changelog and bump version

This commit is contained in:
sneakers-the-rat 2024-09-02 16:55:27 -07:00
parent 03fe97b7e0
commit 290a72f8ca
Signed by untrusted user who does not match committer: jonny
GPG key ID: 6DCB96EF1E4D232D
2 changed files with 56 additions and 1 deletions

View file

@ -2,6 +2,61 @@
## 1.* ## 1.*
### 1.4.0 - 24-09-02 - HDF5 Compound Dtype Support
HDF5 can have compound dtypes like:
```python
import numpy as np
import h5py
dtype = np.dtype([("data", "i8"), ("extra", "f8")])
data = np.zeros((10, 20), dtype=dtype)
with h5py.File('mydata.h5', "w") as h5f:
dset = h5f.create_dataset("/dataset", data=data)
```
```python
>>> dset[0:1]
array([[(0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.),
(0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.),
(0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.), (0, 0.)]],
dtype=[('data', '<i8'), ('extra', '<f8')])
```
Sometimes we want to split those out to separate fields like this:
```python
class MyModel(BaseModel):
data: NDArray[Any, np.int64]
extra: NDArray[Any, np.float64]
```
So that's what 1.4.0 allows, using an additional field in the H5ArrayPath:
```python
from numpydantic.interfaces.hdf5 import H5ArrayPath
my_model = MyModel(
data = H5ArrayPath(file='mydata.h5', path="/dataset", field="data"),
extra = H5ArrayPath(file='mydata.h5', path="/dataset", field="extra"),
)
# or just with tuples
my_model = MyModel(
data = ('mydata.h5', "/dataset", "data"),
extra = ('mydata.h5', "/dataset", "extra"),
)
```
```python
>>> my_model.data[0,0]
0
>>> my_model.data.dtype
np.dtype('int64')
```
### 1.3.3 - 24-08-13 - Callable type annotations ### 1.3.3 - 24-08-13 - Callable type annotations
Problem, when you use a numpydantic `"wrap"` validator, it gives the annotation as a `handler` function. Problem, when you use a numpydantic `"wrap"` validator, it gives the annotation as a `handler` function.

View file

@ -1,6 +1,6 @@
[project] [project]
name = "numpydantic" name = "numpydantic"
version = "1.3.3" version = "1.4.0"
description = "Type and shape validation and serialization for numpy arrays in pydantic models" description = "Type and shape validation and serialization for numpy arrays in pydantic models"
authors = [ authors = [
{name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"}, {name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"},