mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-12-04 20:44:29 +00:00
refresh of front docs page
This commit is contained in:
parent
a079fbcafc
commit
57b25034d6
12 changed files with 206 additions and 20 deletions
|
@ -19,4 +19,5 @@ python:
|
|||
- method: pip
|
||||
path: .
|
||||
extra_requirements:
|
||||
- docs
|
||||
- docs
|
||||
- arrays
|
1
docs/api/dtype.md
Normal file
1
docs/api/dtype.md
Normal file
|
@ -0,0 +1 @@
|
|||
# DType
|
6
docs/api/interface/dask.md
Normal file
6
docs/api/interface/dask.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Dask
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.interface.dask
|
||||
:members:
|
||||
```
|
6
docs/api/interface/hdf5.md
Normal file
6
docs/api/interface/hdf5.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# HDF5
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.interface.hdf5
|
||||
:members:
|
||||
```
|
13
docs/api/interface/index.md
Normal file
13
docs/api/interface/index.md
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Interfaces
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.interface.interface
|
||||
:members:
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
dask
|
||||
hdf5
|
||||
numpy
|
||||
zarr
|
||||
```
|
6
docs/api/interface/numpy.md
Normal file
6
docs/api/interface/numpy.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Numpy
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.interface.numpy
|
||||
:members:
|
||||
```
|
6
docs/api/interface/zarr.md
Normal file
6
docs/api/interface/zarr.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Zarr
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.interface.zarr
|
||||
:members:
|
||||
```
|
|
@ -1,6 +0,0 @@
|
|||
# proxy
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: numpydantic.proxy
|
||||
:members:
|
||||
```
|
1
docs/api/types.md
Normal file
1
docs/api/types.md
Normal file
|
@ -0,0 +1 @@
|
|||
# Types
|
|
@ -19,6 +19,7 @@ extensions = [
|
|||
"sphinx.ext.autodoc",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx_design",
|
||||
"myst_parser",
|
||||
"sphinx.ext.todo",
|
||||
|
@ -48,12 +49,7 @@ html_static_path = ["_static"]
|
|||
# autodoc
|
||||
autodoc_pydantic_model_show_json_error_strategy = "coerce"
|
||||
autodoc_pydantic_model_show_json = False
|
||||
autodoc_mock_imports = [
|
||||
"dask",
|
||||
"h5py",
|
||||
"linkml",
|
||||
"linkml-runtime",
|
||||
]
|
||||
|
||||
autoclass_content = "both"
|
||||
autodoc_member_order = "bysource"
|
||||
add_module_names = False
|
||||
|
|
168
docs/index.md
168
docs/index.md
|
@ -1,9 +1,166 @@
|
|||
# numpydantic
|
||||
|
||||
Type and shape validation and serialization for numpy arrays in pydantic models
|
||||
A python package for array types in pydantic.
|
||||
|
||||
## Features:
|
||||
- **Types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
||||
for specifying arrays in pydantic models
|
||||
- **Validation** - Shape, dtype, and other array validations
|
||||
- **Seralization** - JSON-Schema List-of-list schema generation
|
||||
- **Interfaces** - Works with numpy, dask, HDF5, zarr, and a simple extension system to make it work with
|
||||
whatever else you want!
|
||||
|
||||
Coming soon:
|
||||
- **Metadata** - This package was built to be used with [linkml arrays](https://linkml.io/linkml/schemas/arrays.html),
|
||||
so we will be extending it to include any metadata included in the type annotation object in the JSON schema representation.
|
||||
- (see [todo](./todo.md))
|
||||
|
||||
## Usage
|
||||
|
||||
Specify an array using [nptyping syntax](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
|
||||
and use it with your favorite array library :)
|
||||
|
||||
```{todo}
|
||||
We will be moving away from using nptyping in v2.0.0.
|
||||
|
||||
It was written for an older era in python before the dramatic changes in the Python
|
||||
type system and is no longer actively maintained. We will be reimplementing a syntax
|
||||
that extends its array specification syntax to include things like ranges and extensible
|
||||
dtypes with varying precision (and is much less finnicky to deal with).
|
||||
```
|
||||
|
||||
Use the {class}`~numpydantic.NDArray` class like you would any other python type,
|
||||
combine it with {class}`typing.Union`, make it {class}`~typing.Optional`, etc.
|
||||
|
||||
```python
|
||||
from typing import Union
|
||||
from pydantic import BaseModel
|
||||
import numpy as np
|
||||
|
||||
from numpydantic import NDArray, Shape
|
||||
|
||||
class Image(BaseModel):
|
||||
"""
|
||||
Images: grayscale, RGB, RGBA, and videos too!
|
||||
"""
|
||||
array: Union[
|
||||
NDArray[Shape["* x, * y"], np.uint8],
|
||||
NDArray[Shape["* x, * y, 3 rgb"], np.uint8],
|
||||
NDArray[Shape["* x, * y, 4 rgba"], np.uint8],
|
||||
NDArray[Shape["* t, * x, * y, 3 rgb"], np.uint8],
|
||||
NDArray[Shape["* t, * x, * y, 4 rgba"], np.float64]
|
||||
]
|
||||
```
|
||||
|
||||
And then use that as a transparent interface to your favorite array library!
|
||||
|
||||
### Numpy
|
||||
|
||||
The Coca-Cola of array libraries
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
# works
|
||||
frame_gray = Image(array=np.ones((1280, 720), dtype=np.uint8))
|
||||
frame_rgb = Image(array=np.ones((1280, 720, 3), dtype=np.uint8))
|
||||
frame_rgba = Image(array=np.ones((1280, 720, 4), dtype=np.uint8))
|
||||
video_rgb = Image(array=np.ones((100, 1280, 720, 3), dtype=np.uint8))
|
||||
|
||||
# fails
|
||||
wrong_n_dimensions = Image(array=np.ones((1280,), dtype=np.uint8))
|
||||
wrong_shape = Image(array=np.ones((1280,720,10), dtype=np.uint8))
|
||||
wrong_type = Image(array=np.ones((1280,720,3), dtype=np.float64))
|
||||
|
||||
# shapes and types are checked together, so..
|
||||
# this works
|
||||
float_video = Image(array=np.ones((100, 1280, 720, 4), dtype=float))
|
||||
# this doesn't
|
||||
wrong_shape_float_video = Image(array=np.ones((100, 1280, 720, 3), dtype=float))
|
||||
```
|
||||
|
||||
### Dask
|
||||
|
||||
High performance chunked arrays! The backend for many new array libraries!
|
||||
|
||||
Works exactly the same as numpy arrays
|
||||
|
||||
```python
|
||||
import dask.array as da
|
||||
|
||||
# validate a huge video
|
||||
video_array = da.zeros(shape=(1920,1080,1000000,3), dtype=np.uint8)
|
||||
|
||||
# this works
|
||||
dask_video = Image(array=video_array)
|
||||
```
|
||||
|
||||
### HDF5
|
||||
|
||||
Array work increasingly can't fit on memory, but dealing with arrays on disk
|
||||
can become a pain in concurrent applications. Numpydantic allows you to
|
||||
specify the location of an array within an hdf5 file on disk and use it just like
|
||||
any other array!
|
||||
|
||||
eg. Make an array on disk...
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
import h5py
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
|
||||
h5f_file = Path('my_file.h5')
|
||||
array_path = "/nested/array"
|
||||
|
||||
# make an HDF5 array
|
||||
h5f = h5py.File(h5f_file, "w")
|
||||
array = np.random.random((1920,1080,3)).astype(np.uint8)
|
||||
h5f.create_dataset(array_path, data=array)
|
||||
h5f.close()
|
||||
```
|
||||
|
||||
Then use it in your model! numpydantic will only open the file as long as it's needed
|
||||
|
||||
```python
|
||||
>>> h5f_image = Image(array=H5ArrayPath(file=h5f_file, path=array_path))
|
||||
>>> h5f_image.array[0:5,0:5,0]
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
>>> h5f_image.array[0:2,0:2,0] = 1
|
||||
>>> h5f_image.array[0:5,0:5,0]
|
||||
array([[1, 1, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
```
|
||||
|
||||
Numpydantic tries to be a smart but transparent proxy, exposing the methods and attributes
|
||||
of the source type even when we aren't directly using them, like when dealing with on-disk HDF5 arrays.
|
||||
|
||||
If you want, you can take full control and directly interact with the underlying :class:`h5py.Dataset`
|
||||
object and leave the file open between calls:
|
||||
|
||||
```python
|
||||
>>> dataset = h5f_image.array.open()
|
||||
>>> # do some stuff that requires the datset to be held open
|
||||
>>> h5f_image.array.close()
|
||||
```
|
||||
|
||||
### Zarr
|
||||
|
||||
Zarr works similarly!
|
||||
|
||||
Use it with any of Zarr's backends: Nested, Zipfile, S3, it's all the same!
|
||||
|
||||
```{todo}
|
||||
Add the zarr examples!
|
||||
```
|
||||
|
||||
|
||||
|
||||
- **Provide types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
||||
for specifying numpy arrays in pydantic models, and
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
@ -21,12 +178,13 @@ todo
|
|||
:caption: API
|
||||
:hidden: true
|
||||
|
||||
api/interface/index
|
||||
api/index
|
||||
api/dtype
|
||||
api/ndarray
|
||||
api/proxy
|
||||
api/linkml/index
|
||||
api/maps
|
||||
api/monkeypatch
|
||||
api/types
|
||||
|
||||
```
|
||||
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
# LinkML Generation
|
||||
|
Loading…
Reference in a new issue