mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
remove nwb_linkml remnants, add to_json method for json serialization
This commit is contained in:
parent
46060c1154
commit
5b722bb6da
11 changed files with 212 additions and 204 deletions
|
@ -8,7 +8,6 @@ authors = [
|
|||
dependencies = [
|
||||
"pydantic>=2.3.0",
|
||||
"nptyping>=2.5.0",
|
||||
"blosc2<3.0.0,>=2.5.1",
|
||||
"numpy>=1.24.0",
|
||||
]
|
||||
requires-python = "<4.0,>=3.9"
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from typing import Any
|
||||
import numpy as np
|
||||
from numpydantic.interface.interface import Interface
|
||||
|
||||
try:
|
||||
|
@ -28,3 +29,19 @@ class DaskInterface(Interface):
|
|||
def enabled(cls) -> bool:
|
||||
"""check if we successfully imported dask"""
|
||||
return DaskArray is not None
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: DaskArray) -> list:
|
||||
"""
|
||||
Convert an array to a JSON serializable array by first converting to a numpy
|
||||
array and then to a list.
|
||||
|
||||
.. note::
|
||||
|
||||
This is likely a very memory intensive operation if you are using dask for
|
||||
large arrays. This can't be avoided, since the creation of the json string
|
||||
happens in-memory with Pydantic, so you are likely looking for a different
|
||||
method of serialization here using the python object itself rather than
|
||||
its JSON representation.
|
||||
"""
|
||||
return np.array(array).tolist()
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import pdb
|
||||
from pathlib import Path
|
||||
from typing import Any, NamedTuple, Tuple, Union, TypeAlias
|
||||
|
||||
|
@ -14,7 +15,7 @@ except ImportError:
|
|||
H5Arraylike: TypeAlias = Tuple[Union[Path, str], str]
|
||||
|
||||
|
||||
class H5Array(NamedTuple):
|
||||
class H5ArrayPath(NamedTuple):
|
||||
"""Location specifier for arrays within an HDF5 file"""
|
||||
|
||||
file: Union[Path, str]
|
||||
|
@ -43,6 +44,7 @@ class H5Proxy:
|
|||
"""
|
||||
|
||||
def __init__(self, file: Union[Path, str], path: str):
|
||||
self._h5f = None
|
||||
self.file = Path(file)
|
||||
self.path = path
|
||||
|
||||
|
@ -53,8 +55,8 @@ class H5Proxy:
|
|||
return obj is not None
|
||||
|
||||
@classmethod
|
||||
def from_h5array(cls, h5array: H5Array) -> "H5Proxy":
|
||||
"""Instantiate using :class:`.H5Array`"""
|
||||
def from_h5array(cls, h5array: H5ArrayPath) -> "H5Proxy":
|
||||
"""Instantiate using :class:`.H5ArrayPath`"""
|
||||
return H5Proxy(file=h5array.file, path=h5array.path)
|
||||
|
||||
def __getattr__(self, item: str):
|
||||
|
@ -72,18 +74,37 @@ class H5Proxy:
|
|||
obj = h5f.get(self.path)
|
||||
obj[key] = value
|
||||
|
||||
def open(self, mode: str = "r"):
|
||||
"""
|
||||
Return the opened :class:`h5py.Dataset` object
|
||||
|
||||
You must remember to close the associated file with :meth:`.close`
|
||||
"""
|
||||
if self._h5f is None:
|
||||
self._h5f = h5py.File(self.file, mode)
|
||||
return self._h5f.get(self.path)
|
||||
|
||||
def close(self):
|
||||
"""
|
||||
Close the :class:`h5py.File` object left open when returning the dataset with
|
||||
:meth:`.open`
|
||||
"""
|
||||
if self._h5f is not None:
|
||||
self._h5f.close()
|
||||
self._h5f = None
|
||||
|
||||
|
||||
class H5Interface(Interface):
|
||||
"""
|
||||
Interface for Arrays stored as datasets within an HDF5 file.
|
||||
|
||||
Takes a :class:`.H5Array` specifier to select a :class:`h5py.Dataset` from a
|
||||
Takes a :class:`.H5ArrayPath` specifier to select a :class:`h5py.Dataset` from a
|
||||
:class:`h5py.File` and returns a :class:`.H5Proxy` class that acts like a
|
||||
passthrough numpy-like interface to the dataset.
|
||||
"""
|
||||
|
||||
input_types = (
|
||||
H5Array,
|
||||
H5ArrayPath,
|
||||
H5Arraylike,
|
||||
)
|
||||
return_type = H5Proxy
|
||||
|
@ -94,9 +115,9 @@ class H5Interface(Interface):
|
|||
return h5py is not None
|
||||
|
||||
@classmethod
|
||||
def check(cls, array: Union[H5Array, Tuple[Union[Path, str], str]]) -> bool:
|
||||
"""Check that the given array is a :class:`.H5Array` or something that resembles one."""
|
||||
if isinstance(array, H5Array):
|
||||
def check(cls, array: Union[H5ArrayPath, Tuple[Union[Path, str], str]]) -> bool:
|
||||
"""Check that the given array is a :class:`.H5ArrayPath` or something that resembles one."""
|
||||
if isinstance(array, H5ArrayPath):
|
||||
return True
|
||||
|
||||
if isinstance(array, (tuple, list)) and len(array) == 2:
|
||||
|
@ -125,7 +146,7 @@ class H5Interface(Interface):
|
|||
|
||||
def before_validation(self, array: Any) -> NDArrayType:
|
||||
"""Create an :class:`.H5Proxy` to use throughout validation"""
|
||||
if isinstance(array, H5Array):
|
||||
if isinstance(array, H5ArrayPath):
|
||||
array = H5Proxy.from_h5array(h5array=array)
|
||||
elif isinstance(array, (tuple, list)) and len(array) == 2:
|
||||
array = H5Proxy(file=array[0], path=array[1])
|
||||
|
@ -141,3 +162,17 @@ class H5Interface(Interface):
|
|||
)
|
||||
|
||||
return array
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: H5Proxy) -> dict:
|
||||
try:
|
||||
dset = array.open()
|
||||
meta = {
|
||||
"file": array.file,
|
||||
"path": array.path,
|
||||
"attrs": dict(dset.attrs),
|
||||
"array": dset[:].tolist(),
|
||||
}
|
||||
return meta
|
||||
finally:
|
||||
array.close()
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from operator import attrgetter
|
||||
from typing import Any, Generic, Tuple, Type, TypeVar
|
||||
from typing import Any, Generic, Tuple, Type, TypeVar, Union
|
||||
|
||||
import numpy as np
|
||||
from nptyping.shape_expression import check_shape
|
||||
|
||||
from numpydantic.exceptions import DtypeError, ShapeError
|
||||
|
@ -92,6 +93,15 @@ class Interface(ABC, Generic[T]):
|
|||
Check whether this array interface can be used (eg. its dependent packages are installed, etc.)
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: Type[T]) -> Union[list, dict]:
|
||||
"""
|
||||
Convert an array of :attr:`.return_type` to a JSON-compatible format using base python types
|
||||
"""
|
||||
if not isinstance(array, np.ndarray):
|
||||
array = np.array(array)
|
||||
return array.tolist()
|
||||
|
||||
@classmethod
|
||||
def interfaces(cls) -> Tuple[Type["Interface"], ...]:
|
||||
"""
|
||||
|
@ -106,7 +116,7 @@ class Interface(ABC, Generic[T]):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def array_types(cls) -> Tuple[NDArrayType, ...]:
|
||||
def return_types(cls) -> Tuple[NDArrayType, ...]:
|
||||
"""Return types for all enabled interfaces"""
|
||||
return tuple([i.return_type for i in cls.interfaces()])
|
||||
|
||||
|
@ -125,7 +135,7 @@ class Interface(ABC, Generic[T]):
|
|||
@classmethod
|
||||
def match(cls, array: Any) -> Type["Interface"]:
|
||||
"""
|
||||
Find the interface that should be used for this array
|
||||
Find the interface that should be used for this array based on its input type
|
||||
"""
|
||||
matches = [i for i in cls.interfaces() if i.check(array)]
|
||||
if len(matches) > 1:
|
||||
|
@ -136,3 +146,21 @@ class Interface(ABC, Generic[T]):
|
|||
raise ValueError(f"No matching interfaces found for input {array}")
|
||||
else:
|
||||
return matches[0]
|
||||
|
||||
@classmethod
|
||||
def match_output(cls, array: Any) -> Type["Interface"]:
|
||||
"""
|
||||
Find the interface that should be used based on the output type -
|
||||
in the case that the output type differs from the input type, eg.
|
||||
the HDF5 interface, match an instantiated array for purposes of
|
||||
serialization to json, etc.
|
||||
"""
|
||||
matches = [i for i in cls.interfaces() if isinstance(array, i.return_type)]
|
||||
if len(matches) > 1:
|
||||
msg = f"More than one interface matches output {array}:\n"
|
||||
msg += "\n".join([f" - {i}" for i in matches])
|
||||
raise ValueError(msg)
|
||||
elif len(matches) == 0:
|
||||
raise ValueError(f"No matching interfaces found for output {array}")
|
||||
else:
|
||||
return matches[0]
|
||||
|
|
|
@ -2,6 +2,7 @@ from datetime import datetime
|
|||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from nptyping import Float, Int, String, Bool
|
||||
|
||||
np_to_python = {
|
||||
Any: Any,
|
||||
|
@ -74,3 +75,5 @@ flat_to_nptyping = {
|
|||
"AnyType": "Any",
|
||||
"object": "Object",
|
||||
}
|
||||
|
||||
python_to_nptyping = {float: Float, str: String, int: Int, bool: Bool}
|
||||
|
|
|
@ -4,19 +4,14 @@ Extension of nptyping NDArray for pydantic that allows for JSON-Schema serializa
|
|||
* Order to store data in (row first)
|
||||
"""
|
||||
|
||||
import base64
|
||||
import sys
|
||||
from collections.abc import Callable
|
||||
from copy import copy
|
||||
from typing import Any, Tuple, TypeVar, cast, Union
|
||||
from typing import Any, Tuple, Union
|
||||
|
||||
import blosc2
|
||||
import nptyping.structure
|
||||
import numpy as np
|
||||
from nptyping import Shape
|
||||
from nptyping.ndarray import NDArrayMeta as _NDArrayMeta
|
||||
from nptyping.nptyping_type import NPTypingType
|
||||
from nptyping.shape_expression import check_shape
|
||||
from pydantic_core import core_schema
|
||||
from pydantic_core.core_schema import ListSchema
|
||||
|
||||
|
@ -65,57 +60,7 @@ def list_of_lists_schema(shape: Shape, array_type_handler: dict) -> ListSchema:
|
|||
return list_schema
|
||||
|
||||
|
||||
def jsonize_array(array: NDArrayType) -> list | dict:
|
||||
"""
|
||||
Render an array to base python types that can be serialized to JSON
|
||||
|
||||
For small arrays, returns a list of lists.
|
||||
|
||||
If the array is over :class:`.COMPRESSION_THRESHOLD` bytes, use :func:`.compress_array`
|
||||
to return a compressed b64 encoded string.
|
||||
|
||||
Args:
|
||||
array (:class:`np.ndarray`, :class:`dask.DaskArray`): Array to render as a list!
|
||||
"""
|
||||
# if isinstance(array, DaskArray):
|
||||
# arr = array.__array__()
|
||||
# elif isinstance(array, NDArrayProxy):
|
||||
# arr = array[:]
|
||||
# else:
|
||||
# arr = array
|
||||
arr = array
|
||||
|
||||
# If we're larger than 16kB then compress array!
|
||||
if sys.getsizeof(arr) > COMPRESSION_THRESHOLD:
|
||||
packed = blosc2.pack_array2(arr)
|
||||
packed = base64.b64encode(packed)
|
||||
ret = {
|
||||
"array": packed,
|
||||
"shape": copy(arr.shape),
|
||||
"dtype": copy(arr.dtype.name),
|
||||
"unpack_fns": ["base64.b64decode", "blosc2.unpack_array2"],
|
||||
}
|
||||
return ret
|
||||
else:
|
||||
return arr.tolist()
|
||||
|
||||
|
||||
def get_validate_shape(shape: Shape) -> Callable:
|
||||
"""
|
||||
Get a closure around a shape validation function that includes the shape definition
|
||||
"""
|
||||
|
||||
def validate_shape(value: Any) -> np.ndarray:
|
||||
assert shape is Any or check_shape(
|
||||
value.shape, shape
|
||||
), f"Invalid shape! expected shape {shape.prepared_args}, got shape {value.shape}"
|
||||
|
||||
return value
|
||||
|
||||
return validate_shape
|
||||
|
||||
|
||||
def get_validate_interface(shape: ShapeType, dtype: DtypeType) -> Callable:
|
||||
def _get_validate_interface(shape: ShapeType, dtype: DtypeType) -> Callable:
|
||||
"""
|
||||
Validate using a matching :class:`.Interface` class using its :meth:`.Interface.validate` method
|
||||
"""
|
||||
|
@ -129,6 +74,11 @@ def get_validate_interface(shape: ShapeType, dtype: DtypeType) -> Callable:
|
|||
return validate_interface
|
||||
|
||||
|
||||
def _jsonize_array(value: Any) -> Union[list, dict]:
|
||||
interface_cls = Interface.match_output(value)
|
||||
return interface_cls.to_json(value)
|
||||
|
||||
|
||||
def coerce_list(value: Any) -> np.ndarray:
|
||||
"""
|
||||
If a value is passed as a list or list of lists, try and coerce it into an array
|
||||
|
@ -147,9 +97,6 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
|||
"""
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
||||
"""
|
||||
Constrained array type allowing npytyping syntax for dtype and shape validation and serialization.
|
||||
|
@ -196,15 +143,11 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
|||
[
|
||||
core_schema.no_info_plain_validator_function(coerce_list),
|
||||
core_schema.with_info_plain_validator_function(
|
||||
get_validate_interface(shape, dtype)
|
||||
_get_validate_interface(shape, dtype)
|
||||
),
|
||||
]
|
||||
),
|
||||
serialization=core_schema.plain_serializer_function_ser_schema(
|
||||
jsonize_array, when_used="json"
|
||||
_jsonize_array, when_used="json"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
NDArray = cast(Union[np.ndarray, list[int]], NDArray)
|
||||
# NDArray = cast(Union[Interface.array_types()], NDArray)
|
||||
|
|
|
@ -1,48 +0,0 @@
|
|||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from nptyping import NDArray as _NDArray
|
||||
from pydantic_core import core_schema
|
||||
|
||||
|
||||
class NDArrayProxy:
|
||||
"""
|
||||
Thin proxy to numpy arrays stored within hdf5 files,
|
||||
only read into memory when accessed, but otherwise
|
||||
passthrough all attempts to access attributes.
|
||||
"""
|
||||
|
||||
def __init__(self, h5f_file: Path | str, path: str):
|
||||
"""
|
||||
Args:
|
||||
h5f_file (:class:`pathlib.Path`): Path to source HDF5 file
|
||||
path (str): Location within HDF5 file where this array is located
|
||||
"""
|
||||
self.h5f_file = Path(h5f_file)
|
||||
self.path = path
|
||||
|
||||
def __getattr__(self, item) -> Any:
|
||||
with h5py.File(self.h5f_file, "r") as h5f:
|
||||
obj = h5f.get(self.path)
|
||||
return getattr(obj, item)
|
||||
|
||||
def __getitem__(self, slice: slice) -> np.ndarray:
|
||||
with h5py.File(self.h5f_file, "r") as h5f:
|
||||
obj = h5f.get(self.path)
|
||||
return obj[slice]
|
||||
|
||||
def __setitem__(self, slice, value) -> None:
|
||||
raise NotImplementedError("Cant write into an arrayproxy yet!")
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls,
|
||||
_source_type: _NDArray,
|
||||
_handler: Callable[[Any], core_schema.CoreSchema],
|
||||
) -> core_schema.CoreSchema:
|
||||
from numpydantic import NDArray
|
||||
|
||||
return NDArray.__get_pydantic_core_schema__(cls, _source_type, _handler)
|
|
@ -1,40 +1,11 @@
|
|||
import pytest
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union, Type
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from numpydantic.interface.hdf5 import H5Array
|
||||
from numpydantic import NDArray, Shape
|
||||
from nptyping import Number
|
||||
from tests.fixtures import *
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def model_rgb() -> Type[BaseModel]:
|
||||
class RGB(BaseModel):
|
||||
array: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
return RGB
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def h5file(tmp_path) -> h5py.File:
|
||||
h5f = h5py.File(tmp_path / "file.h5", "w")
|
||||
yield h5f
|
||||
h5f.close()
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def h5_array(h5file) -> H5Array:
|
||||
"""trivial hdf5 array used for testing array existence"""
|
||||
path = "/data"
|
||||
h5file.create_dataset(path, data=np.zeros((3, 4)))
|
||||
return H5Array(file=Path(h5file.filename), path=path)
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--with-output",
|
||||
action="store_true",
|
||||
help="Keep test outputs in the __tmp__ directory",
|
||||
)
|
||||
|
|
|
@ -1,27 +1,38 @@
|
|||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, Tuple, Type, Union
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import pytest
|
||||
from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition
|
||||
from nptyping import Number
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
from numpydantic import NDArray, Shape
|
||||
from numpydantic.maps import python_to_nptyping
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tmp_output_dir() -> Path:
|
||||
def tmp_output_dir(request: pytest.FixtureRequest) -> Path:
|
||||
path = Path(__file__).parent.resolve() / "__tmp__"
|
||||
if path.exists():
|
||||
shutil.rmtree(str(path))
|
||||
path.mkdir()
|
||||
|
||||
return path
|
||||
yield path
|
||||
|
||||
if not request.config.getvalue("--with-output"):
|
||||
shutil.rmtree(str(path))
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def tmp_output_dir_func(tmp_output_dir) -> Path:
|
||||
def tmp_output_dir_func(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpfunc__"
|
||||
subpath = tmp_output_dir / f"__tmpfunc_{request.node.name}__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
|
@ -29,46 +40,68 @@ def tmp_output_dir_func(tmp_output_dir) -> Path:
|
|||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def tmp_output_dir_mod(tmp_output_dir) -> Path:
|
||||
def tmp_output_dir_mod(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
|
||||
"""
|
||||
tmp output dir that gets cleared between every function
|
||||
cleans at the start rather than at cleanup in case the output is to be inspected
|
||||
"""
|
||||
subpath = tmp_output_dir / "__tmpmod__"
|
||||
subpath = tmp_output_dir / f"__tmpmod_{request.module}__"
|
||||
if subpath.exists():
|
||||
shutil.rmtree(str(subpath))
|
||||
subpath.mkdir()
|
||||
return subpath
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def nwb_linkml_array() -> tuple[ClassDefinition, str]:
|
||||
classdef = ClassDefinition(
|
||||
name="NWB_Linkml Array",
|
||||
description="Main class's array",
|
||||
is_a="Arraylike",
|
||||
attributes=[
|
||||
SlotDefinition(name="x", range="numeric", required=True),
|
||||
SlotDefinition(name="y", range="numeric", required=True),
|
||||
SlotDefinition(
|
||||
name="z",
|
||||
range="numeric",
|
||||
required=False,
|
||||
maximum_cardinality=3,
|
||||
minimum_cardinality=3,
|
||||
),
|
||||
SlotDefinition(
|
||||
name="a",
|
||||
range="numeric",
|
||||
required=False,
|
||||
minimum_cardinality=4,
|
||||
maximum_cardinality=4,
|
||||
),
|
||||
],
|
||||
)
|
||||
generated = """Union[
|
||||
@pytest.fixture(scope="function")
|
||||
def array_model() -> (
|
||||
Callable[[Tuple[int, ...], Union[Type, np.dtype]], Type[BaseModel]]
|
||||
):
|
||||
def _model(
|
||||
shape: Tuple[int, ...] = (10, 10), dtype: Union[Type, np.dtype] = float
|
||||
) -> Type[BaseModel]:
|
||||
shape_str = ", ".join([str(s) for s in shape])
|
||||
|
||||
class MyModel(BaseModel):
|
||||
array: NDArray[Shape[shape_str], python_to_nptyping[dtype]]
|
||||
|
||||
return MyModel
|
||||
|
||||
return _model
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def model_rgb() -> Type[BaseModel]:
|
||||
class RGB(BaseModel):
|
||||
array: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], Number],
|
||||
NDArray[Shape["* x, * y, 3 z"], Number],
|
||||
NDArray[Shape["* x, * y, 3 z, 4 a"], Number]
|
||||
]"""
|
||||
return classdef, generated
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
return RGB
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def hdf5_file(tmp_output_dir_func) -> h5py.File:
|
||||
h5f_file = tmp_output_dir_func / "h5f.h5"
|
||||
h5f = h5py.File(h5f_file, "w")
|
||||
yield h5f
|
||||
h5f.close()
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def hdf5_array(
|
||||
hdf5_file, request
|
||||
) -> Callable[[Tuple[int, ...], Union[np.dtype, type]], H5ArrayPath]:
|
||||
|
||||
def _hdf5_array(
|
||||
shape: Tuple[int, ...] = (10, 10), dtype: Union[np.dtype, type] = float
|
||||
) -> H5ArrayPath:
|
||||
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
|
||||
data = np.random.random(shape).astype(dtype)
|
||||
_ = hdf5_file.create_dataset(array_path, data=data)
|
||||
return H5ArrayPath(Path(hdf5_file.filename), array_path)
|
||||
|
||||
return _hdf5_array
|
||||
|
|
|
@ -4,7 +4,7 @@ import numpy as np
|
|||
import dask.array as da
|
||||
|
||||
from numpydantic import interface
|
||||
from tests.conftest import h5_array, h5file
|
||||
from tests.fixtures import hdf5_array
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
|
@ -12,10 +12,10 @@ from tests.conftest import h5_array, h5file
|
|||
params=[
|
||||
([[1, 2], [3, 4]], interface.NumpyInterface),
|
||||
(np.zeros((3, 4)), interface.NumpyInterface),
|
||||
(h5_array, interface.H5Interface),
|
||||
(hdf5_array, interface.H5Interface),
|
||||
(da.random.random((10, 10)), interface.DaskInterface),
|
||||
],
|
||||
ids=["numpy_list", "numpy", "H5Array", "dask"],
|
||||
ids=["numpy_list", "numpy", "H5ArrayPath", "dask"],
|
||||
)
|
||||
def interface_type(request):
|
||||
return request.param
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
import pdb
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def test_to_json(hdf5_array, array_model):
|
||||
"""
|
||||
Test serialization of HDF5 arrays to JSON
|
||||
Args:
|
||||
hdf5_array:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
array = hdf5_array((10, 10), int)
|
||||
model = array_model((10, 10), int)
|
||||
|
||||
instance = model(array=array) # type: BaseModel
|
||||
|
||||
json_str = instance.model_dump_json()
|
||||
json_dict = json.loads(json_str)["array"]
|
||||
|
||||
assert json_dict["file"] == str(array.file)
|
||||
assert json_dict["path"] == str(array.path)
|
||||
assert json_dict["attrs"] == {}
|
||||
assert json_dict["array"] == instance.array[:].tolist()
|
Loading…
Reference in a new issue