4 z"], Float]
|
||||
import dask.array as da
|
||||
|
||||
# validate a humongous image without having to load it into memory
|
||||
video_array = da.zeros(shape=(1e10,1e20,3), dtype=np.uint8)
|
||||
dask_video = Image(array=video_array)
|
||||
```
|
||||
|
||||
#### HDF5
|
||||
|
||||
Array work increasingly can't fit on memory, but dealing with arrays on disk
|
||||
can become a pain in concurrent applications. Numpydantic allows you to
|
||||
specify the location of an array within an hdf5 file on disk and use it just like
|
||||
any other array!
|
||||
|
||||
eg. Make an array on disk...
|
||||
|
||||
```python
|
||||
>>> print(json.dumps(MyArray.model_json_schema(), indent=2))
|
||||
from pathlib import Path
|
||||
import h5py
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
|
||||
h5f_file = Path('my_file.h5')
|
||||
array_path = "/nested/array"
|
||||
|
||||
# make an HDF5 array
|
||||
h5f = h5py.File(h5f_file, "w")
|
||||
array = np.random.randint(0, 255, (1920,1080,3), np.uint8)
|
||||
h5f.create_dataset(array_path, data=array)
|
||||
h5f.close()
|
||||
```
|
||||
|
||||
Then use it in your model! numpydantic will only open the file as long as it's needed
|
||||
|
||||
```python
|
||||
>>> h5f_image = Image(array=H5ArrayPath(file=h5f_file, path=array_path))
|
||||
>>> h5f_image.array[0:5,0:5,0]
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
>>> h5f_image.array[0:2,0:2,0] = 1
|
||||
>>> h5f_image.array[0:5,0:5,0]
|
||||
array([[1, 1, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
```
|
||||
|
||||
Numpydantic tries to be a smart but transparent proxy, exposing the methods and attributes
|
||||
of the source type even when we aren't directly using them, like when dealing with on-disk HDF5 arrays.
|
||||
|
||||
If you want, you can take full control and directly interact with the underlying :class:`h5py.Dataset`
|
||||
object and leave the file open between calls:
|
||||
|
||||
```python
|
||||
>>> dataset = h5f_image.array.open()
|
||||
>>> # do some stuff that requires the dataset to be held open
|
||||
>>> h5f_image.array.close()
|
||||
```
|
||||
|
||||
#### Video
|
||||
|
||||
Videos are just arrays with fancy encoding! Numpydantic can validate shape and dtype
|
||||
as well as lazy load chunks of frames with arraylike syntax!
|
||||
|
||||
Say we have some video `data.mp4` ...
|
||||
|
||||
```python
|
||||
video = Image(array='data.mp4')
|
||||
# get a single frame
|
||||
video.array[5]
|
||||
# or a range of frames!
|
||||
video.array[5:10]
|
||||
# or whatever slicing you want to do!
|
||||
video.array[5:50:5, 0:10, 50:70]
|
||||
```
|
||||
|
||||
As elsewhere, a proxy class is a transparent pass-through interface to the underlying
|
||||
opencv class, so we can get the rest of the video properties ...
|
||||
|
||||
```python
|
||||
import cv2
|
||||
|
||||
# get the total frames from opencv
|
||||
video.array.get(cv2.CAP_PROP_FRAME_COUNT)
|
||||
# the proxy class also provides a convenience property
|
||||
video.array.n_frames
|
||||
```
|
||||
|
||||
#### Zarr
|
||||
|
||||
Zarr works similarly!
|
||||
|
||||
Use it with any of Zarr's backends: Nested, Zipfile, S3, it's all the same!
|
||||
|
||||
Eg. create a nested zarr array on disk and use it...
|
||||
|
||||
```python
|
||||
import zarr
|
||||
from numpydantic.interface.zarr import ZarrArrayPath
|
||||
|
||||
array_file = 'data/array.zarr'
|
||||
nested_path = 'data/sets/here'
|
||||
|
||||
root = zarr.open(array_file, mode='w')
|
||||
nested_array = root.zeros(
|
||||
nested_path,
|
||||
shape=(1000, 1080, 1920, 3),
|
||||
dtype=np.uint8
|
||||
)
|
||||
|
||||
# validates just fine!
|
||||
zarr_video = Image(array=ZarrArrayPath(array_file, nested_path))
|
||||
# or just pass a tuple, the interface can discover it's a zarr array
|
||||
zarr_video = Image(array=(array_file, nested_path))
|
||||
```
|
||||
|
||||
### JSON Schema
|
||||
|
||||
Numpydantic generates JSON Schema for all its array specifications, so for the above
|
||||
model, we get a schema for each of the possible array types that properly handles
|
||||
the shape and dtype constraints and includes the origin numpy type as a `dtype` annotation.
|
||||
|
||||
```python
|
||||
Image.model_json_schema()
|
||||
```
|
||||
|
||||
```json
|
||||
{
|
||||
"properties": {
|
||||
"array": {
|
||||
"items": {
|
||||
"items": {
|
||||
"items": {
|
||||
"type": "number"
|
||||
},
|
||||
"maxItems": 4,
|
||||
"minItems": 4,
|
||||
"anyOf": [
|
||||
{
|
||||
"items": {"items": {"type": "number"}, "type": "array"},
|
||||
"type": "array"
|
||||
},
|
||||
"type": "array"
|
||||
},
|
||||
"maxItems": 2,
|
||||
"minItems": 2,
|
||||
"title": "Array",
|
||||
"type": "array"
|
||||
{
|
||||
"dtype": "numpy.uint8",
|
||||
"items": {
|
||||
"items": {
|
||||
"items": {
|
||||
"maximum": 255,
|
||||
"minimum": 0,
|
||||
"type": "integer"
|
||||
},
|
||||
"maxItems": 3,
|
||||
"minItems": 3,
|
||||
"type": "array"
|
||||
},
|
||||
"type": "array"
|
||||
},
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"dtype": "numpy.uint8",
|
||||
"items": {
|
||||
"items": {
|
||||
"items": {
|
||||
"items": {
|
||||
"maximum": 255,
|
||||
"minimum": 0,
|
||||
"type": "integer"
|
||||
},
|
||||
"maxItems": 3,
|
||||
"minItems": 3,
|
||||
"type": "array"
|
||||
},
|
||||
"maxItems": 1920,
|
||||
"minItems": 1920,
|
||||
"type": "array"
|
||||
},
|
||||
"maxItems": 1080,
|
||||
"minItems": 1080,
|
||||
"type": "array"
|
||||
},
|
||||
"type": "array"
|
||||
}
|
||||
],
|
||||
"title": "Array"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"array"
|
||||
],
|
||||
"title": "MyArray",
|
||||
"required": ["array"],
|
||||
"title": "Image",
|
||||
"type": "object"
|
||||
}
|
||||
```
|
||||
|
||||
### Serialization
|
||||
numpydantic can even handle shapes with unbounded numbers of dimensions by using
|
||||
recursive JSON schema!!!
|
||||
|
||||
So the any-shaped array (using nptyping's ellipsis notation):
|
||||
|
||||
```python
|
||||
class SmolArray(BaseModel):
|
||||
array: NDArray[Shape["2 x, 2 y"], Int]
|
||||
|
||||
class BigArray(BaseModel):
|
||||
array: NDArray[Shape["1000 x, 1000 y"], Int]
|
||||
class AnyShape(BaseModel):
|
||||
array: NDArray[Shape["*, ..."], np.uint8]
|
||||
```
|
||||
|
||||
Serialize small arrays as lists of lists, and big arrays as a b64-encoded blosc compressed string
|
||||
is rendered to JSON-Schema like this:
|
||||
|
||||
```python
|
||||
>>> smol = SmolArray(array=np.array([[1,2],[3,4]], dtype=int))
|
||||
>>> big = BigArray(array=np.random.randint(0,255,(1000,1000),int))
|
||||
|
||||
>>> print(smol.model_dump_json())
|
||||
{"array":[[1,2],[3,4]]}
|
||||
>>> print(big.model_dump_json())
|
||||
```json
|
||||
{
|
||||
"array": "( long b64 encoded string )",
|
||||
"shape": [1000, 1000],
|
||||
"dtype": "int64",
|
||||
"unpack_fns": ["base64.b64decode", "blosc2.unpack_array2"],
|
||||
"$defs": {
|
||||
"any-shape-array-9b5d89838a990d79": {
|
||||
"anyOf": [
|
||||
{
|
||||
"items": {
|
||||
"$ref": "#/$defs/any-shape-array-9b5d89838a990d79"
|
||||
},
|
||||
"type": "array"
|
||||
},
|
||||
{"maximum": 255, "minimum": 0, "type": "integer"}
|
||||
]
|
||||
}
|
||||
},
|
||||
"properties": {
|
||||
"array": {
|
||||
"dtype": "numpy.uint8",
|
||||
"items": {"$ref": "#/$defs/any-shape-array-9b5d89838a990d79"},
|
||||
"title": "Array",
|
||||
"type": "array"
|
||||
}
|
||||
},
|
||||
"required": ["array"],
|
||||
"title": "AnyShape",
|
||||
"type": "object"
|
||||
}
|
||||
```
|
||||
|
||||
where the key `"any-shape-array-9b5d89838a990d79"` uses a (blake2b) hash of the
|
||||
inner dtype specification so that having multiple any-shaped arrays in a single
|
||||
model schema are deduplicated without conflicts.
|
||||
|
||||
### Dumping
|
||||
|
||||
One of the main reasons to use chunked array libraries like zarr is to avoid
|
||||
needing to load the entire array into memory. When dumping data to JSON, numpydantic
|
||||
tries to mirror this behavior, by default only dumping the metadata that is
|
||||
necessary to identify the array.
|
||||
|
||||
For example, with zarr:
|
||||
|
||||
```python
|
||||
array = zarr.array([[1,2,3],[4,5,6],[7,8,9]], dtype=float)
|
||||
instance = Image(array=array)
|
||||
dumped = instance.model_dump_json()
|
||||
```
|
||||
|
||||
```json
|
||||
{
|
||||
"array":
|
||||
{
|
||||
"Chunk shape": "(3, 3)",
|
||||
"Chunks initialized": "1/1",
|
||||
"Compressor": "Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)",
|
||||
"Data type": "float64",
|
||||
"No. bytes": "72",
|
||||
"No. bytes stored": "421",
|
||||
"Order": "C",
|
||||
"Read-only": "False",
|
||||
"Shape": "(3, 3)",
|
||||
"Storage ratio": "0.2",
|
||||
"Store type": "zarr.storage.KVStore",
|
||||
"Type": "zarr.core.Array",
|
||||
"hexdigest": "c51604eace325fe42bbebf39146c0956bd2ed13c"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
To print the whole array, we use pydantic's serialization contexts:
|
||||
|
||||
```python
|
||||
dumped = instance.model_dump_json(context={'zarr_dump_array': True})
|
||||
```
|
||||
```json
|
||||
{
|
||||
"array":
|
||||
{
|
||||
"same thing,": "except also...",
|
||||
"array": [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
|
||||
"hexdigest": "c51604eace325fe42bbebf39146c0956bd2ed13c"
|
||||
}
|
||||
}
|
||||
```
|
Loading…
Reference in a new issue