refactoring array generation, swapping in the interface case generators

This commit is contained in:
sneakers-the-rat 2024-10-04 00:46:49 -07:00
parent e701bf6e9b
commit 3356738e42
Signed by untrusted user who does not match committer: jonny
GPG key ID: 6DCB96EF1E4D232D
9 changed files with 262 additions and 189 deletions

View file

@ -2,15 +2,6 @@
Utilities for testing and 3rd-party interface development.
Only things that *don't* require pytest go in this module.
We want to keep all test-time specific behavior there,
and have this just serve as helpers exposed for downstream interface development.
We want to avoid pytest stuff bleeding in here because then we limit
the ability for downstream developers to configure their own tests.
*(If there is some reason to change this division of labor, just raise an issue and let's chat.)*
```{toctree}
cases
helpers

View file

@ -203,9 +203,19 @@ def merged_product(
iterator = merged_product(shape_cases, dtype_cases))
next(iterator)
# ValidationCase(shape=(10, 10, 10), dtype=float, passes=True, id="valid shape-float")
# ValidationCase(
# shape=(10, 10, 10),
# dtype=float,
# passes=True,
# id="valid shape-float"
# )
next(iterator)
# ValidationCase(shape=(10, 10, 10), dtype=int, passes=False, id="valid shape-int")
# ValidationCase(
# shape=(10, 10, 10),
# dtype=int,
# passes=False,
# id="valid shape-int"
# )
"""

View file

@ -9,7 +9,7 @@ from pydantic import BaseModel, ConfigDict, ValidationError, computed_field
from numpydantic import NDArray, Shape
from numpydantic.dtype import Float
from numpydantic.interface import Interface
from numpydantic.types import NDArrayType
from numpydantic.types import DtypeType, NDArrayType
class InterfaceCase(ABC):
@ -29,43 +29,64 @@ class InterfaceCase(ABC):
"""The interface that this helper is for"""
@classmethod
@abstractmethod
def generate_array(
cls, case: "ValidationCase", path: Path
def array_from_case(
cls, case: "ValidationCase", path: Optional[Path] = None
) -> Optional[NDArrayType]:
"""
Generate an array from the given validation case.
Returns ``None`` if an array can't be generated for a specific case.
"""
return cls.make_array(shape=case.shape, dtype=case.dtype, path=path)
@classmethod
def validate_array(cls, case: "ValidationCase", path: Path) -> Optional[bool]:
@abstractmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[NDArrayType]:
"""
Make an array from a shape and dtype, and a path if needed
"""
@classmethod
def validate_case(cls, case: "ValidationCase", path: Path) -> bool:
"""
Validate a generated array against the annotation in the validation case.
Kept in the InterfaceCase in case an interface has specific
needs aside from just validating against a model, but typically left as is.
Does not raise on Validation errors -
returns bool instead for consistency's sake.
If an array can't be generated for a given case, returns `None`
so that the calling function can know to skip rather than fail the case.
Raises exceptions if validation fails (or succeeds when it shouldn't)
Args:
case (ValidationCase): The validation case to validate.
path (Path): Path to generate arrays into, if any.
Returns:
``True`` if array is valid and was supposed to be,
or invalid and wasn't supposed to be
"""
array = cls.generate_array(case, path)
import pytest
array = cls.array_from_case(case, path)
if array is None:
return None
try:
pytest.skip()
if case.passes:
case.model(array=array)
# True if case is supposed to pass, False if it's not...
return case.passes
except ValidationError:
# False if the case is supposed to pass, True if it is...
return not case.passes
return True
else:
with pytest.raises(ValidationError):
case.model(array=array)
return True
@classmethod
def skip(cls, case: "ValidationCase") -> bool:
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
"""
Whether a given interface should be skipped for the case
"""
@ -97,6 +118,9 @@ class ValidationCase(BaseModel):
passes: bool = False
"""Whether the validation should pass or not"""
interface: Optional[InterfaceCase] = None
"""The interface test case to generate and validate the array with"""
path: Optional[Path] = None
"""The path to generate arrays into, if any."""
model_config = ConfigDict(arbitrary_types_allowed=True)
@ -110,6 +134,39 @@ class ValidationCase(BaseModel):
return Model
def validate_case(self, path: Optional[Path] = None) -> bool:
"""
Whether the generated array correctly validated against the annotation,
given the interface
Args:
path (:class:`pathlib.Path`): Directory to generate array into, if on disk.
Raises:
ValueError: if an ``interface`` is missing
"""
if self.interface is None:
raise ValueError("Missing an interface")
if path is None:
if self.path:
path = self.path
else:
raise ValueError("Missing a path to generate arrays into")
return self.interface.validate_case(self, path)
def array(self, path: Path) -> NDArrayType:
"""Generate an array for the validation case if we have an interface to do so"""
if self.interface is None:
raise ValueError("Missing an interface")
if path is None:
if self.path:
path = self.path
else:
raise ValueError("Missing a path to generate arrays into")
return self.interface.array_from_case(self, path)
def merge(
self, other: Union["ValidationCase", Sequence["ValidationCase"]]
) -> "ValidationCase":
@ -154,7 +211,9 @@ class ValidationCase(BaseModel):
(eg. due to the interface case being incompatible
with the requested dtype or shape)
"""
return bool(self.interface is not None and self.interface.skip())
return bool(
self.interface is not None and self.interface.skip(self.shape, self.dtype)
)
def merge_cases(*args: ValidationCase) -> ValidationCase:

View file

@ -1,6 +1,6 @@
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional
from typing import Optional, Tuple
import cv2
import dask.array as da
@ -18,7 +18,8 @@ from numpydantic.interface import (
ZarrArrayPath,
ZarrInterface,
)
from numpydantic.testing.helpers import InterfaceCase, ValidationCase
from numpydantic.testing.helpers import InterfaceCase
from numpydantic.types import DtypeType
class NumpyCase(InterfaceCase):
@ -27,11 +28,16 @@ class NumpyCase(InterfaceCase):
interface = NumpyInterface
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> np.ndarray:
if issubclass(case.dtype, BaseModel):
return np.full(shape=case.shape, fill_value=case.dtype(x=1))
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> np.ndarray:
if issubclass(dtype, BaseModel):
return np.full(shape=shape, fill_value=dtype(x=1))
else:
return np.zeros(shape=case.shape, dtype=case.dtype)
return np.zeros(shape=shape, dtype=dtype)
class _HDF5MetaCase(InterfaceCase):
@ -40,33 +46,34 @@ class _HDF5MetaCase(InterfaceCase):
interface = H5Interface
@classmethod
def skip(cls, case: "ValidationCase") -> bool:
return not issubclass(case.dtype, BaseModel)
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
return issubclass(dtype, BaseModel)
class HDF5Case(_HDF5MetaCase):
"""HDF5 Array"""
@classmethod
def generate_array(
cls, case: "ValidationCase", path: Path
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[H5ArrayPath]:
if cls.skip(case):
if cls.skip(shape, dtype):
return None
hdf5_file = path / "h5f.h5"
array_path = (
"/" + "_".join([str(s) for s in case.shape]) + "__" + case.dtype.__name__
)
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
generator = np.random.default_rng()
if case.dtype is str:
data = generator.random(case.shape).astype(bytes)
elif case.dtype is datetime:
data = np.empty(case.shape, dtype="S32")
if dtype is str:
data = generator.random(shape).astype(bytes)
elif dtype is datetime:
data = np.empty(shape, dtype="S32")
data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8"))
else:
data = generator.random(case.shape).astype(case.dtype)
data = generator.random(shape).astype(dtype)
h5path = H5ArrayPath(hdf5_file, array_path)
@ -79,31 +86,30 @@ class HDF5CompoundCase(_HDF5MetaCase):
"""HDF5 Array with a fake compound dtype"""
@classmethod
def generate_array(
cls, case: "ValidationCase", path: Path
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[H5ArrayPath]:
if cls.skip(case):
if cls.skip(shape, dtype):
return None
hdf5_file = path / "h5f.h5"
array_path = (
"/" + "_".join([str(s) for s in case.shape]) + "__" + case.dtype.__name__
)
if case.dtype is str:
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
if dtype is str:
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
data = np.array([("hey", 0)] * np.prod(case.shape), dtype=dt).reshape(
case.shape
)
elif case.dtype is datetime:
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
elif dtype is datetime:
dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")])
data = np.array(
[(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)]
* np.prod(case.shape),
* np.prod(shape),
dtype=dt,
).reshape(case.shape)
).reshape(shape)
else:
dt = np.dtype([("data", case.dtype), ("extra", "i8")])
data = np.zeros(case.shape, dtype=dt)
dt = np.dtype([("data", dtype), ("extra", "i8")])
data = np.zeros(shape, dtype=dt)
h5path = H5ArrayPath(hdf5_file, array_path, "data")
with h5py.File(hdf5_file, "w") as h5f:
@ -117,11 +123,16 @@ class DaskCase(InterfaceCase):
interface = DaskInterface
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> da.Array:
if issubclass(case.dtype, BaseModel):
return da.full(shape=case.shape, fill_value=case.dtype(x=1), chunks=-1)
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> da.Array:
if issubclass(dtype, BaseModel):
return da.full(shape=shape, fill_value=dtype(x=1), chunks=-1)
else:
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
return da.zeros(shape=shape, dtype=dtype, chunks=10)
class _ZarrMetaCase(InterfaceCase):
@ -130,45 +141,65 @@ class _ZarrMetaCase(InterfaceCase):
interface = ZarrInterface
@classmethod
def skip(cls, case: "ValidationCase") -> bool:
return not issubclass(case.dtype, BaseModel)
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
return not issubclass(dtype, BaseModel)
class ZarrCase(_ZarrMetaCase):
"""In-memory zarr array"""
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> Optional[zarr.Array]:
return zarr.zeros(shape=case.shape, dtype=case.dtype)
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[zarr.Array]:
return zarr.zeros(shape=shape, dtype=dtype)
class ZarrDirCase(_ZarrMetaCase):
"""On-disk zarr array"""
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> ZarrArrayPath:
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[zarr.Array]:
store = zarr.DirectoryStore(str(path / "array.zarr"))
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
return zarr.zeros(shape=shape, dtype=dtype, store=store)
class ZarrZipCase(_ZarrMetaCase):
"""Zarr zip store"""
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> ZarrArrayPath:
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[zarr.Array]:
store = zarr.ZipStore(str(path / "array.zarr"), mode="w")
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
return zarr.zeros(shape=shape, dtype=dtype, store=store)
class ZarrNestedCase(_ZarrMetaCase):
"""Nested zarr array"""
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> ZarrArrayPath:
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> ZarrArrayPath:
file = str(path / "nested.zarr")
root = zarr.open(file, mode="w")
subpath = "a/b/c"
_ = root.zeros(subpath, shape=case.shape, dtype=case.dtype)
_ = root.zeros(subpath, shape=shape, dtype=dtype)
return ZarrArrayPath(file=file, path=subpath)
@ -178,13 +209,18 @@ class VideoCase(InterfaceCase):
interface = VideoInterface
@classmethod
def generate_array(cls, case: "ValidationCase", path: Path) -> Optional[Path]:
if cls.skip(case):
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
) -> Optional[Path]:
if cls.skip(shape, dtype):
return None
is_color = len(case.shape) == 4
frames = case.shape[0]
frame_shape = case.shape[1:]
is_color = len(shape) == 4
frames = shape[0]
frame_shape = shape[1:]
video_path = path / "test.avi"
writer = cv2.VideoWriter(
@ -207,12 +243,12 @@ class VideoCase(InterfaceCase):
return video_path
@classmethod
def skip(cls, case: "ValidationCase") -> bool:
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
"""We really can only handle 3-4 dimensional cases in 8-bit rn lol"""
if len(case.shape) < 3 or len(case.shape) > 4:
if len(shape) < 3 or len(shape) > 4:
return True
if case.dtype not in (int, np.uint8):
if dtype not in (int, np.uint8):
return True
# if we have a color video (ie. shape == 4, needs to be RGB)
if len(case.shape) == 4 and case.shape[3] != 3:
if len(shape) == 4 and shape[3] != 3:
return True

View file

@ -13,11 +13,19 @@ def pytest_addoption(parser):
)
@pytest.fixture(scope="module", params=SHAPE_CASES)
def shape_cases(request) -> ValidationCase:
return request.param
@pytest.fixture(
scope="function", params=[pytest.param(c, id=c.id) for c in SHAPE_CASES]
)
def shape_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()
case.path = tmp_output_dir_func
return case
@pytest.fixture(scope="module", params=DTYPE_CASES)
def dtype_cases(request) -> ValidationCase:
return request.param
@pytest.fixture(
scope="function", params=[pytest.param(c, id=c.id) for c in DTYPE_CASES]
)
def dtype_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()
case.path = tmp_output_dir_func
return case

View file

@ -1,60 +1,33 @@
from datetime import datetime, timezone
from pathlib import Path
from typing import Callable, Tuple, Union
import cv2
import h5py
import numpy as np
import pytest
import zarr
from numpydantic.interface.hdf5 import H5ArrayPath
from numpydantic.interface.zarr import ZarrArrayPath
from numpydantic.testing import ValidationCase
from numpydantic.testing.interfaces import HDF5Case, HDF5CompoundCase, VideoCase
@pytest.fixture(scope="function")
def hdf5_array(
request, tmp_output_dir_func
) -> Callable[[Tuple[int, ...], Union[np.dtype, type]], H5ArrayPath]:
hdf5_file = tmp_output_dir_func / "h5f.h5"
def _hdf5_array(
shape: Tuple[int, ...] = (10, 10),
dtype: Union[np.dtype, type] = float,
compound: bool = False,
) -> H5ArrayPath:
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
generator = np.random.default_rng()
if not compound:
if dtype is str:
data = generator.random(shape).astype(bytes)
elif dtype is datetime:
data = np.empty(shape, dtype="S32")
data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8"))
else:
data = generator.random(shape).astype(dtype)
h5path = H5ArrayPath(hdf5_file, array_path)
if compound:
array: H5ArrayPath = HDF5CompoundCase.make_array(
shape, dtype, tmp_output_dir_func
)
return array
else:
if dtype is str:
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
elif dtype is datetime:
dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")])
data = np.array(
[(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)]
* np.prod(shape),
dtype=dt,
).reshape(shape)
else:
dt = np.dtype([("data", dtype), ("extra", "i8")])
data = np.zeros(shape, dtype=dt)
h5path = H5ArrayPath(hdf5_file, array_path, "data")
with h5py.File(hdf5_file, "w") as h5f:
_ = h5f.create_dataset(array_path, data=data)
return h5path
return HDF5Case.make_array(shape, dtype, tmp_output_dir_func)
return _hdf5_array
@ -79,28 +52,13 @@ def zarr_array(tmp_output_dir_func) -> Path:
@pytest.fixture(scope="function")
def avi_video(tmp_output_dir_func) -> Callable[[Tuple[int, int], int, bool], Path]:
video_path = tmp_output_dir_func / "test.avi"
def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path:
writer = cv2.VideoWriter(
str(video_path),
cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes
30,
(shape[1], shape[0]),
is_color,
)
shape = (frames, *shape)
if is_color:
shape = (*shape, 3)
for i in range(frames):
# make fresh array every time bc opencv eats them
array = np.zeros(shape, dtype=np.uint8)
if not is_color:
array[i, i] = i
else:
array[i, i, :] = i
writer.write(array)
writer.release()
return video_path
return VideoCase.array_from_case(
ValidationCase(shape=shape, dtype=np.uint8), tmp_output_dir_func
)
return _make_video

View file

@ -1,12 +1,20 @@
import inspect
from typing import Callable, Tuple, Type
import dask.array as da
import numpy as np
import pytest
import zarr
from pydantic import BaseModel
from numpydantic import NDArray, interface
from numpydantic.testing.helpers import InterfaceCase
from numpydantic.testing.interfaces import (
DaskCase,
HDF5Case,
NumpyCase,
VideoCase,
ZarrCase,
ZarrDirCase,
ZarrNestedCase,
)
@pytest.fixture(
@ -18,47 +26,55 @@ from numpydantic import NDArray, interface
id="numpy-list",
),
pytest.param(
(np.zeros((3, 4)), interface.NumpyInterface),
(NumpyCase, interface.NumpyInterface),
marks=pytest.mark.numpy,
id="numpy",
),
pytest.param(
("hdf5_array", interface.H5Interface),
(HDF5Case, interface.H5Interface),
marks=pytest.mark.hdf5,
id="h5-array-path",
),
pytest.param(
(da.random.random((10, 10)), interface.DaskInterface),
(DaskCase, interface.DaskInterface),
marks=pytest.mark.dask,
id="dask",
),
pytest.param(
(zarr.ones((10, 10)), interface.ZarrInterface),
(ZarrCase, interface.ZarrInterface),
marks=pytest.mark.zarr,
id="zarr-memory",
),
pytest.param(
("zarr_nested_array", interface.ZarrInterface),
(ZarrNestedCase, interface.ZarrInterface),
marks=pytest.mark.zarr,
id="zarr-nested",
),
pytest.param(
("zarr_array", interface.ZarrInterface),
(ZarrDirCase, interface.ZarrInterface),
marks=pytest.mark.zarr,
id="zarr-array",
id="zarr-dir",
),
pytest.param(
("avi_video", interface.VideoInterface), marks=pytest.mark.video, id="video"
(VideoCase, interface.VideoInterface), marks=pytest.mark.video, id="video"
),
],
)
def interface_type(request) -> Tuple[NDArray, Type[interface.Interface]]:
def interface_type(
request, tmp_output_dir_func
) -> Tuple[NDArray, Type[interface.Interface]]:
"""
Test cases for each interface's ``check`` method - each input should match the
provided interface and that interface only
"""
if isinstance(request.param[0], str):
return (request.getfixturevalue(request.param[0]), request.param[1])
if inspect.isclass(request.param[0]) and issubclass(
request.param[0], InterfaceCase
):
array = request.param[0].make_array(path=tmp_output_dir_func)
if array is None:
pytest.skip()
return array, request.param[1]
else:
return request.param

View file

@ -2,31 +2,13 @@ import json
import dask.array as da
import pytest
from pydantic import BaseModel, ValidationError
from numpydantic.exceptions import DtypeError, ShapeError
from numpydantic.interface import DaskInterface
from numpydantic.testing.helpers import ValidationCase
from numpydantic.testing.interfaces import DaskCase
pytestmark = pytest.mark.dask
def dask_array(case: ValidationCase) -> da.Array:
if issubclass(case.dtype, BaseModel):
return da.full(shape=case.shape, fill_value=case.dtype(x=1), chunks=-1)
else:
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
def _test_dask_case(case: ValidationCase):
array = dask_array(case)
if case.passes:
case.model(array=array)
else:
with pytest.raises((ValidationError, DtypeError, ShapeError)):
case.model(array=array)
def test_dask_enabled():
"""
We need dask to be available to run these tests :)
@ -43,12 +25,14 @@ def test_dask_check(interface_type):
@pytest.mark.shape
def test_dask_shape(shape_cases):
_test_dask_case(shape_cases)
shape_cases.interface = DaskCase
shape_cases.validate_case()
@pytest.mark.dtype
def test_dask_dtype(dtype_cases):
_test_dask_case(dtype_cases)
dtype_cases.interface = DaskCase
dtype_cases.validate_case()
@pytest.mark.serialization

View file

@ -12,10 +12,21 @@ from numpydantic.exceptions import DtypeError, ShapeError
from numpydantic.interface import H5Interface
from numpydantic.interface.hdf5 import H5ArrayPath, H5Proxy
from numpydantic.testing.helpers import ValidationCase
from numpydantic.testing.interfaces import HDF5Case, HDF5CompoundCase
pytestmark = pytest.mark.hdf5
@pytest.fixture(
params=[
pytest.param(HDF5Case, id="hdf5"),
pytest.param(HDF5CompoundCase, id="hdf5-compound"),
]
)
def hdf5_cases(request):
return request.param
def hdf5_array_case(
case: ValidationCase, array_func, compound: bool = False
) -> H5ArrayPath:
@ -47,8 +58,6 @@ def test_hdf5_enabled():
def test_hdf5_check(interface_type):
if interface_type[1] is H5Interface:
if interface_type[0].__name__ == "_hdf5_array":
interface_type = (interface_type[0](), interface_type[1])
assert H5Interface.check(interface_type[0])
if isinstance(interface_type[0], H5ArrayPath):
# also test that we can instantiate from a tuple like the H5ArrayPath
@ -74,15 +83,17 @@ def test_hdf5_check_not_hdf5(tmp_path):
@pytest.mark.shape
@pytest.mark.parametrize("compound", [True, False])
def test_hdf5_shape(shape_cases, hdf5_array, compound):
_test_hdf5_case(shape_cases, hdf5_array, compound)
def test_hdf5_shape(shape_cases, hdf5_cases):
shape_cases.interface = hdf5_cases
if shape_cases.skip():
pytest.skip()
shape_cases.validate_case()
@pytest.mark.dtype
@pytest.mark.parametrize("compound", [True, False])
def test_hdf5_dtype(dtype_cases, hdf5_array, compound):
_test_hdf5_case(dtype_cases, hdf5_array, compound)
def test_hdf5_dtype(dtype_cases, hdf5_cases):
dtype_cases.interface = hdf5_cases
dtype_cases.validate_case()
def test_hdf5_dataset_not_exists(hdf5_array, model_blank):