Merge pull request #15 from p2p-ld/hdf5-datetime
Some checks are pending
Lint / Ruff Linting (push) Waiting to run
Lint / Black Formatting (push) Waiting to run
Tests / test (<2.0.0, macos-latest, 3.12) (push) Waiting to run
Tests / test (<2.0.0, macos-latest, 3.9) (push) Waiting to run
Tests / test (<2.0.0, ubuntu-latest, 3.12) (push) Waiting to run
Tests / test (<2.0.0, ubuntu-latest, 3.9) (push) Waiting to run
Tests / test (<2.0.0, windows-latest, 3.12) (push) Waiting to run
Tests / test (<2.0.0, windows-latest, 3.9) (push) Waiting to run
Tests / test (>=2.0.0, macos-latest, 3.12) (push) Waiting to run
Tests / test (>=2.0.0, macos-latest, 3.9) (push) Waiting to run
Tests / test (>=2.0.0, ubuntu-latest, 3.10) (push) Waiting to run
Tests / test (>=2.0.0, ubuntu-latest, 3.11) (push) Waiting to run
Tests / test (>=2.0.0, ubuntu-latest, 3.12) (push) Waiting to run
Tests / test (>=2.0.0, ubuntu-latest, 3.9) (push) Waiting to run
Tests / test (>=2.0.0, windows-latest, 3.12) (push) Waiting to run
Tests / test (>=2.0.0, windows-latest, 3.9) (push) Waiting to run
Tests / finish-coverage (push) Blocked by required conditions

Support datetimes in hdf5 proxies
This commit is contained in:
Jonny Saunders 2024-09-03 17:05:26 -07:00 committed by GitHub
commit 2c625e47ac
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 113 additions and 12 deletions

View file

@ -4,6 +4,11 @@
### 1.5.* ### 1.5.*
#### 1.5.2 - 24-09-03 - `datetime` support for HDF5
- [#15](https://github.com/p2p-ld/numpydantic/pull/15): Datetimes are supported as
dtype annotations for HDF5 arrays when encoded as `S32` isoformatted byte strings
#### 1.5.1 - 24-09-03 - Fix revalidation with proxy classes #### 1.5.1 - 24-09-03 - Fix revalidation with proxy classes
Bugfix: Bugfix:

View file

@ -1,6 +1,6 @@
[project] [project]
name = "numpydantic" name = "numpydantic"
version = "1.5.1" version = "1.5.2"
description = "Type and shape validation and serialization for arbitrary array types in pydantic models" description = "Type and shape validation and serialization for arbitrary array types in pydantic models"
authors = [ authors = [
{name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"}, {name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"},

View file

@ -22,11 +22,27 @@ Interfaces for HDF5 Datasets
To have direct access to the hdf5 dataset, use the To have direct access to the hdf5 dataset, use the
:meth:`.H5Proxy.open` method. :meth:`.H5Proxy.open` method.
Datetimes
---------
Datetimes are supported as a dtype annotation, but currently they must be stored
as ``S32`` isoformatted byte strings (timezones optional) like:
.. code-block:: python
import h5py
from datetime import datetime
import numpy as np
data = np.array([datetime.now().isoformat().encode('utf-8')], dtype="S32")
h5f = h5py.File('test.hdf5', 'w')
h5f.create_dataset('data', data=data)
""" """
import sys import sys
from datetime import datetime
from pathlib import Path from pathlib import Path
from typing import Any, List, NamedTuple, Optional, Tuple, Union from typing import Any, Iterable, List, NamedTuple, Optional, Tuple, TypeVar, Union
import numpy as np import numpy as np
from pydantic import SerializationInfo from pydantic import SerializationInfo
@ -46,6 +62,8 @@ else:
H5Arraylike: TypeAlias = Tuple[Union[Path, str], str] H5Arraylike: TypeAlias = Tuple[Union[Path, str], str]
T = TypeVar("T")
class H5ArrayPath(NamedTuple): class H5ArrayPath(NamedTuple):
"""Location specifier for arrays within an HDF5 file""" """Location specifier for arrays within an HDF5 file"""
@ -77,6 +95,7 @@ class H5Proxy:
path (str): Path to array within hdf5 file path (str): Path to array within hdf5 file
field (str, list[str]): Optional - refer to a specific field within field (str, list[str]): Optional - refer to a specific field within
a compound dtype a compound dtype
annotation_dtype (dtype): Optional - the dtype of our type annotation
""" """
def __init__( def __init__(
@ -84,11 +103,13 @@ class H5Proxy:
file: Union[Path, str], file: Union[Path, str],
path: str, path: str,
field: Optional[Union[str, List[str]]] = None, field: Optional[Union[str, List[str]]] = None,
annotation_dtype: Optional[DtypeType] = None,
): ):
self._h5f = None self._h5f = None
self.file = Path(file) self.file = Path(file)
self.path = path self.path = path
self.field = field self.field = field
self._annotation_dtype = annotation_dtype
def array_exists(self) -> bool: def array_exists(self) -> bool:
"""Check that there is in fact an array at :attr:`.path` within :attr:`.file`""" """Check that there is in fact an array at :attr:`.path` within :attr:`.file`"""
@ -120,10 +141,12 @@ class H5Proxy:
def __getitem__( def __getitem__(
self, item: Union[int, slice, Tuple[Union[int, slice], ...]] self, item: Union[int, slice, Tuple[Union[int, slice], ...]]
) -> np.ndarray: ) -> Union[np.ndarray, DtypeType]:
with h5py.File(self.file, "r") as h5f: with h5py.File(self.file, "r") as h5f:
obj = h5f.get(self.path) obj = h5f.get(self.path)
# handle compound dtypes
if self.field is not None: if self.field is not None:
# handle compound string dtype
if encoding := h5py.h5t.check_string_dtype(obj.dtype[self.field]): if encoding := h5py.h5t.check_string_dtype(obj.dtype[self.field]):
if isinstance(item, tuple): if isinstance(item, tuple):
item = (*item, self.field) item = (*item, self.field)
@ -132,24 +155,41 @@ class H5Proxy:
try: try:
# single string # single string
return obj[item].decode(encoding.encoding) val = obj[item].decode(encoding.encoding)
if self._annotation_dtype is np.datetime64:
return np.datetime64(val)
else:
return val
except AttributeError: except AttributeError:
# numpy array of bytes # numpy array of bytes
return np.char.decode(obj[item], encoding=encoding.encoding) val = np.char.decode(obj[item], encoding=encoding.encoding)
if self._annotation_dtype is np.datetime64:
return val.astype(np.datetime64)
else:
return val
# normal compound type
else: else:
obj = obj.fields(self.field) obj = obj.fields(self.field)
else: else:
if h5py.h5t.check_string_dtype(obj.dtype): if h5py.h5t.check_string_dtype(obj.dtype):
obj = obj.asstr() obj = obj.asstr()
return obj[item] val = obj[item]
if self._annotation_dtype is np.datetime64:
if isinstance(val, str):
return np.datetime64(val)
else:
return val.astype(np.datetime64)
else:
return val
def __setitem__( def __setitem__(
self, self,
key: Union[int, slice, Tuple[Union[int, slice], ...]], key: Union[int, slice, Tuple[Union[int, slice], ...]],
value: Union[int, float, np.ndarray], value: Union[int, float, datetime, np.ndarray],
): ):
# TODO: Make a generalized value serdes system instead of ad-hoc type conversion
value = self._serialize_datetime(value)
with h5py.File(self.file, "r+", locking=True) as h5f: with h5py.File(self.file, "r+", locking=True) as h5f:
obj = h5f.get(self.path) obj = h5f.get(self.path)
if self.field is None: if self.field is None:
@ -184,6 +224,16 @@ class H5Proxy:
self._h5f.close() self._h5f.close()
self._h5f = None self._h5f = None
def _serialize_datetime(self, v: Union[T, datetime]) -> Union[T, bytes]:
"""
Convert a datetime into a bytestring
"""
if self._annotation_dtype is np.datetime64:
if not isinstance(v, Iterable):
v = [v]
v = np.array(v).astype("S32")
return v
class H5Interface(Interface): class H5Interface(Interface):
""" """
@ -253,6 +303,7 @@ class H5Interface(Interface):
"Need to specify a file and a path within an HDF5 file to use the HDF5 " "Need to specify a file and a path within an HDF5 file to use the HDF5 "
"Interface" "Interface"
) )
array._annotation_dtype = self.dtype
if not array.array_exists(): if not array.array_exists():
raise ValueError( raise ValueError(
@ -269,6 +320,13 @@ class H5Interface(Interface):
Subclasses to correctly handle Subclasses to correctly handle
""" """
if h5py.h5t.check_string_dtype(array.dtype): if h5py.h5t.check_string_dtype(array.dtype):
# check for datetimes
try:
if array[0].dtype.type is np.datetime64:
return np.datetime64
else:
return str
except (AttributeError, ValueError, TypeError): # pragma: no cover
return str return str
else: else:
return array.dtype return array.dtype

View file

@ -166,7 +166,11 @@ def _hash_schema(schema: CoreSchema) -> str:
to produce the same hash. to produce the same hash.
""" """
schema_str = json.dumps( schema_str = json.dumps(
schema, sort_keys=True, indent=None, separators=(",", ":") schema,
sort_keys=True,
indent=None,
separators=(",", ":"),
default=lambda x: None,
).encode("utf-8") ).encode("utf-8")
hasher = hashlib.blake2b(digest_size=8) hasher = hashlib.blake2b(digest_size=8)
hasher.update(schema_str) hasher.update(schema_str)

View file

@ -2,6 +2,7 @@ import shutil
from pathlib import Path from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Type, Union from typing import Any, Callable, Optional, Tuple, Type, Union
from warnings import warn from warnings import warn
from datetime import datetime, timezone
import h5py import h5py
import numpy as np import numpy as np
@ -126,15 +127,24 @@ def hdf5_array(
if not compound: if not compound:
if dtype is str: if dtype is str:
data = np.random.random(shape).astype(bytes) data = np.random.random(shape).astype(bytes)
elif dtype is datetime:
data = np.empty(shape, dtype="S32")
data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8"))
else: else:
data = np.random.random(shape).astype(dtype) data = np.random.random(shape).astype(dtype)
_ = hdf5_file.create_dataset(array_path, data=data) _ = hdf5_file.create_dataset(array_path, data=data)
return H5ArrayPath(Path(hdf5_file.filename), array_path) return H5ArrayPath(Path(hdf5_file.filename), array_path)
else: else:
if dtype is str: if dtype is str:
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")]) dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape) data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
elif dtype is datetime:
dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")])
data = np.array(
[(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)]
* np.prod(shape),
dtype=dt,
).reshape(shape)
else: else:
dt = np.dtype([("data", dtype), ("extra", "i8")]) dt = np.dtype([("data", dtype), ("extra", "i8")])
data = np.zeros(shape, dtype=dt) data = np.zeros(shape, dtype=dt)

View file

@ -1,8 +1,9 @@
import json import json
from datetime import datetime, timezone
from typing import Any
import h5py import h5py
import pytest import pytest
from pydantic import BaseModel, ValidationError from pydantic import BaseModel, ValidationError
import numpy as np import numpy as np
@ -174,3 +175,26 @@ def test_strings(hdf5_array, compound):
instance.array[1] = "sup" instance.array[1] = "sup"
assert all(instance.array[1] == "sup") assert all(instance.array[1] == "sup")
@pytest.mark.parametrize("compound", [True, False])
def test_datetime(hdf5_array, compound):
"""
We can treat S32 byte arrays as datetimes if our type annotation
says to, including validation, setting and getting values
"""
array = hdf5_array((10, 10), datetime, compound=compound)
class MyModel(BaseModel):
array: NDArray[Any, datetime]
instance = MyModel(array=array)
assert isinstance(instance.array[0, 0], np.datetime64)
assert instance.array[0:5].dtype.type is np.datetime64
now = datetime.now()
instance.array[0, 0] = now
assert instance.array[0, 0] == now
instance.array[0] = now
assert all(instance.array[0] == now)