mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-09 21:44:27 +00:00
bugfix - don't choke on empty datasets during validation
This commit is contained in:
parent
2c625e47ac
commit
47e5cb8da1
2 changed files with 31 additions and 1 deletions
|
@ -39,6 +39,7 @@ as ``S32`` isoformatted byte strings (timezones optional) like:
|
|||
|
||||
"""
|
||||
|
||||
import pdb
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
@ -321,12 +322,21 @@ class H5Interface(Interface):
|
|||
"""
|
||||
if h5py.h5t.check_string_dtype(array.dtype):
|
||||
# check for datetimes
|
||||
pdb.set_trace()
|
||||
try:
|
||||
if array[0].dtype.type is np.datetime64:
|
||||
return np.datetime64
|
||||
else:
|
||||
return str
|
||||
except (AttributeError, ValueError, TypeError): # pragma: no cover
|
||||
except (AttributeError, TypeError): # pragma: no cover
|
||||
# it's not a datetime, but it is some kind of string
|
||||
return str
|
||||
except (IndexError, ValueError):
|
||||
# if the dataset is empty, we can't tell if something is a datetime
|
||||
# or not, so we just tell the validation method what it wants to hear
|
||||
if self.dtype in (np.datetime64, str):
|
||||
return self.dtype
|
||||
else:
|
||||
return str
|
||||
else:
|
||||
return array.dtype
|
||||
|
|
|
@ -198,3 +198,23 @@ def test_datetime(hdf5_array, compound):
|
|||
assert instance.array[0, 0] == now
|
||||
instance.array[0] = now
|
||||
assert all(instance.array[0] == now)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [int, float, str, datetime])
|
||||
def test_empty_dataset(dtype, tmp_path):
|
||||
"""
|
||||
Empty datasets shouldn't choke us during validation
|
||||
"""
|
||||
array_path = tmp_path / "test.h5"
|
||||
if dtype in (str, datetime):
|
||||
np_dtype = "S32"
|
||||
else:
|
||||
np_dtype = dtype
|
||||
|
||||
with h5py.File(array_path, "w") as h5f:
|
||||
_ = h5f.create_dataset(name="/data", dtype=np_dtype)
|
||||
|
||||
class MyModel(BaseModel):
|
||||
array: NDArray[Any, dtype]
|
||||
|
||||
_ = MyModel(array=(array_path, "/data"))
|
||||
|
|
Loading…
Reference in a new issue