mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
add serialization info to to_json methods, zarr dump array context option, remove coerce_list and just let numpy interface handle it
This commit is contained in:
parent
f3fd0a0ed2
commit
5e90c1bee1
8 changed files with 112 additions and 31 deletions
|
@ -2,9 +2,10 @@
|
|||
Interface for Dask arrays
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import SerializationInfo
|
||||
|
||||
from numpydantic.interface.interface import Interface
|
||||
|
||||
|
@ -37,7 +38,9 @@ class DaskInterface(Interface):
|
|||
return DaskArray is not None
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: DaskArray) -> list:
|
||||
def to_json(
|
||||
cls, array: DaskArray, info: Optional[SerializationInfo] = None
|
||||
) -> list:
|
||||
"""
|
||||
Convert an array to a JSON serializable array by first converting to a numpy
|
||||
array and then to a list.
|
||||
|
|
|
@ -4,9 +4,10 @@ Interfaces for HDF5 Datasets
|
|||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, NamedTuple, Tuple, Union
|
||||
from typing import Any, NamedTuple, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from pydantic import SerializationInfo
|
||||
|
||||
from numpydantic.interface.interface import Interface
|
||||
from numpydantic.types import NDArrayType
|
||||
|
@ -179,7 +180,7 @@ class H5Interface(Interface):
|
|||
return array
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: H5Proxy) -> dict:
|
||||
def to_json(cls, array: H5Proxy, info: Optional[SerializationInfo] = None) -> dict:
|
||||
"""
|
||||
Dump to a dictionary containing
|
||||
|
||||
|
|
|
@ -4,10 +4,11 @@ Base Interface metaclass
|
|||
|
||||
from abc import ABC, abstractmethod
|
||||
from operator import attrgetter
|
||||
from typing import Any, Generic, Tuple, Type, TypeVar, Union
|
||||
from typing import Any, Generic, Optional, Tuple, Type, TypeVar, Union
|
||||
|
||||
import numpy as np
|
||||
from nptyping.shape_expression import check_shape
|
||||
from pydantic import SerializationInfo
|
||||
|
||||
from numpydantic.exceptions import DtypeError, ShapeError
|
||||
from numpydantic.types import DtypeType, NDArrayType, ShapeType
|
||||
|
@ -107,7 +108,9 @@ class Interface(ABC, Generic[T]):
|
|||
"""
|
||||
|
||||
@classmethod
|
||||
def to_json(cls, array: Type[T]) -> Union[list, dict]:
|
||||
def to_json(
|
||||
cls, array: Type[T], info: Optional[SerializationInfo] = None
|
||||
) -> Union[list, dict]:
|
||||
"""
|
||||
Convert an array of :attr:`.return_type` to a JSON-compatible format using
|
||||
base python types
|
||||
|
|
|
@ -7,6 +7,8 @@ from dataclasses import dataclass
|
|||
from pathlib import Path
|
||||
from typing import Any, Optional, Sequence, Union
|
||||
|
||||
from pydantic import SerializationInfo
|
||||
|
||||
from numpydantic.interface.interface import Interface
|
||||
|
||||
try:
|
||||
|
@ -113,14 +115,29 @@ class ZarrInterface(Interface):
|
|||
|
||||
@classmethod
|
||||
def to_json(
|
||||
cls, array: Union[ZarrArray, str, Path, ZarrArrayPath, Sequence]
|
||||
cls,
|
||||
array: Union[ZarrArray, str, Path, ZarrArrayPath, Sequence],
|
||||
info: Optional[SerializationInfo] = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Dump just the metadata for an array from :meth:`zarr.core.Array.info_items`
|
||||
plus the :meth:`zarr.core.Array.hexdigest`
|
||||
plus the :meth:`zarr.core.Array.hexdigest`.
|
||||
|
||||
The full array can be returned by passing ``'zarr_dump_array': True`` to the
|
||||
serialization ``context`` ::
|
||||
|
||||
model.model_dump_json(context={'zarr_dump_array': True})
|
||||
"""
|
||||
dump_array = False
|
||||
if info is not None and info.context is not None:
|
||||
dump_array = info.context.get("zarr_dump_array", False)
|
||||
|
||||
array = cls._get_array(array)
|
||||
info = array.info_items()
|
||||
info_dict = {i[0]: i[1] for i in info}
|
||||
info_dict["hexdigest"] = array.hexdigest()
|
||||
|
||||
if dump_array:
|
||||
info_dict["array"] = array[:].tolist()
|
||||
|
||||
return info_dict
|
||||
|
|
|
@ -32,7 +32,6 @@ from numpydantic.maps import python_to_nptyping
|
|||
from numpydantic.schema import (
|
||||
_handler_type,
|
||||
_jsonize_array,
|
||||
coerce_list,
|
||||
get_validate_interface,
|
||||
make_json_schema,
|
||||
)
|
||||
|
@ -119,16 +118,11 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
|||
|
||||
return core_schema.json_or_python_schema(
|
||||
json_schema=list_schema,
|
||||
python_schema=core_schema.chain_schema(
|
||||
[
|
||||
core_schema.no_info_plain_validator_function(coerce_list),
|
||||
core_schema.with_info_plain_validator_function(
|
||||
get_validate_interface(shape, dtype)
|
||||
),
|
||||
]
|
||||
python_schema=core_schema.with_info_plain_validator_function(
|
||||
get_validate_interface(shape, dtype)
|
||||
),
|
||||
serialization=core_schema.plain_serializer_function_ser_schema(
|
||||
_jsonize_array, when_used="json"
|
||||
_jsonize_array, when_used="json", info_arg=True
|
||||
),
|
||||
)
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ from typing import Any, Callable, Union
|
|||
import nptyping.structure
|
||||
import numpy as np
|
||||
from nptyping import Shape
|
||||
from pydantic import SerializationInfo
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic_core.core_schema import ListSchema, ValidationInfo
|
||||
|
||||
|
@ -173,17 +174,7 @@ def get_validate_interface(shape: ShapeType, dtype: DtypeType) -> Callable:
|
|||
return validate_interface
|
||||
|
||||
|
||||
def _jsonize_array(value: Any) -> Union[list, dict]:
|
||||
def _jsonize_array(value: Any, info: SerializationInfo) -> Union[list, dict]:
|
||||
"""Use an interface class to render an array as JSON"""
|
||||
interface_cls = Interface.match_output(value)
|
||||
return interface_cls.to_json(value)
|
||||
|
||||
|
||||
def coerce_list(value: Any) -> np.ndarray:
|
||||
"""
|
||||
If a value is passed as a list or list of lists, try and coerce it into an array
|
||||
rather than failing validation.
|
||||
"""
|
||||
if isinstance(value, list):
|
||||
value = np.array(value)
|
||||
return value
|
||||
return interface_cls.to_json(value, info)
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from numpydantic.interface import Interface
|
||||
|
||||
|
||||
|
@ -88,3 +90,12 @@ def test_interface_type_lists():
|
|||
assert atype in Interface.return_types()
|
||||
else:
|
||||
assert interface.return_type in Interface.return_types()
|
||||
|
||||
|
||||
def test_interfaces_sorting():
|
||||
"""
|
||||
Interfaces should be returned in descending order of priority
|
||||
"""
|
||||
ifaces = Interface.interfaces()
|
||||
priorities = [i.priority for i in ifaces]
|
||||
assert (np.diff(priorities) <= 0).all()
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
import json
|
||||
|
||||
import pytest
|
||||
import zarr
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from numpydantic.interface import ZarrInterface
|
||||
from numpydantic.interface.zarr import ZarrArrayPath
|
||||
from numpydantic.exceptions import DtypeError, ShapeError
|
||||
|
||||
from tests.conftest import ValidationCase
|
||||
|
@ -27,12 +30,12 @@ def nested_dir_array(tmp_output_dir_func) -> zarr.NestedDirectoryStore:
|
|||
return store
|
||||
|
||||
|
||||
def zarr_array(case: ValidationCase, store) -> zarr.core.Array:
|
||||
def _zarr_array(case: ValidationCase, store) -> zarr.core.Array:
|
||||
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
|
||||
|
||||
|
||||
def _test_zarr_case(case: ValidationCase, store):
|
||||
array = zarr_array(case, store)
|
||||
array = _zarr_array(case, store)
|
||||
if case.passes:
|
||||
case.model(array=array)
|
||||
else:
|
||||
|
@ -76,3 +79,61 @@ def test_zarr_shape(store, shape_cases):
|
|||
|
||||
def test_zarr_dtype(dtype_cases, store):
|
||||
_test_zarr_case(dtype_cases, store)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("array", ["zarr_nested_array", "zarr_array"])
|
||||
def test_zarr_from_tuple(array, model_blank, request):
|
||||
"""Should be able to do the same validation logic from tuples as an input"""
|
||||
array = request.getfixturevalue(array)
|
||||
if isinstance(array, ZarrArrayPath):
|
||||
instance = model_blank(array=(array.file, array.path))
|
||||
else:
|
||||
instance = model_blank(array=(array,))
|
||||
|
||||
|
||||
def test_zarr_from_path(zarr_array, model_blank):
|
||||
"""Should be able to just pass a path"""
|
||||
instance = model_blank(array=zarr_array)
|
||||
|
||||
|
||||
def test_zarr_array_path_from_iterable(zarr_array):
|
||||
"""Construct a zarr array path from some iterable!!!"""
|
||||
# from a single path
|
||||
apath = ZarrArrayPath.from_iterable((zarr_array,))
|
||||
assert apath.file == zarr_array
|
||||
assert apath.path is None
|
||||
|
||||
inner_path = "/test/array"
|
||||
apath = ZarrArrayPath.from_iterable((zarr_array, inner_path))
|
||||
assert apath.file == zarr_array
|
||||
assert apath.path == inner_path
|
||||
|
||||
|
||||
def test_zarr_to_json(store, model_blank):
|
||||
expected_fields = (
|
||||
"Type",
|
||||
"Data type",
|
||||
"Shape",
|
||||
"Chunk shape",
|
||||
"Compressor",
|
||||
"Store type",
|
||||
"hexdigest",
|
||||
)
|
||||
lol_array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||||
|
||||
array = zarr.array(lol_array, store=store)
|
||||
instance = model_blank(array=array)
|
||||
as_json = json.loads(instance.model_dump_json())["array"]
|
||||
assert "array" not in as_json
|
||||
for field in expected_fields:
|
||||
assert field in as_json
|
||||
assert len(as_json["hexdigest"]) == 40
|
||||
|
||||
# dump the array itself too
|
||||
as_json = json.loads(instance.model_dump_json(context={"zarr_dump_array": True}))[
|
||||
"array"
|
||||
]
|
||||
for field in expected_fields:
|
||||
assert field in as_json
|
||||
assert len(as_json["hexdigest"]) == 40
|
||||
assert as_json["array"] == lol_array
|
||||
|
|
Loading…
Reference in a new issue