Merge pull request #31 from p2p-ld/tests-combinatorics
Some checks failed
Lint / Ruff Linting (push) Has been cancelled
Lint / Black Formatting (push) Has been cancelled
LinkML Tests / test-linkml (macos-latest, 3.12) (push) Has been cancelled
LinkML Tests / test-linkml (macos-latest, 3.9) (push) Has been cancelled
LinkML Tests / test-linkml (ubuntu-latest, 3.12) (push) Has been cancelled
LinkML Tests / test-linkml (ubuntu-latest, 3.9) (push) Has been cancelled
LinkML Tests / test-linkml (windows-latest, 3.12) (push) Has been cancelled
LinkML Tests / test-linkml (windows-latest, 3.9) (push) Has been cancelled
Tests / test (<2.0.0, macos-latest, 3.12) (push) Has been cancelled
Tests / test (<2.0.0, macos-latest, 3.9) (push) Has been cancelled
Tests / test (<2.0.0, ubuntu-latest, 3.12) (push) Has been cancelled
Tests / test (<2.0.0, ubuntu-latest, 3.9) (push) Has been cancelled
Tests / test (<2.0.0, windows-latest, 3.12) (push) Has been cancelled
Tests / test (<2.0.0, windows-latest, 3.9) (push) Has been cancelled
Tests / test (>=2.0.0, macos-latest, 3.12) (push) Has been cancelled
Tests / test (>=2.0.0, macos-latest, 3.9) (push) Has been cancelled
Tests / test (>=2.0.0, ubuntu-latest, 3.10) (push) Has been cancelled
Tests / test (>=2.0.0, ubuntu-latest, 3.11) (push) Has been cancelled
Tests / test (>=2.0.0, ubuntu-latest, 3.12) (push) Has been cancelled
Tests / test (>=2.0.0, ubuntu-latest, 3.9) (push) Has been cancelled
Tests / test (>=2.0.0, windows-latest, 3.12) (push) Has been cancelled
Tests / test (>=2.0.0, windows-latest, 3.9) (push) Has been cancelled
Tests / finish-coverage (push) Has been cancelled

[tests] `numpydantic.testing` - exposing helpers for 3rd-party interface development & combinatoric testing
This commit is contained in:
Jonny Saunders 2024-10-11 02:30:38 -07:00 committed by GitHub
commit 66ab444ec2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
44 changed files with 1840 additions and 720 deletions

View file

@ -33,10 +33,10 @@ jobs:
runs-on: ${{ matrix.platform }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- name: Set up python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}

31
docs/_static/css/notebooks.css vendored Normal file
View file

@ -0,0 +1,31 @@
div.cell.tag_hide-cell details.above-input > summary,
div.cell.tag_hide-input details.above-input > summary,
div.cell.tag_hide-output details.below-input > summary{
background-color: var(--color-admonition-title-background--admonition-todo);
color: var(--color-content-foreground);
border: unset;
border-left: 2px solid var(--mystnb-source-margin-color);
opacity: unset;
padding: 0.25em 0 0.25em 1em;
}
div.cell.tag_hide-cell details.above-input > summary > span,
div.cell.tag_hide-input details.above-input > summary > span,
div.cell.tag_hide-output details.below-input > summary > span
{
opacity: unset;
}
div.cell details.above-input div.cell_input {
border: unset;
background-color: unset;
border-left: 2px solid var(--mystnb-source-margin-color);
}
div.cell details.above-input div.cell_input div.highlight {
background: var(--color-admonition-background);
}
.output.text_html pre {
font-size: 0.8em;
}

View file

@ -0,0 +1,7 @@
# cases
```{eval-rst}
.. automodule:: numpydantic.testing.cases
:members:
:undoc-members:
```

View file

@ -0,0 +1,7 @@
# helpers
```{eval-rst}
.. automodule:: numpydantic.testing.helpers
:members:
:undoc-members:
```

19
docs/api/testing/index.md Normal file
View file

@ -0,0 +1,19 @@
# testing
Utilities for testing and 3rd-party interface development.
See also the [narrative testing docs](../../contributing/testing.md)
```{toctree}
:maxdepth: 2
cases
helpers
interfaces
```
```{eval-rst}
.. automodule:: numpydantic.testing
:members:
:undoc-members:
```

View file

@ -0,0 +1,7 @@
# interfaces
```{eval-rst}
.. automodule:: numpydantic.testing.interfaces
:members:
:undoc-members:
```

View file

@ -4,6 +4,33 @@
### 1.6.*
#### 1.6.4 - 24-10-11 - Combinatoric Testing
PR: https://github.com/p2p-ld/numpydantic/pull/31
We have rewritten our testing system for more rigorous tests,
where before we were limited to only testing dtype or shape cases one at a time,
now we can test all possible combinations together!
This allows us to have better guarantees for behavior that all interfaces
should support, validating it against all possible dtypes and shapes.
We also exposed all the helpers and array testing classes for downstream development
so that it would be easier to test and validate any 3rd-party interfaces
that haven't made their way into mainline numpydantic yet -
see the {mod}`numpydantic.testing` module.
See the [testing documentation](./contributing/testing.md) for more details.
**Bugfix**
- Previously, numpy and dask arrays with a model dtype would fail json roundtripping
because they wouldn't be correctly cast back to the model type. Now they are.
- Zarr would not dump the dtype of an array when it roundtripped to json,
causing every array to be interpreted as a random integer or float type.
`dtype` is now dumped and used when deserializing.
#### 1.6.3 - 24-09-26
**Bugfix**

View file

@ -49,6 +49,7 @@ intersphinx_mapping = {
html_theme = "furo"
html_static_path = ["_static"]
html_css_files = ["css/notebooks.css"]
# autodoc
autodoc_pydantic_model_show_json_error_strategy = "coerce"

5
docs/contributing/coc.md Normal file
View file

@ -0,0 +1,5 @@
# Code of Conduct
```{todo}
jonny write the code of conduct
```

View file

@ -0,0 +1,8 @@
# Contributing
```{toctree}
coc
process
interface
testing
```

View file

@ -0,0 +1,5 @@
# Writing an Interface
```{todo}
Jonny write the interface contrib docs
```

View file

@ -0,0 +1,15 @@
# Contribution Process
```{todo}
Jonny write the contribution docs
```
### Issues
### Development Environment
### Testing
### Linting
### Pull Requests

View file

@ -0,0 +1,213 @@
---
file_format: mystnb
mystnb:
output_stderr: remove
render_text_lexer: python
render_markdown_format: myst
myst:
enable_extensions: ["colon_fence"]
---
# Testing
```{code-cell}
---
tags: [hide-cell]
---
from pathlib import Path
from rich.console import Console
from rich.theme import Theme
from rich.style import Style
from rich.color import Color
theme = Theme({
"repr.call": Style(color=Color.from_rgb(110,191,38), bold=True),
"repr.attrib_name": Style(color="slate_blue1"),
"repr.number": Style(color="deep_sky_blue1"),
"repr.none": Style(color="bright_magenta", italic=True),
"repr.attrib_name": Style(color="white"),
"repr.tag_contents": Style(color="light_steel_blue"),
"repr.str": Style(color="violet")
})
console = Console(theme=theme)
```
```{note}
Also see the [`numpydantic.testing` API docs](../api/testing/index.md)
and the [Writing an Interface](../interfaces.md) guide
```
Numpydantic exposes a system for combinatoric testing across dtypes, shapes,
and interfaces in the {mod}`numpydantic.testing` module.
These helper classes and functions are included in the distributed package
so they can be used for downstream development of independent interfaces
(though we always welcome contributions!)
## Validation Cases
Each test case is parameterized by a {class}`.ValidationCase`.
The case is intended to be able to be partially filled in so that multiple
validation cases can be merged together, but also used independently
by falling back on default values.
There are three major parts to a validation case:
- **Annotation specification:** {attr}`~.ValidationCase.annotation_dtype` and
{attr}`~.ValidationCase.annotation_shape` specifies how the
{class}`.NDArray` {attr}`.ValidationCase.annotation` that is used to test
against is generated
- **Array specification:** {attr}`~.ValidationCase.dtype` and {attr}`~.ValidationCase.shape`
specify that array that will be generated to test against the annotation
- **Interface specification:** An {class}`.InterfaceCase` that refers to
an {class}`.Interface`, and provides array generation and other auxilary logic.
Typically, one specifies a dtype along with an annotation dtype or
a shape along with an annotation shape (or implicitly against the defaults for either),
along with a value for `passes` that indicates if that combination is valid.
```{code-cell}
from numpydantic.testing import ValidationCase
dtype_case = ValidationCase(
id="int_int",
dtype=int,
annotation_dtype=int,
passes=True
)
shape_case = ValidationCase(
id="cool_shape",
shape=(1,2,3),
annotation_shape=(1,"*","2-4"),
passes=True
)
merged = dtype_case.merge(shape_case)
console.print(merged.model_dump(exclude={'annotation', 'model'}, exclude_unset=True))
```
When merging validation cases, the merged case only `passes` if all the
original cases do.
```{code-cell}
from numpydantic.testing import ValidationCase
dtype_case = ValidationCase(
id="int_int",
dtype=int,
annotation_dtype=int,
passes=True
)
shape_case = ValidationCase(
id="uncool_shape",
shape=(1,2,3),
annotation_shape=(9,8,7),
passes=False
)
merged = dtype_case.merge(shape_case)
console.print(merged.model_dump(exclude={'annotation', 'model'}, exclude_unset=True))
```
We provide a convenience function {func}`.merged_product` for creating a merged product of
multiple sets of test cases.
For example, you may want to create a set of dtype and shape cases and validate
against all combinations
```{code-cell}
from numpydantic.testing.helpers import merged_product
dtype_cases = [
ValidationCase(dtype=int, annotation_dtype=int, passes=True),
ValidationCase(dtype=int, annotation_dtype=float, passes=False)
]
shape_cases = [
ValidationCase(shape=(1,2,3), annotation_shape=(1,2,3), passes=True),
ValidationCase(shape=(4,5,6), annotation_shape=(1,2,3), passes=False)
]
iterator = merged_product(dtype_cases, shape_cases)
console.print([i.model_dump(exclude_unset=True, exclude={'model', 'annotation'}) for i in iterator])
```
You can pass constraints to the {func}`.merged_product` iterator to
filter cases that match some value, for example to get only the cases that pass:
```{code-cell}
iterator = merged_product(dtype_cases, shape_cases, conditions={"passes": True})
console.print([i.model_dump(exclude_unset=True, exclude={'model', 'annotation'}) for i in iterator])
```
## Interface Cases
Validation cases can be paired with interface cases that handle
generating arrays for the given interface from the specification in the
validation case.
Since some array interfaces like Zarr have multiple possible forms
of an array (in memory, on disk, in a zip file, etc.) an interface
may have multiple cases that are important to test against.
The {meth}`.InterfaceCase.make_array` method does what you'd expect it to,
creating an array, and returning the appropriate input type for the interface:
```{code-cell}
from numpydantic.testing.interfaces import NumpyCase, ZarrNestedCase
NumpyCase.make_array(shape=(1,2,3), dtype=float)
```
```{code-cell}
ZarrNestedCase.make_array(shape=(1,2,3), dtype=float, path=Path("__tmp__/zarr_dir"))
```
Interface cases also define when an interface should skip a given test
parameterization. For example, some array formats can't support arbitrary
object serialization, and the video class can only support 8-bit arrays
of a specific shape
```{code-cell}
from numpydantic.testing.interfaces import VideoCase
VideoCase.skip(shape=(1,1), dtype=float)
```
This, and the array generation methods are propagated up into
a ValidationCase that contains them
```{code-cell}
case = ValidationCase(shape=(1,2,3), dtype=float, interface=VideoCase)
case.skip()
```
The {func}`.merged_product` iterator automatically excludes any
combinations of interfaces and test parameterizations that should be skipped.
## Making Fixtures
Pytest fixtures are a useful way to re-use validation case products.
To keep things tidy, you may want to use marks and ids when creating them
so that you can run tests against specific interfaces or conditions
with the `pytest -m mark` system.
```python
import pytest
@pytest.fixture(
params=(
pytest.param(
p,
id=p.id,
marks=getattr(pytest.mark, p.interface.interface.name)
)
for p in iterator
)
)
def my_cases(request):
return request.param
```

View file

@ -514,6 +514,7 @@ api/meta
api/schema
api/serialization
api/types
api/testing/index
```
@ -523,6 +524,7 @@ api/types
:hidden: true
changelog
contributing/index
development
todo
```

View file

@ -1,6 +1,6 @@
[project]
name = "numpydantic"
version = "1.6.3"
version = "1.6.4"
description = "Type and shape validation and serialization for arbitrary array types in pydantic models"
authors = [
{name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"},
@ -96,6 +96,12 @@ distribution = true
[tool.pdm.build]
includes = []
[tool.pdm.scripts]
lint = "ruff check"
format = {shell = "ruff check --fix ; black ."}
test = "pytest"
[build-system]
requires = ["pdm-backend"]
build-backend = "pdm.backend"
@ -125,10 +131,12 @@ markers = [
"zarr: zarr interface",
]
[tool.black]
target-version = ["py39", "py310", "py311", "py312"]
[tool.ruff]
target-version = "py39"
include = ["src/numpydantic/**/*.py", "pyproject.toml"]
exclude = ["tests"]
include = ["src/numpydantic/**/*.py", "tests/**/*.py", "pyproject.toml"]
[tool.ruff.lint]
select = [
@ -177,6 +185,10 @@ ignore = [
fixable = ["ALL"]
[tool.ruff.lint.per-file-ignores]
"src/numpydantic/testing/*" = ["D", "F722"]
"tests/*" = ["D", "F403", "F722", "ANN", ]
[tool.mypy]
plugins = [
"pydantic.mypy"

View file

@ -3,7 +3,7 @@ Interfaces between nptyping types and array backends
"""
from numpydantic.interface.dask import DaskInterface
from numpydantic.interface.hdf5 import H5Interface
from numpydantic.interface.hdf5 import H5ArrayPath, H5Interface
from numpydantic.interface.interface import (
Interface,
InterfaceMark,
@ -12,10 +12,11 @@ from numpydantic.interface.interface import (
)
from numpydantic.interface.numpy import NumpyInterface
from numpydantic.interface.video import VideoInterface
from numpydantic.interface.zarr import ZarrInterface
from numpydantic.interface.zarr import ZarrArrayPath, ZarrInterface
__all__ = [
"DaskInterface",
"H5ArrayPath",
"H5Interface",
"Interface",
"InterfaceMark",
@ -23,5 +24,6 @@ __all__ = [
"MarkedJson",
"NumpyInterface",
"VideoInterface",
"ZarrArrayPath",
"ZarrInterface",
]

View file

@ -5,7 +5,7 @@ Interface for Dask arrays
from typing import Any, Iterable, List, Literal, Optional, Union
import numpy as np
from pydantic import SerializationInfo
from pydantic import BaseModel, SerializationInfo
from numpydantic.interface.interface import Interface, JsonDict
from numpydantic.types import DtypeType, NDArrayType
@ -70,9 +70,33 @@ class DaskInterface(Interface):
else:
return False
def before_validation(self, array: DaskArray) -> NDArrayType:
"""
Try and coerce dicts that should be model objects into the model objects
"""
try:
if issubclass(self.dtype, BaseModel) and isinstance(
array.reshape(-1)[0].compute(), dict
):
def _chunked_to_model(array: np.ndarray) -> np.ndarray:
def _vectorized_to_model(item: Union[dict, BaseModel]) -> BaseModel:
if not isinstance(item, self.dtype):
return self.dtype(**item)
else: # pragma: no cover
return item
return np.vectorize(_vectorized_to_model)(array)
array = array.map_blocks(_chunked_to_model, dtype=self.dtype)
except TypeError:
# fine, dtype isn't a type
pass
return array
def get_object_dtype(self, array: NDArrayType) -> DtypeType:
"""Dask arrays require a compute() call to retrieve a single value"""
return type(array.ravel()[0].compute())
return type(array.reshape(-1)[0].compute())
@classmethod
def enabled(cls) -> bool:

View file

@ -4,7 +4,7 @@ Interface to numpy arrays
from typing import Any, Literal, Union
from pydantic import SerializationInfo
from pydantic import BaseModel, SerializationInfo
from numpydantic.interface.interface import Interface, JsonDict
@ -59,6 +59,9 @@ class NumpyInterface(Interface):
Check that this is in fact a numpy ndarray or something that can be
coerced to one
"""
if array is None:
return False
if isinstance(array, ndarray):
return True
elif isinstance(array, dict):
@ -77,6 +80,14 @@ class NumpyInterface(Interface):
"""
if not isinstance(array, ndarray):
array = np.array(array)
try:
if issubclass(self.dtype, BaseModel) and isinstance(array.flat[0], dict):
array = np.vectorize(lambda x: self.dtype(**x))(array)
except TypeError:
# fine, dtype isn't a type
pass
return array
@classmethod

View file

@ -63,6 +63,7 @@ class ZarrJsonDict(JsonDict):
type: Literal["zarr"]
file: Optional[str] = None
path: Optional[str] = None
dtype: Optional[str] = None
value: Optional[list] = None
def to_array_input(self) -> Union[ZarrArray, ZarrArrayPath]:
@ -73,7 +74,7 @@ class ZarrJsonDict(JsonDict):
if self.file:
array = ZarrArrayPath(file=self.file, path=self.path)
else:
array = zarr.array(self.value)
array = zarr.array(self.value, dtype=self.dtype)
return array
@ -194,6 +195,7 @@ class ZarrInterface(Interface):
is_file = False
as_json = {"type": cls.name}
as_json["dtype"] = array.dtype.name
if hasattr(array.store, "dir_path"):
is_file = True
as_json["file"] = array.store.dir_path()

View file

@ -152,6 +152,8 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
result = str(dtype)
elif isinstance(dtype, tuple):
result = ", ".join([str(dt) for dt in dtype])
else:
result = str(dtype)
return result

View file

@ -80,7 +80,7 @@ def _relativize_paths(
):
return v
return str(relative_path(path, relative_to))
except (TypeError, ValueError):
except (TypeError, ValueError, OSError):
return v
return _walk_and_apply(value, _r_path, skip)
@ -95,7 +95,7 @@ def _absolutize_paths(value: dict, skip: Iterable = tuple()) -> dict:
if not path.exists():
return v
return str(path.resolve())
except (TypeError, ValueError):
except (TypeError, ValueError, OSError):
return v
return _walk_and_apply(value, _a_path, skip)

View file

@ -0,0 +1,6 @@
from numpydantic.testing.helpers import InterfaceCase, ValidationCase
__all__ = [
"InterfaceCase",
"ValidationCase",
]

View file

@ -0,0 +1,259 @@
import sys
from typing import Union
import numpy as np
from pydantic import BaseModel
from numpydantic.dtype import Float, Integer, Number
from numpydantic.testing.helpers import ValidationCase, merged_product
from numpydantic.testing.interfaces import (
DaskCase,
HDF5Case,
HDF5CompoundCase,
NumpyCase,
VideoCase,
ZarrCase,
ZarrDirCase,
ZarrNestedCase,
ZarrZipCase,
)
if sys.version_info.minor >= 10:
from typing import TypeAlias
YES_PIPE = True
else:
from typing_extensions import TypeAlias
YES_PIPE = False
class BasicModel(BaseModel):
x: int
class BadModel(BaseModel):
x: int
class SubClass(BasicModel):
pass
# --------------------------------------------------
# Annotations
# --------------------------------------------------
RGB_UNION = (("*", "*"), ("*", "*", 3), ("*", "*", 3, 4))
UNION_TYPE: TypeAlias = Union[np.uint32, np.float32]
SHAPE_CASES = (
ValidationCase(shape=(10, 10, 2, 2), passes=True, id="valid shape"),
ValidationCase(shape=(10, 10, 2), passes=False, id="missing dimension"),
ValidationCase(shape=(10, 10, 2, 2, 2), passes=False, id="extra dimension"),
ValidationCase(shape=(11, 10, 2, 2), passes=False, id="dimension too large"),
ValidationCase(shape=(9, 10, 2, 2), passes=False, id="dimension too small"),
ValidationCase(shape=(10, 10, 1, 1), passes=True, id="wildcard smaller"),
ValidationCase(shape=(10, 10, 3, 3), passes=True, id="wildcard larger"),
ValidationCase(
annotation_shape=RGB_UNION, shape=(5, 5), passes=True, id="Union 2D"
),
ValidationCase(
annotation_shape=RGB_UNION, shape=(5, 5, 3), passes=True, id="Union 3D"
),
ValidationCase(
annotation_shape=RGB_UNION, shape=(5, 5, 3, 4), passes=True, id="Union 4D"
),
ValidationCase(
annotation_shape=RGB_UNION,
shape=(5, 5, 4),
passes=False,
id="Union incorrect 3D",
),
ValidationCase(
annotation_shape=RGB_UNION,
shape=(5, 5, 3, 6),
passes=False,
id="Union incorrect 4D",
),
ValidationCase(
annotation_shape=RGB_UNION,
shape=(5, 5, 4, 6),
passes=False,
id="Union incorrect both",
),
)
"""
Base Shape cases
"""
DTYPE_CASES = [
ValidationCase(dtype=float, passes=True, id="float"),
ValidationCase(dtype=int, passes=False, id="int"),
ValidationCase(dtype=np.uint8, passes=False, id="uint8"),
ValidationCase(annotation_dtype=Number, dtype=int, passes=True, id="number-int"),
ValidationCase(
annotation_dtype=Number, dtype=float, passes=True, id="number-float"
),
ValidationCase(
annotation_dtype=Number, dtype=np.uint8, passes=True, id="number-uint8"
),
ValidationCase(
annotation_dtype=Number, dtype=np.float16, passes=True, id="number-float16"
),
ValidationCase(annotation_dtype=Number, dtype=str, passes=False, id="number-str"),
ValidationCase(annotation_dtype=Integer, dtype=int, passes=True, id="integer-int"),
ValidationCase(
annotation_dtype=Integer, dtype=np.uint8, passes=True, id="integer-uint8"
),
ValidationCase(
annotation_dtype=Integer, dtype=float, passes=False, id="integer-float"
),
ValidationCase(
annotation_dtype=Integer, dtype=np.float32, passes=False, id="integer-float32"
),
ValidationCase(annotation_dtype=Integer, dtype=str, passes=False, id="integer-str"),
ValidationCase(annotation_dtype=Float, dtype=float, passes=True, id="float-float"),
ValidationCase(
annotation_dtype=Float, dtype=np.float32, passes=True, id="float-float32"
),
ValidationCase(annotation_dtype=Float, dtype=int, passes=False, id="float-int"),
ValidationCase(
annotation_dtype=Float, dtype=np.uint8, passes=False, id="float-uint8"
),
ValidationCase(annotation_dtype=Float, dtype=str, passes=False, id="float-str"),
ValidationCase(annotation_dtype=str, dtype=str, passes=True, id="str-str"),
ValidationCase(annotation_dtype=str, dtype=int, passes=False, id="str-int"),
ValidationCase(annotation_dtype=str, dtype=float, passes=False, id="str-float"),
ValidationCase(
annotation_dtype=BasicModel, dtype=BasicModel, passes=True, id="model-model"
),
ValidationCase(
annotation_dtype=BasicModel, dtype=BadModel, passes=False, id="model-badmodel"
),
ValidationCase(
annotation_dtype=BasicModel, dtype=int, passes=False, id="model-int"
),
ValidationCase(
annotation_dtype=BasicModel, dtype=SubClass, passes=True, id="model-subclass"
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.uint32,
passes=True,
id="union-type-uint32",
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.float32,
passes=True,
id="union-type-float32",
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.uint64,
passes=False,
id="union-type-uint64",
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.float64,
passes=False,
id="union-type-float64",
),
ValidationCase(
annotation_dtype=UNION_TYPE, dtype=str, passes=False, id="union-type-str"
),
]
"""
Base Dtype cases
"""
if YES_PIPE:
UNION_PIPE: TypeAlias = np.uint32 | np.float32
DTYPE_CASES.extend(
[
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.uint32,
passes=True,
id="union-pipe-uint32",
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.float32,
passes=True,
id="union-pipe-float32",
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.uint64,
passes=False,
id="union-pipe-uint64",
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.float64,
passes=False,
id="union-pipe-float64",
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=str,
passes=False,
id="union-pipe-str",
),
]
)
INTERFACE_CASES = [
ValidationCase(interface=NumpyCase, id="numpy"),
ValidationCase(interface=HDF5Case, id="hdf5"),
ValidationCase(interface=HDF5CompoundCase, id="hdf5_compound"),
ValidationCase(interface=DaskCase, id="dask"),
ValidationCase(interface=ZarrCase, id="zarr"),
ValidationCase(interface=ZarrDirCase, id="zarr_dir"),
ValidationCase(interface=ZarrZipCase, id="zarr_zip"),
ValidationCase(interface=ZarrNestedCase, id="zarr_nested"),
ValidationCase(interface=VideoCase, id="video"),
]
"""
All the interface cases
"""
DTYPE_AND_SHAPE_CASES = merged_product(SHAPE_CASES, DTYPE_CASES)
"""
Merged product of dtype and shape cases
"""
DTYPE_AND_SHAPE_CASES_PASSING = merged_product(
SHAPE_CASES, DTYPE_CASES, conditions={"passes": True}
)
"""
Merged product of dtype and shape cases that are valid
"""
DTYPE_AND_INTERFACE_CASES = merged_product(INTERFACE_CASES, DTYPE_CASES)
"""
Merged product of dtype and interface cases
"""
DTYPE_AND_INTERFACE_CASES_PASSING = merged_product(
INTERFACE_CASES, DTYPE_CASES, conditions={"passes": True}
)
"""
Merged product of dtype and interface cases that pass
"""
ALL_CASES = merged_product(SHAPE_CASES, DTYPE_CASES, INTERFACE_CASES)
"""
Merged product of all cases - dtype, shape, and interface
"""
ALL_CASES_PASSING = merged_product(
SHAPE_CASES, DTYPE_CASES, INTERFACE_CASES, conditions={"passes": True}
)
"""
Merged product of all cases, but only those that pass
"""

View file

@ -0,0 +1,317 @@
from abc import ABC, abstractmethod
from collections.abc import Sequence
from functools import reduce
from itertools import product
from operator import ior
from pathlib import Path
from typing import Generator, List, Literal, Optional, Tuple, Type, Union
import numpy as np
from pydantic import BaseModel, ConfigDict, ValidationError, computed_field
from numpydantic import NDArray, Shape
from numpydantic.dtype import Float
from numpydantic.interface import Interface
from numpydantic.types import DtypeType, NDArrayType
class InterfaceCase(ABC):
"""
An interface test helper that allows a given interface to generate and validate
arrays in one of its formats.
Each instance of "interface test case" should be considered one of the
potentially multiple realizations of a given interface.
If an interface has multiple formats (eg. zarr's different `store` s),
then it should have several test helpers.
"""
@property
@abstractmethod
def interface(self) -> Interface:
"""The interface that this helper is for"""
@classmethod
def array_from_case(
cls, case: "ValidationCase", path: Optional[Path] = None
) -> Optional[NDArrayType]:
"""
Generate an array from the given validation case.
Returns ``None`` if an array can't be generated for a specific case.
"""
return cls.make_array(shape=case.shape, dtype=case.dtype, path=path)
@classmethod
@abstractmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[NDArrayType]:
"""
Make an array from a shape and dtype, and a path if needed
Args:
shape: shape of the array
dtype: dtype of the array
path: Path, if needed to generate on disk
array: Rather than passing shape and dtype, pass a literal arraylike thing
"""
@classmethod
def validate_case(cls, case: "ValidationCase", path: Path) -> bool:
"""
Validate a generated array against the annotation in the validation case.
Kept in the InterfaceCase in case an interface has specific
needs aside from just validating against a model, but typically left as is.
If an array can't be generated for a given case, returns `None`
so that the calling function can know to skip rather than fail the case.
Raises exceptions if validation fails (or succeeds when it shouldn't)
Args:
case (ValidationCase): The validation case to validate.
path (Path): Path to generate arrays into, if any.
Returns:
``True`` if array is valid and was supposed to be,
or invalid and wasn't supposed to be
"""
import pytest
array = cls.array_from_case(case, path)
if array is None:
pytest.skip()
if case.passes:
case.model(array=array)
return True
else:
with pytest.raises(ValidationError):
case.model(array=array)
return True
@classmethod
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
"""
Whether a given interface should be skipped for the case
"""
# Assume an interface case is valid for all other cases
return False
_a_shape_type = Tuple[Union[int, Literal["*"], Literal["..."]], ...]
class ValidationCase(BaseModel):
"""
Test case for validating an array.
Contains both the validating model and the parameterization for an array to
test in a given interface
"""
id: Optional[str] = None
"""
String identifying the validation case
"""
annotation_shape: Union[
Tuple[Union[int, str], ...], Tuple[Tuple[Union[int, str], ...], ...]
] = (10, 10, "*", "*")
"""
Shape to use in computed annotation used to validate against
"""
annotation_dtype: Union[DtypeType, Sequence[DtypeType]] = Float
"""
Dtype to use in computed annotation used to validate against
"""
shape: Tuple[int, ...] = (10, 10, 2, 2)
"""Shape of the array to validate"""
dtype: Union[Type, np.dtype] = float
"""Dtype of the array to validate"""
passes: bool = False
"""Whether the validation should pass or not"""
interface: Optional[Type[InterfaceCase]] = None
"""The interface test case to generate and validate the array with"""
path: Optional[Path] = None
"""The path to generate arrays into, if any."""
model_config = ConfigDict(arbitrary_types_allowed=True)
@computed_field()
def annotation(self) -> NDArray:
"""
Annotation used in the model we validate against
"""
# make a union type if we need to
shape_union = all(isinstance(s, Sequence) for s in self.annotation_shape)
dtype_union = isinstance(self.annotation_dtype, Sequence) and all(
isinstance(s, Sequence) for s in self.annotation_dtype
)
if shape_union or dtype_union:
shape_iter = (
self.annotation_shape if shape_union else [self.annotation_shape]
)
dtype_iter = (
self.annotation_dtype if dtype_union else [self.annotation_dtype]
)
annotations: List[type] = []
for shape, dtype in product(shape_iter, dtype_iter):
shape_str = ", ".join([str(i) for i in shape])
annotations.append(NDArray[Shape[shape_str], dtype])
return Union[tuple(annotations)]
else:
shape_str = ", ".join([str(i) for i in self.annotation_shape])
return NDArray[Shape[shape_str], self.annotation_dtype]
@computed_field()
def model(self) -> Type[BaseModel]:
"""A model with a field ``array`` with the given annotation"""
annotation = self.annotation
class Model(BaseModel):
array: annotation
return Model
def validate_case(self, path: Optional[Path] = None) -> bool:
"""
Whether the generated array correctly validated against the annotation,
given the interface
Args:
path (:class:`pathlib.Path`): Directory to generate array into, if on disk.
Raises:
ValueError: if an ``interface`` is missing
"""
if self.interface is None: # pragma: no cover
raise ValueError("Missing an interface")
if path is None:
if self.path:
path = self.path
else: # pragma: no cover
raise ValueError("Missing a path to generate arrays into")
return self.interface.validate_case(self, path)
def array(self, path: Path) -> NDArrayType:
"""Generate an array for the validation case if we have an interface to do so"""
if self.interface is None: # pragma: no cover
raise ValueError("Missing an interface")
if path is None: # pragma: no cover
if self.path:
path = self.path
else:
raise ValueError("Missing a path to generate arrays into")
return self.interface.array_from_case(self, path)
def merge(
self, other: Union["ValidationCase", Sequence["ValidationCase"]]
) -> "ValidationCase":
"""
Merge two validation cases
Dump both, excluding any unset fields, and merge, preferring `other`.
``valid`` is ``True`` if and only if it is ``True`` in both.
"""
if isinstance(other, Sequence):
return merge_cases(self, *other)
else:
return merge_cases(self, other)
def skip(self) -> bool:
"""
Whether this case should be skipped
(eg. due to the interface case being incompatible
with the requested dtype or shape)
"""
return bool(
self.interface is not None and self.interface.skip(self.shape, self.dtype)
)
def merge_cases(*args: ValidationCase) -> ValidationCase:
"""
Merge multiple validation cases
"""
if len(args) == 1: # pragma: no cover
return args[0]
dumped = [
m.model_dump(exclude_unset=True, exclude={"model", "annotation"}) for m in args
]
# self_dump = self.model_dump(exclude_unset=True)
# other_dump = other.model_dump(exclude_unset=True)
# dumps might not have set `passes`, use only the ones that have
passes = [v.get("passes") for v in dumped if "passes" in v]
passes = all(passes)
# combine ids if present
ids = "-".join([str(v.get("id")) for v in dumped if "id" in v])
# merge dicts
merged = reduce(ior, dumped, {})
merged["passes"] = passes
merged["id"] = ids
return ValidationCase.model_construct(**merged)
def merged_product(
*args: Sequence[ValidationCase], conditions: dict = None
) -> Generator[ValidationCase, None, None]:
"""
Generator for the product of the iterators of validation cases,
merging each tuple, and respecting if they should be :meth:`.ValidationCase.skip`
or not.
Examples:
.. code-block:: python
shape_cases = [
ValidationCase(shape=(10, 10, 10), passes=True, id="valid shape"),
ValidationCase(shape=(10, 10), passes=False, id="missing dimension"),
]
dtype_cases = [
ValidationCase(dtype=float, passes=True, id="float"),
ValidationCase(dtype=int, passes=False, id="int"),
]
iterator = merged_product(shape_cases, dtype_cases))
next(iterator)
# ValidationCase(
# shape=(10, 10, 10),
# dtype=float,
# passes=True,
# id="valid shape-float"
# )
next(iterator)
# ValidationCase(
# shape=(10, 10, 10),
# dtype=int,
# passes=False,
# id="valid shape-int"
# )
"""
iterator = product(*args)
for case_tuple in iterator:
case = merge_cases(*case_tuple)
if case.skip():
continue
if conditions:
matching = all([getattr(case, k, None) == v for k, v in conditions.items()])
if not matching:
continue
yield case

View file

@ -0,0 +1,295 @@
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional, Tuple
import cv2
import dask.array as da
import h5py
import numpy as np
import zarr
from pydantic import BaseModel
from numpydantic.interface import (
DaskInterface,
H5ArrayPath,
H5Interface,
NumpyInterface,
VideoInterface,
ZarrArrayPath,
ZarrInterface,
)
from numpydantic.testing.helpers import InterfaceCase
from numpydantic.types import DtypeType, NDArrayType
class NumpyCase(InterfaceCase):
"""In-memory numpy array"""
interface = NumpyInterface
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> np.ndarray:
if array is not None:
return np.array(array, dtype=dtype)
elif issubclass(dtype, BaseModel):
return np.full(shape=shape, fill_value=dtype(x=1))
else:
return np.zeros(shape=shape, dtype=dtype)
class _HDF5MetaCase(InterfaceCase):
"""Base case for hdf5 cases"""
interface = H5Interface
@classmethod
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
return issubclass(dtype, BaseModel)
class HDF5Case(_HDF5MetaCase):
"""HDF5 Array"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[H5ArrayPath]:
if cls.skip(shape, dtype): # pragma: no cover
return None
hdf5_file = path / "h5f.h5"
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
generator = np.random.default_rng()
if array is not None:
data = np.array(array, dtype=dtype)
elif dtype is str:
data = generator.random(shape).astype(bytes)
elif dtype is datetime:
data = np.empty(shape, dtype="S32")
data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8"))
else:
data = generator.random(shape).astype(dtype)
h5path = H5ArrayPath(hdf5_file, array_path)
with h5py.File(hdf5_file, "w") as h5f:
_ = h5f.create_dataset(array_path, data=data)
return h5path
class HDF5CompoundCase(_HDF5MetaCase):
"""HDF5 Array with a fake compound dtype"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[H5ArrayPath]:
if cls.skip(shape, dtype): # pragma: no cover
return None
hdf5_file = path / "h5f.h5"
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
if array is not None:
data = np.array(array, dtype=dtype)
elif dtype is str:
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
elif dtype is datetime:
dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")])
data = np.array(
[(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)]
* np.prod(shape),
dtype=dt,
).reshape(shape)
else:
dt = np.dtype([("data", dtype), ("extra", "i8")])
data = np.zeros(shape, dtype=dt)
h5path = H5ArrayPath(hdf5_file, array_path, "data")
with h5py.File(hdf5_file, "w") as h5f:
_ = h5f.create_dataset(array_path, data=data)
return h5path
class DaskCase(InterfaceCase):
"""In-memory dask array"""
interface = DaskInterface
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> da.Array:
if array is not None:
return da.array(array, dtype=dtype)
if issubclass(dtype, BaseModel):
return da.full(shape=shape, fill_value=dtype(x=1), chunks=-1)
else:
return da.zeros(shape=shape, dtype=dtype, chunks=10)
class _ZarrMetaCase(InterfaceCase):
"""Shared classmethods for zarr cases"""
interface = ZarrInterface
@classmethod
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
return issubclass(dtype, BaseModel) or dtype is str
class ZarrCase(_ZarrMetaCase):
"""In-memory zarr array"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[zarr.Array]:
if array is not None:
return zarr.array(array, dtype=dtype, chunks=-1)
else:
return zarr.zeros(shape=shape, dtype=dtype)
class ZarrDirCase(_ZarrMetaCase):
"""On-disk zarr array"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[zarr.Array]:
store = zarr.DirectoryStore(str(path / "array.zarr"))
if array is not None:
return zarr.array(array, dtype=dtype, store=store, chunks=-1)
else:
return zarr.zeros(shape=shape, dtype=dtype, store=store)
class ZarrZipCase(_ZarrMetaCase):
"""Zarr zip store"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[zarr.Array]:
store = zarr.ZipStore(str(path / "array.zarr"), mode="w")
if array is not None:
return zarr.array(array, dtype=dtype, store=store, chunks=-1)
else:
return zarr.zeros(shape=shape, dtype=dtype, store=store)
class ZarrNestedCase(_ZarrMetaCase):
"""Nested zarr array"""
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10),
dtype: DtypeType = float,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> ZarrArrayPath:
file = str(path / "nested.zarr")
root = zarr.open(file, mode="w")
subpath = "a/b/c"
if array is not None:
_ = root.array(subpath, array, dtype=dtype)
else:
_ = root.zeros(subpath, shape=shape, dtype=dtype)
return ZarrArrayPath(file=file, path=subpath)
class VideoCase(InterfaceCase):
"""AVI video"""
interface = VideoInterface
@classmethod
def make_array(
cls,
shape: Tuple[int, ...] = (10, 10, 10, 3),
dtype: DtypeType = np.uint8,
path: Optional[Path] = None,
array: Optional[NDArrayType] = None,
) -> Optional[Path]:
if cls.skip(shape, dtype): # pragma: no cover
return None
if array is not None:
array = np.array(array, dtype=np.uint8)
shape = array.shape
is_color = len(shape) == 4
frames = shape[0]
frame_shape = shape[1:]
video_path = path / "test.avi"
writer = cv2.VideoWriter(
str(video_path),
cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes
30,
(frame_shape[1], frame_shape[0]),
is_color,
)
for i in range(frames):
if array is not None:
frame = array[i]
else:
# make fresh array every time bc opencv eats them
frame = np.full(frame_shape, fill_value=i, dtype=np.uint8)
writer.write(frame)
writer.release()
return video_path
@classmethod
def skip(cls, shape: Tuple[int, ...], dtype: DtypeType) -> bool:
"""
We really can only handle 4 dimensional cases in 8-bit rn lol
.. todo::
Fix shape/writing for grayscale videos
"""
if len(shape) != 4:
return True
# if len(shape) < 3 or len(shape) > 4:
# return True
if dtype not in (int, np.uint8):
return True
# if we have a color video (ie. shape == 4, needs to be RGB)
if len(shape) == 4 and shape[3] != 3:
return True

View file

@ -1,25 +1,9 @@
import sys
import pytest
from typing import Any, Tuple, Union, Type
from pydantic import BaseModel, computed_field, ConfigDict
from numpydantic import NDArray, Shape
from numpydantic.ndarray import NDArrayMeta
from numpydantic.dtype import Float, Number, Integer
import numpy as np
from numpydantic.testing.cases import DTYPE_CASES, SHAPE_CASES
from numpydantic.testing.helpers import ValidationCase
from tests.fixtures import *
if sys.version_info.minor >= 10:
from typing import TypeAlias
YES_PIPE = True
else:
from typing_extensions import TypeAlias
YES_PIPE = False
def pytest_addoption(parser):
parser.addoption(
@ -29,191 +13,19 @@ def pytest_addoption(parser):
)
class ValidationCase(BaseModel):
"""
Test case for validating an array.
Contains both the validating model and the parameterization for an array to
test in a given interface
"""
annotation: Any = NDArray[Shape["10, 10, *"], Float]
"""
Array annotation used in the validating model
Any typed because the types of type annotations are weird
"""
shape: Tuple[int, ...] = (10, 10, 10)
"""Shape of the array to validate"""
dtype: Union[Type, np.dtype] = float
"""Dtype of the array to validate"""
passes: bool
"""Whether the validation should pass or not"""
model_config = ConfigDict(arbitrary_types_allowed=True)
@computed_field()
def model(self) -> Type[BaseModel]:
"""A model with a field ``array`` with the given annotation"""
annotation = self.annotation
class Model(BaseModel):
array: annotation
return Model
class BasicModel(BaseModel):
x: int
class BadModel(BaseModel):
x: int
class SubClass(BasicModel):
pass
RGB_UNION: TypeAlias = Union[
NDArray[Shape["* x, * y"], Number],
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
]
NUMBER: TypeAlias = NDArray[Shape["*, *, *"], Number]
INTEGER: TypeAlias = NDArray[Shape["*, *, *"], Integer]
FLOAT: TypeAlias = NDArray[Shape["*, *, *"], Float]
STRING: TypeAlias = NDArray[Shape["*, *, *"], str]
MODEL: TypeAlias = NDArray[Shape["*, *, *"], BasicModel]
UNION_TYPE: TypeAlias = NDArray[Shape["*, *, *"], Union[np.uint32, np.float32]]
if YES_PIPE:
UNION_PIPE: TypeAlias = NDArray[Shape["*, *, *"], np.uint32 | np.float32]
@pytest.fixture(
scope="function", params=[pytest.param(c, id=c.id) for c in SHAPE_CASES]
)
def shape_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()
case.path = tmp_output_dir_func
return case
@pytest.fixture(
scope="module",
params=[
ValidationCase(shape=(10, 10, 10), passes=True),
ValidationCase(shape=(10, 10), passes=False),
ValidationCase(shape=(10, 10, 10, 10), passes=False),
ValidationCase(shape=(11, 10, 10), passes=False),
ValidationCase(shape=(9, 10, 10), passes=False),
ValidationCase(shape=(10, 10, 9), passes=True),
ValidationCase(shape=(10, 10, 11), passes=True),
ValidationCase(annotation=RGB_UNION, shape=(5, 5), passes=True),
ValidationCase(annotation=RGB_UNION, shape=(5, 5, 3), passes=True),
ValidationCase(annotation=RGB_UNION, shape=(5, 5, 3, 4), passes=True),
ValidationCase(annotation=RGB_UNION, shape=(5, 5, 4), passes=False),
ValidationCase(annotation=RGB_UNION, shape=(5, 5, 3, 6), passes=False),
ValidationCase(annotation=RGB_UNION, shape=(5, 5, 4, 6), passes=False),
],
ids=[
"valid shape",
"missing dimension",
"extra dimension",
"dimension too large",
"dimension too small",
"wildcard smaller",
"wildcard larger",
"Union 2D",
"Union 3D",
"Union 4D",
"Union incorrect 3D",
"Union incorrect 4D",
"Union incorrect both",
],
scope="function", params=[pytest.param(c, id=c.id) for c in DTYPE_CASES]
)
def shape_cases(request) -> ValidationCase:
return request.param
DTYPE_CASES = [
ValidationCase(dtype=float, passes=True),
ValidationCase(dtype=int, passes=False),
ValidationCase(dtype=np.uint8, passes=False),
ValidationCase(annotation=NUMBER, dtype=int, passes=True),
ValidationCase(annotation=NUMBER, dtype=float, passes=True),
ValidationCase(annotation=NUMBER, dtype=np.uint8, passes=True),
ValidationCase(annotation=NUMBER, dtype=np.float16, passes=True),
ValidationCase(annotation=NUMBER, dtype=str, passes=False),
ValidationCase(annotation=INTEGER, dtype=int, passes=True),
ValidationCase(annotation=INTEGER, dtype=np.uint8, passes=True),
ValidationCase(annotation=INTEGER, dtype=float, passes=False),
ValidationCase(annotation=INTEGER, dtype=np.float32, passes=False),
ValidationCase(annotation=INTEGER, dtype=str, passes=False),
ValidationCase(annotation=FLOAT, dtype=float, passes=True),
ValidationCase(annotation=FLOAT, dtype=np.float32, passes=True),
ValidationCase(annotation=FLOAT, dtype=int, passes=False),
ValidationCase(annotation=FLOAT, dtype=np.uint8, passes=False),
ValidationCase(annotation=FLOAT, dtype=str, passes=False),
ValidationCase(annotation=STRING, dtype=str, passes=True),
ValidationCase(annotation=STRING, dtype=int, passes=False),
ValidationCase(annotation=STRING, dtype=float, passes=False),
ValidationCase(annotation=MODEL, dtype=BasicModel, passes=True),
ValidationCase(annotation=MODEL, dtype=BadModel, passes=False),
ValidationCase(annotation=MODEL, dtype=int, passes=False),
ValidationCase(annotation=MODEL, dtype=SubClass, passes=True),
ValidationCase(annotation=UNION_TYPE, dtype=np.uint32, passes=True),
ValidationCase(annotation=UNION_TYPE, dtype=np.float32, passes=True),
ValidationCase(annotation=UNION_TYPE, dtype=np.uint64, passes=False),
ValidationCase(annotation=UNION_TYPE, dtype=np.float64, passes=False),
ValidationCase(annotation=UNION_TYPE, dtype=str, passes=False),
]
DTYPE_IDS = [
"float",
"int",
"uint8",
"number-int",
"number-float",
"number-uint8",
"number-float16",
"number-str",
"integer-int",
"integer-uint8",
"integer-float",
"integer-float32",
"integer-str",
"float-float",
"float-float32",
"float-int",
"float-uint8",
"float-str",
"str-str",
"str-int",
"str-float",
"model-model",
"model-badmodel",
"model-int",
"model-subclass",
"union-type-uint32",
"union-type-float32",
"union-type-uint64",
"union-type-float64",
"union-type-str",
]
if YES_PIPE:
DTYPE_CASES.extend(
[
ValidationCase(annotation=UNION_PIPE, dtype=np.uint32, passes=True),
ValidationCase(annotation=UNION_PIPE, dtype=np.float32, passes=True),
ValidationCase(annotation=UNION_PIPE, dtype=np.uint64, passes=False),
ValidationCase(annotation=UNION_PIPE, dtype=np.float64, passes=False),
ValidationCase(annotation=UNION_PIPE, dtype=str, passes=False),
]
)
DTYPE_IDS.extend(
[
"union-pipe-uint32",
"union-pipe-float32",
"union-pipe-uint64",
"union-pipe-float64",
"union-pipe-str",
]
)
@pytest.fixture(scope="module", params=DTYPE_CASES, ids=DTYPE_IDS)
def dtype_cases(request) -> ValidationCase:
return request.param
def dtype_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()
case.path = tmp_output_dir_func
return case

View file

@ -1,197 +0,0 @@
import shutil
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Type, Union
from warnings import warn
from datetime import datetime, timezone
import h5py
import numpy as np
import pytest
from pydantic import BaseModel, Field
import zarr
import cv2
from numpydantic.interface.hdf5 import H5ArrayPath
from numpydantic.interface.zarr import ZarrArrayPath
from numpydantic import NDArray, Shape
from numpydantic.maps import python_to_nptyping
from numpydantic.dtype import Number
@pytest.fixture(scope="session")
def tmp_output_dir(request: pytest.FixtureRequest) -> Path:
path = Path(__file__).parent.resolve() / "__tmp__"
if path.exists():
shutil.rmtree(str(path))
path.mkdir()
yield path
if not request.config.getvalue("--with-output"):
try:
shutil.rmtree(str(path))
except PermissionError as e:
# sporadic error on windows machines...
warn(
f"Temporary directory could not be removed due to a permissions error: \n{str(e)}"
)
@pytest.fixture(scope="function")
def tmp_output_dir_func(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
"""
tmp output dir that gets cleared between every function
cleans at the start rather than at cleanup in case the output is to be inspected
"""
subpath = tmp_output_dir / f"__tmpfunc_{request.node.name}__"
if subpath.exists():
shutil.rmtree(str(subpath))
subpath.mkdir()
return subpath
@pytest.fixture(scope="module")
def tmp_output_dir_mod(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
"""
tmp output dir that gets cleared between every function
cleans at the start rather than at cleanup in case the output is to be inspected
"""
subpath = tmp_output_dir / f"__tmpmod_{request.module}__"
if subpath.exists():
shutil.rmtree(str(subpath))
subpath.mkdir()
return subpath
@pytest.fixture(scope="function")
def array_model() -> (
Callable[[Tuple[int, ...], Union[Type, np.dtype]], Type[BaseModel]]
):
def _model(
shape: Tuple[int, ...] = (10, 10), dtype: Union[Type, np.dtype] = float
) -> Type[BaseModel]:
shape_str = ", ".join([str(s) for s in shape])
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dtype]
return MyModel
return _model
@pytest.fixture(scope="session")
def model_rgb() -> Type[BaseModel]:
class RGB(BaseModel):
array: Optional[
Union[
NDArray[Shape["* x, * y"], Number],
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
]
] = Field(None)
return RGB
@pytest.fixture(scope="session")
def model_blank() -> Type[BaseModel]:
"""A model with any shape and dtype"""
class BlankModel(BaseModel):
array: NDArray[Shape["*, ..."], Any]
return BlankModel
@pytest.fixture(scope="function")
def hdf5_array(
request, tmp_output_dir_func
) -> Callable[[Tuple[int, ...], Union[np.dtype, type]], H5ArrayPath]:
hdf5_file = tmp_output_dir_func / "h5f.h5"
def _hdf5_array(
shape: Tuple[int, ...] = (10, 10),
dtype: Union[np.dtype, type] = float,
compound: bool = False,
) -> H5ArrayPath:
array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__
if not compound:
if dtype is str:
data = np.random.random(shape).astype(bytes)
elif dtype is datetime:
data = np.empty(shape, dtype="S32")
data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8"))
else:
data = np.random.random(shape).astype(dtype)
h5path = H5ArrayPath(hdf5_file, array_path)
else:
if dtype is str:
dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")])
data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape)
elif dtype is datetime:
dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")])
data = np.array(
[(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)]
* np.prod(shape),
dtype=dt,
).reshape(shape)
else:
dt = np.dtype([("data", dtype), ("extra", "i8")])
data = np.zeros(shape, dtype=dt)
h5path = H5ArrayPath(hdf5_file, array_path, "data")
with h5py.File(hdf5_file, "w") as h5f:
_ = h5f.create_dataset(array_path, data=data)
return h5path
return _hdf5_array
@pytest.fixture(scope="function")
def zarr_nested_array(tmp_output_dir_func) -> ZarrArrayPath:
"""Zarr array within a nested array"""
file = tmp_output_dir_func / "nested.zarr"
path = "a/b/c"
root = zarr.open(str(file), mode="w")
array = root.zeros(path, shape=(100, 100), chunks=(10, 10))
return ZarrArrayPath(file=file, path=path)
@pytest.fixture(scope="function")
def zarr_array(tmp_output_dir_func) -> Path:
file = tmp_output_dir_func / "array.zarr"
array = zarr.open(str(file), mode="w", shape=(100, 100), chunks=(10, 10))
array[:] = 0
return file
@pytest.fixture(scope="function")
def avi_video(tmp_output_dir_func) -> Callable[[Tuple[int, int], int, bool], Path]:
video_path = tmp_output_dir_func / "test.avi"
def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path:
writer = cv2.VideoWriter(
str(video_path),
cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes
30,
(shape[1], shape[0]),
is_color,
)
if is_color:
shape = (*shape, 3)
for i in range(frames):
# make fresh array every time bc opencv eats them
array = np.zeros(shape, dtype=np.uint8)
if not is_color:
array[i, i] = i
else:
array[i, i, :] = i
writer.write(array)
writer.release()
return video_path
return _make_video

3
tests/fixtures/__init__.py vendored Normal file
View file

@ -0,0 +1,3 @@
from .generation import *
from .models import *
from .paths import *

63
tests/fixtures/generation.py vendored Normal file
View file

@ -0,0 +1,63 @@
from pathlib import Path
from typing import Callable, Tuple, Union
import numpy as np
import pytest
import zarr
from numpydantic.interface.hdf5 import H5ArrayPath
from numpydantic.interface.zarr import ZarrArrayPath
from numpydantic.testing.interfaces import HDF5Case, HDF5CompoundCase, VideoCase
@pytest.fixture(scope="function")
def hdf5_array(
request, tmp_output_dir_func
) -> Callable[[Tuple[int, ...], Union[np.dtype, type]], H5ArrayPath]:
def _hdf5_array(
shape: Tuple[int, ...] = (10, 10),
dtype: Union[np.dtype, type] = float,
compound: bool = False,
) -> H5ArrayPath:
if compound:
array: H5ArrayPath = HDF5CompoundCase.make_array(
shape, dtype, tmp_output_dir_func
)
return array
else:
return HDF5Case.make_array(shape, dtype, tmp_output_dir_func)
return _hdf5_array
@pytest.fixture(scope="function")
def zarr_nested_array(tmp_output_dir_func) -> ZarrArrayPath:
"""Zarr array within a nested array"""
file = tmp_output_dir_func / "nested.zarr"
path = "a/b/c"
root = zarr.open(str(file), mode="w")
_ = root.zeros(path, shape=(100, 100), chunks=(10, 10))
return ZarrArrayPath(file=file, path=path)
@pytest.fixture(scope="function")
def zarr_array(tmp_output_dir_func) -> Path:
file = tmp_output_dir_func / "array.zarr"
array = zarr.open(str(file), mode="w", shape=(100, 100), chunks=(10, 10))
array[:] = 0
return file
@pytest.fixture(scope="function")
def avi_video(tmp_output_dir_func) -> Callable[[Tuple[int, int], int, bool], Path]:
def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path:
shape = (frames, *shape)
if is_color:
shape = (*shape, 3)
return VideoCase.make_array(
shape=shape, dtype=np.uint8, path=tmp_output_dir_func
)
return _make_video

49
tests/fixtures/models.py vendored Normal file
View file

@ -0,0 +1,49 @@
from typing import Any, Callable, Optional, Tuple, Type, Union
import numpy as np
import pytest
from pydantic import BaseModel, Field
from numpydantic import NDArray, Shape
from numpydantic.dtype import Number
@pytest.fixture(scope="function")
def array_model() -> (
Callable[[Tuple[int, ...], Union[Type, np.dtype]], Type[BaseModel]]
):
def _model(
shape: Tuple[int, ...] = (10, 10), dtype: Union[Type, np.dtype] = float
) -> Type[BaseModel]:
shape_str = ", ".join([str(s) for s in shape])
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dtype]
return MyModel
return _model
@pytest.fixture(scope="session")
def model_rgb() -> Type[BaseModel]:
class RGB(BaseModel):
array: Optional[
Union[
NDArray[Shape["* x, * y"], Number],
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
]
] = Field(None)
return RGB
@pytest.fixture(scope="session")
def model_blank() -> Type[BaseModel]:
"""A model with any shape and dtype"""
class BlankModel(BaseModel):
array: NDArray[Shape["*, ..."], Any]
return BlankModel

51
tests/fixtures/paths.py vendored Normal file
View file

@ -0,0 +1,51 @@
import shutil
from _warnings import warn
from pathlib import Path
import pytest
@pytest.fixture(scope="session")
def tmp_output_dir(request: pytest.FixtureRequest) -> Path:
path = Path(__file__).parents[1].resolve() / "__tmp__"
if path.exists():
shutil.rmtree(str(path))
path.mkdir()
yield path
if not request.config.getvalue("--with-output"):
try:
shutil.rmtree(str(path))
except PermissionError as e:
# sporadic error on windows machines...
warn(
"Temporary directory could not be removed due to a permissions error: "
f"\n{str(e)}"
)
@pytest.fixture(scope="function")
def tmp_output_dir_func(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
"""
tmp output dir that gets cleared between every function
cleans at the start rather than at cleanup in case the output is to be inspected
"""
subpath = tmp_output_dir / f"__tmpfunc_{request.node.name}__"
if subpath.exists():
shutil.rmtree(str(subpath))
subpath.mkdir()
return subpath
@pytest.fixture(scope="module")
def tmp_output_dir_mod(tmp_output_dir, request: pytest.FixtureRequest) -> Path:
"""
tmp output dir that gets cleared between every function
cleans at the start rather than at cleanup in case the output is to be inspected
"""
subpath = tmp_output_dir / f"__tmpmod_{request.module}__"
if subpath.exists():
shutil.rmtree(str(subpath))
subpath.mkdir()
return subpath

View file

@ -1,80 +1,150 @@
import pytest
from typing import Callable, Tuple, Type
import numpy as np
import dask.array as da
import zarr
from pydantic import BaseModel
from numpydantic import interface, NDArray
from numpydantic.testing.cases import (
ALL_CASES,
ALL_CASES_PASSING,
DTYPE_AND_INTERFACE_CASES_PASSING,
)
from numpydantic.testing.helpers import InterfaceCase, ValidationCase, merge_cases
from numpydantic.testing.interfaces import (
DaskCase,
HDF5Case,
NumpyCase,
VideoCase,
ZarrCase,
ZarrDirCase,
ZarrNestedCase,
)
@pytest.fixture(
scope="function",
params=[
pytest.param(
([[1, 2], [3, 4]], interface.NumpyInterface),
marks=pytest.mark.numpy,
id="numpy-list",
),
pytest.param(
(np.zeros((3, 4)), interface.NumpyInterface),
NumpyCase,
marks=pytest.mark.numpy,
id="numpy",
),
pytest.param(
("hdf5_array", interface.H5Interface),
HDF5Case,
marks=pytest.mark.hdf5,
id="h5-array-path",
),
pytest.param(
(da.random.random((10, 10)), interface.DaskInterface),
DaskCase,
marks=pytest.mark.dask,
id="dask",
),
pytest.param(
(zarr.ones((10, 10)), interface.ZarrInterface),
ZarrCase,
marks=pytest.mark.zarr,
id="zarr-memory",
),
pytest.param(
("zarr_nested_array", interface.ZarrInterface),
ZarrNestedCase,
marks=pytest.mark.zarr,
id="zarr-nested",
),
pytest.param(
("zarr_array", interface.ZarrInterface),
ZarrDirCase,
marks=pytest.mark.zarr,
id="zarr-array",
),
pytest.param(
("avi_video", interface.VideoInterface), marks=pytest.mark.video, id="video"
id="zarr-dir",
),
pytest.param(VideoCase, marks=pytest.mark.video, id="video"),
],
)
def interface_type(request) -> Tuple[NDArray, Type[interface.Interface]]:
def interface_cases(request) -> InterfaceCase:
"""
Test cases for each interface's ``check`` method - each input should match the
provided interface and that interface only
Fixture for combinatoric tests across all interface cases
"""
if isinstance(request.param[0], str):
return (request.getfixturevalue(request.param[0]), request.param[1])
else:
return request.param
return request.param
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
for p in ALL_CASES
)
)
def all_cases(interface_cases, request) -> ValidationCase:
"""
Combinatoric testing for all dtype, shape, and interface cases.
This is a very expensive fixture! Only use it for core functionality
that we want to be sure is *very true* in every circumstance,
INCLUDING invalid combinations of annotations and arrays.
Typically, that means only use this in `test_interfaces.py`
"""
case = merge_cases(request.param, ValidationCase(interface=interface_cases))
if case.skip():
pytest.skip()
return case
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
for p in ALL_CASES_PASSING
)
)
def all_passing_cases(request) -> ValidationCase:
"""
Combinatoric testing for all dtype, shape, and interface cases,
but only the combinations that we expect to pass.
This is a very expensive fixture! Only use it for core functionality
that we want to be sure is *very true* in every circumstance.
Typically, that means only use this in `test_interfaces.py`
"""
return request.param
@pytest.fixture()
def all_interfaces(interface_type) -> BaseModel:
def all_cases_instance(all_cases, tmp_output_dir_func):
"""
An instantiated version of each interface within a basemodel,
with the array in an `array` field
all_cases but with an instantiated model
Args:
all_cases:
Returns:
"""
array, interface = interface_type
if isinstance(array, Callable):
array = array()
class MyModel(BaseModel):
array: NDArray
instance = MyModel(array=array)
array = all_cases.array(path=tmp_output_dir_func)
instance = all_cases.model(array=array)
return instance
@pytest.fixture()
def all_passing_cases_instance(all_passing_cases, tmp_output_dir_func):
"""
all_cases but with an instantiated model
Args:
all_cases:
Returns:
"""
array = all_passing_cases.array(path=tmp_output_dir_func)
instance = all_passing_cases.model(array=array)
return instance
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
for p in DTYPE_AND_INTERFACE_CASES_PASSING
)
)
def dtype_by_interface(request):
"""
Tests for all dtypes by all interfaces
"""
return request.param
@pytest.fixture()
def dtype_by_interface_instance(dtype_by_interface, tmp_output_dir_func):
array = dtype_by_interface.array(path=tmp_output_dir_func)
instance = dtype_by_interface.model(array=array)
return instance

View file

@ -1,33 +1,14 @@
import pytest
import json
import dask.array as da
from pydantic import BaseModel, ValidationError
import pytest
from numpydantic.interface import DaskInterface
from numpydantic.exceptions import DtypeError, ShapeError
from tests.conftest import ValidationCase
from numpydantic.testing.interfaces import DaskCase
pytestmark = pytest.mark.dask
def dask_array(case: ValidationCase) -> da.Array:
if issubclass(case.dtype, BaseModel):
return da.full(shape=case.shape, fill_value=case.dtype(x=1), chunks=-1)
else:
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
def _test_dask_case(case: ValidationCase):
array = dask_array(case)
if case.passes:
case.model(array=array)
else:
with pytest.raises((ValidationError, DtypeError, ShapeError)):
case.model(array=array)
def test_dask_enabled():
"""
We need dask to be available to run these tests :)
@ -35,21 +16,25 @@ def test_dask_enabled():
assert DaskInterface.enabled()
def test_dask_check(interface_type):
if interface_type[1] is DaskInterface:
assert DaskInterface.check(interface_type[0])
def test_dask_check(interface_cases, tmp_output_dir_func):
array = interface_cases.make_array(path=tmp_output_dir_func)
if interface_cases.interface is DaskInterface:
assert DaskInterface.check(array)
else:
assert not DaskInterface.check(interface_type[0])
assert not DaskInterface.check(array)
@pytest.mark.shape
def test_dask_shape(shape_cases):
_test_dask_case(shape_cases)
shape_cases.interface = DaskCase
shape_cases.validate_case()
@pytest.mark.dtype
def test_dask_dtype(dtype_cases):
_test_dask_case(dtype_cases)
dtype_cases.interface = DaskCase
dtype_cases.validate_case()
@pytest.mark.serialization

View file

@ -1,61 +1,54 @@
import json
from datetime import datetime, timezone
from datetime import datetime
from typing import Any
import h5py
import pytest
from pydantic import BaseModel, ValidationError
import numpy as np
import pytest
from pydantic import BaseModel
from numpydantic import NDArray, Shape
from numpydantic.interface import H5Interface
from numpydantic.interface.hdf5 import H5ArrayPath, H5Proxy
from numpydantic.exceptions import DtypeError, ShapeError
from tests.conftest import ValidationCase
from numpydantic.testing.interfaces import HDF5Case, HDF5CompoundCase
pytestmark = pytest.mark.hdf5
def hdf5_array_case(
case: ValidationCase, array_func, compound: bool = False
) -> H5ArrayPath:
"""
Args:
case:
array_func: ( the function returned from the `hdf5_array` fixture )
Returns:
"""
if issubclass(case.dtype, BaseModel):
pytest.skip("hdf5 cant support arbitrary python objects")
return array_func(case.shape, case.dtype, compound)
def _test_hdf5_case(case: ValidationCase, array_func, compound: bool = False) -> None:
array = hdf5_array_case(case, array_func, compound)
if case.passes:
case.model(array=array)
else:
with pytest.raises((ValidationError, DtypeError, ShapeError)):
case.model(array=array)
@pytest.fixture(
params=[
pytest.param(HDF5Case, id="hdf5"),
pytest.param(HDF5CompoundCase, id="hdf5-compound"),
]
)
def hdf5_cases(request):
return request.param
def test_hdf5_enabled():
assert H5Interface.enabled()
def test_hdf5_check(interface_type):
if interface_type[1] is H5Interface:
if interface_type[0].__name__ == "_hdf5_array":
interface_type = (interface_type[0](), interface_type[1])
assert H5Interface.check(interface_type[0])
if isinstance(interface_type[0], H5ArrayPath):
# also test that we can instantiate from a tuple like the H5ArrayPath
assert H5Interface.check((interface_type[0].file, interface_type[0].path))
@pytest.mark.shape
def test_hdf5_shape(shape_cases, hdf5_cases):
shape_cases.interface = hdf5_cases
if shape_cases.skip():
pytest.skip()
shape_cases.validate_case()
@pytest.mark.dtype
def test_hdf5_dtype(dtype_cases, hdf5_cases):
dtype_cases.interface = hdf5_cases
dtype_cases.validate_case()
def test_hdf5_check(interface_cases, tmp_output_dir_func):
array = interface_cases.make_array(path=tmp_output_dir_func)
if interface_cases.interface is H5Interface:
assert H5Interface.check(array)
else:
assert not H5Interface.check(interface_type[0])
assert not H5Interface.check(array)
def test_hdf5_check_not_exists():
@ -74,18 +67,6 @@ def test_hdf5_check_not_hdf5(tmp_path):
assert not H5Interface.check(spec)
@pytest.mark.shape
@pytest.mark.parametrize("compound", [True, False])
def test_hdf5_shape(shape_cases, hdf5_array, compound):
_test_hdf5_case(shape_cases, hdf5_array, compound)
@pytest.mark.dtype
@pytest.mark.parametrize("compound", [True, False])
def test_hdf5_dtype(dtype_cases, hdf5_array, compound):
_test_hdf5_case(dtype_cases, hdf5_array, compound)
def test_hdf5_dataset_not_exists(hdf5_array, model_blank):
array = hdf5_array()
with pytest.raises(ValueError) as e:
@ -221,10 +202,7 @@ def test_empty_dataset(dtype, tmp_path):
Empty datasets shouldn't choke us during validation
"""
array_path = tmp_path / "test.h5"
if dtype in (str, datetime):
np_dtype = "S32"
else:
np_dtype = dtype
np_dtype = "S32" if dtype in (str, datetime) else dtype
with h5py.File(array_path, "w") as h5f:
_ = h5f.create_dataset(name="/data", dtype=np_dtype)

View file

@ -6,18 +6,17 @@ for tests that should apply to all interfaces, use ``test_interfaces.py``
import gc
from typing import Literal
import pytest
import numpy as np
import pytest
from pydantic import ValidationError
from numpydantic.interface import (
Interface,
JsonDict,
InterfaceMark,
NumpyInterface,
JsonDict,
MarkedJson,
NumpyInterface,
)
from pydantic import ValidationError
from numpydantic.interface.interface import V
@ -46,9 +45,7 @@ def interfaces():
@classmethod
def check(cls, array):
cls.checked = True
if isinstance(array, list):
return True
return False
return isinstance(array, list)
@classmethod
def enabled(cls) -> bool:
@ -94,7 +91,8 @@ def interfaces():
def test_interface_match_error(interfaces):
"""
Test that `match` and `match_output` raises errors when no or multiple matches are found
Test that `match` and `match_output` raises errors when no or multiple matches
are found
"""
with pytest.raises(ValueError) as e:
Interface.match([1, 2, 3])

View file

@ -2,87 +2,108 @@
Tests that should be applied to all interfaces
"""
import pytest
from typing import Callable
from importlib.metadata import version
import json
from importlib.metadata import version
import numpy as np
import dask.array as da
from zarr.core import Array as ZarrArray
import numpy as np
import pytest
from pydantic import BaseModel
from zarr.core import Array as ZarrArray
from numpydantic.interface import Interface, InterfaceMark, MarkedJson
from numpydantic.testing.helpers import ValidationCase
def _test_roundtrip(source: BaseModel, target: BaseModel, round_trip: bool):
def _test_roundtrip(source: BaseModel, target: BaseModel):
"""Test model equality for roundtrip tests"""
if round_trip:
assert type(target.array) is type(source.array)
if isinstance(source.array, (np.ndarray, ZarrArray)):
assert np.array_equal(target.array, np.array(source.array))
elif isinstance(source.array, da.Array):
assert np.all(da.equal(target.array, source.array))
else:
assert target.array == source.array
assert target.array.dtype == source.array.dtype
else:
assert type(target.array) is type(source.array)
if isinstance(source.array, (np.ndarray, ZarrArray)):
assert np.array_equal(target.array, np.array(source.array))
elif isinstance(source.array, da.Array):
if target.array.dtype == object:
# object equality doesn't really work well with dask
# just check that the types match
target_type = type(target.array.ravel()[0].compute())
source_type = type(source.array.ravel()[0].compute())
assert target_type is source_type
else:
assert np.all(da.equal(target.array, source.array))
else:
assert target.array == source.array
assert target.array.dtype == source.array.dtype
def test_dunder_len(all_interfaces):
def test_dunder_len(interface_cases, tmp_output_dir_func):
"""
Each interface or proxy type should support __len__
"""
assert len(all_interfaces.array) == all_interfaces.array.shape[0]
case = ValidationCase(interface=interface_cases)
if interface_cases.interface.name == "video":
case.shape = (10, 10, 2, 3)
case.dtype = np.uint8
case.annotation_dtype = np.uint8
case.annotation_shape = (10, 10, "*", 3)
array = case.array(path=tmp_output_dir_func)
instance = case.model(array=array)
assert len(instance.array) == case.shape[0]
def test_interface_revalidate(all_interfaces):
def test_interface_revalidate(all_passing_cases_instance):
"""
An interface should revalidate with the output of its initial validation
See: https://github.com/p2p-ld/numpydantic/pull/14
"""
_ = type(all_interfaces)(array=all_interfaces.array)
_ = type(all_passing_cases_instance)(array=all_passing_cases_instance.array)
def test_interface_rematch(interface_type):
@pytest.mark.xfail
def test_interface_rematch(interface_cases, tmp_output_dir_func):
"""
All interfaces should match the results of the object they return after validation
"""
array, interface = interface_type
if isinstance(array, Callable):
array = array()
array = interface_cases.make_array(path=tmp_output_dir_func)
assert Interface.match(interface().validate(array)) is interface
assert (
Interface.match(interface_cases.interface.validate(array))
is interface_cases.interface
)
def test_interface_to_numpy_array(all_interfaces):
def test_interface_to_numpy_array(dtype_by_interface_instance):
"""
All interfaces should be able to have the output of their validation stage
coerced to a numpy array with np.array()
"""
_ = np.array(all_interfaces.array)
_ = np.array(dtype_by_interface_instance.array)
@pytest.mark.serialization
def test_interface_dump_json(all_interfaces):
def test_interface_dump_json(dtype_by_interface_instance):
"""
All interfaces should be able to dump to json
"""
all_interfaces.model_dump_json()
dtype_by_interface_instance.model_dump_json()
@pytest.mark.serialization
@pytest.mark.parametrize("round_trip", [True, False])
def test_interface_roundtrip_json(all_interfaces, round_trip):
def test_interface_roundtrip_json(dtype_by_interface, tmp_output_dir_func):
"""
All interfaces should be able to roundtrip to and from json
"""
dumped_json = all_interfaces.model_dump_json(round_trip=round_trip)
model = all_interfaces.model_validate_json(dumped_json)
_test_roundtrip(all_interfaces, model, round_trip)
if "subclass" in dtype_by_interface.id.lower():
pytest.xfail()
array = dtype_by_interface.array(path=tmp_output_dir_func)
case = dtype_by_interface.model(array=array)
dumped_json = case.model_dump_json(round_trip=True)
model = case.model_validate_json(dumped_json)
_test_roundtrip(case, model)
@pytest.mark.serialization
@ -101,15 +122,20 @@ def test_interface_mark_interface(an_interface):
@pytest.mark.serialization
@pytest.mark.parametrize("valid", [True, False])
@pytest.mark.parametrize("round_trip", [True, False])
@pytest.mark.filterwarnings("ignore:Mismatch between serialized mark")
def test_interface_mark_roundtrip(all_interfaces, valid, round_trip):
def test_interface_mark_roundtrip(dtype_by_interface, valid, tmp_output_dir_func):
"""
All interfaces should be able to roundtrip with the marked interface,
and a mismatch should raise a warning and attempt to proceed
"""
dumped_json = all_interfaces.model_dump_json(
round_trip=round_trip, context={"mark_interface": True}
if "subclass" in dtype_by_interface.id.lower():
pytest.xfail()
array = dtype_by_interface.array(path=tmp_output_dir_func)
case = dtype_by_interface.model(array=array)
dumped_json = case.model_dump_json(
round_trip=True, context={"mark_interface": True}
)
data = json.loads(dumped_json)
@ -123,8 +149,8 @@ def test_interface_mark_roundtrip(all_interfaces, valid, round_trip):
dumped_json = json.dumps(data)
with pytest.warns(match="Mismatch.*"):
model = all_interfaces.model_validate_json(dumped_json)
model = case.model_validate_json(dumped_json)
else:
model = all_interfaces.model_validate_json(dumped_json)
model = case.model_validate_json(dumped_json)
_test_roundtrip(all_interfaces, model, round_trip)
_test_roundtrip(case, model)

View file

@ -1,37 +1,21 @@
import numpy as np
import pytest
from pydantic import ValidationError, BaseModel
from numpydantic.exceptions import DtypeError, ShapeError
from tests.conftest import ValidationCase
from numpydantic.testing.cases import NumpyCase
pytestmark = pytest.mark.numpy
def numpy_array(case: ValidationCase) -> np.ndarray:
if issubclass(case.dtype, BaseModel):
return np.full(shape=case.shape, fill_value=case.dtype(x=1))
else:
return np.zeros(shape=case.shape, dtype=case.dtype)
def _test_np_case(case: ValidationCase):
array = numpy_array(case)
if case.passes:
case.model(array=array)
else:
with pytest.raises((ValidationError, DtypeError, ShapeError)):
case.model(array=array)
@pytest.mark.shape
def test_numpy_shape(shape_cases):
_test_np_case(shape_cases)
shape_cases.interface = NumpyCase
shape_cases.validate_case()
@pytest.mark.dtype
def test_numpy_dtype(dtype_cases):
_test_np_case(dtype_cases)
dtype_cases.interface = NumpyCase
dtype_cases.validate_case()
def test_numpy_coercion(model_blank):

View file

@ -2,12 +2,10 @@
Needs to be refactored to DRY, but works for now
"""
import numpy as np
import pytest
from pathlib import Path
import cv2
import cv2
import pytest
from pydantic import BaseModel, ValidationError
from numpydantic import NDArray, Shape
@ -65,7 +63,7 @@ def test_video_wrong_shape(avi_video):
# should correctly validate :)
with pytest.raises(ValidationError):
instance = MyModel(array=vid)
_ = MyModel(array=vid)
@pytest.mark.proxy
@ -82,15 +80,12 @@ def test_video_getitem(avi_video):
instance = MyModel(array=vid)
fifth_frame = instance.array[5]
# the first frame should have 1's in the 1,1 position
# the fifth frame should be all 5s
assert (fifth_frame[5, 5, :] == [5, 5, 5]).all()
# and nothing in the 6th position
assert (fifth_frame[6, 6, :] == [0, 0, 0]).all()
# slicing should also work as if it were just a numpy array
single_slice = instance.array[3, 0:10, 0:5]
assert single_slice[3, 3, 0] == 3
assert single_slice[4, 4, 0] == 0
assert single_slice.shape == (10, 5, 3)
# also get a range of frames
@ -98,19 +93,19 @@ def test_video_getitem(avi_video):
range_slice = instance.array[3:5]
assert range_slice.shape == (2, 100, 50, 3)
assert range_slice[0, 3, 3, 0] == 3
assert range_slice[0, 4, 4, 0] == 0
assert range_slice[1, 4, 4, 0] == 4
# full range
range_slice = instance.array[3:5, 0:10, 0:5]
assert range_slice.shape == (2, 10, 5, 3)
assert range_slice[0, 3, 3, 0] == 3
assert range_slice[0, 4, 4, 0] == 0
assert range_slice[1, 4, 4, 0] == 4
# starting range
range_slice = instance.array[6:, 0:10, 0:10]
assert range_slice.shape == (4, 10, 10, 3)
assert range_slice[-1, 9, 9, 0] == 9
assert range_slice[-2, 9, 9, 0] == 0
assert range_slice[-2, 9, 9, 0] == 8
# ending range
range_slice = instance.array[:3, 0:5, 0:5]
@ -121,10 +116,8 @@ def test_video_getitem(avi_video):
# second slice should be the second frame (instead of the first)
assert range_slice.shape == (3, 6, 6, 3)
assert range_slice[1, 2, 2, 0] == 2
assert range_slice[1, 3, 3, 0] == 0
# and the third should be the fourth (instead of the second)
assert range_slice[2, 4, 4, 0] == 4
assert range_slice[2, 5, 5, 0] == 0
with pytest.raises(NotImplementedError):
# shouldn't be allowed to set

View file

@ -1,61 +1,21 @@
import json
import numpy as np
import pytest
import zarr
from pydantic import BaseModel, ValidationError
from numcodecs import Pickle
from numpydantic.interface import ZarrInterface
from numpydantic.interface.zarr import ZarrArrayPath
from numpydantic.exceptions import DtypeError, ShapeError
from tests.conftest import ValidationCase
from numpydantic.testing.cases import ZarrCase, ZarrDirCase, ZarrNestedCase, ZarrZipCase
from numpydantic.testing.helpers import InterfaceCase
pytestmark = pytest.mark.zarr
@pytest.fixture()
def dir_array(tmp_output_dir_func) -> zarr.DirectoryStore:
store = zarr.DirectoryStore(tmp_output_dir_func / "array.zarr")
return store
@pytest.fixture()
def zip_array(tmp_output_dir_func) -> zarr.ZipStore:
store = zarr.ZipStore(tmp_output_dir_func / "array.zip", mode="w")
return store
@pytest.fixture()
def nested_dir_array(tmp_output_dir_func) -> zarr.NestedDirectoryStore:
store = zarr.NestedDirectoryStore(tmp_output_dir_func / "nested")
return store
def _zarr_array(case: ValidationCase, store) -> zarr.core.Array:
if issubclass(case.dtype, BaseModel):
pytest.skip(
f"Zarr can't handle objects properly at the moment, "
"see https://github.com/zarr-developers/zarr-python/issues/2081"
)
# return zarr.full(
# shape=case.shape,
# fill_value=case.dtype(x=1),
# dtype=object,
# object_codec=Pickle(),
# )
else:
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
def _test_zarr_case(case: ValidationCase, store):
array = _zarr_array(case, store)
if case.passes:
case.model(array=array)
else:
with pytest.raises((ValidationError, DtypeError, ShapeError)):
case.model(array=array)
@pytest.fixture(
params=[ZarrCase, ZarrZipCase, ZarrDirCase, ZarrNestedCase],
)
def zarr_case(request) -> InterfaceCase:
return request.param
@pytest.fixture(
@ -78,24 +38,29 @@ def test_zarr_enabled():
assert ZarrInterface.enabled()
def test_zarr_check(interface_type):
def test_zarr_check(interface_cases, tmp_output_dir_func):
"""
We should only use the zarr interface for zarr-like things
"""
if interface_type[1] is ZarrInterface:
assert ZarrInterface.check(interface_type[0])
array = interface_cases.make_array(path=tmp_output_dir_func)
if interface_cases.interface is ZarrInterface:
assert ZarrInterface.check(array)
else:
assert not ZarrInterface.check(interface_type[0])
assert not ZarrInterface.check(array)
@pytest.mark.shape
def test_zarr_shape(store, shape_cases):
_test_zarr_case(shape_cases, store)
def test_zarr_shape(shape_cases, zarr_case):
shape_cases.interface = zarr_case
shape_cases.validate_case()
@pytest.mark.dtype
def test_zarr_dtype(dtype_cases, store):
_test_zarr_case(dtype_cases, store)
def test_zarr_dtype(dtype_cases, zarr_case):
dtype_cases.interface = zarr_case
if dtype_cases.skip():
pytest.skip()
dtype_cases.validate_case()
@pytest.mark.parametrize("array", ["zarr_nested_array", "zarr_array"])
@ -103,14 +68,14 @@ def test_zarr_from_tuple(array, model_blank, request):
"""Should be able to do the same validation logic from tuples as an input"""
array = request.getfixturevalue(array)
if isinstance(array, ZarrArrayPath):
instance = model_blank(array=(array.file, array.path))
_ = model_blank(array=(array.file, array.path))
else:
instance = model_blank(array=(array,))
_ = model_blank(array=(array,))
def test_zarr_from_path(zarr_array, model_blank):
"""Should be able to just pass a path"""
instance = model_blank(array=zarr_array)
_ = model_blank(array=zarr_array)
def test_zarr_array_path_from_iterable(zarr_array):
@ -129,7 +94,7 @@ def test_zarr_array_path_from_iterable(zarr_array):
@pytest.mark.serialization
@pytest.mark.parametrize("dump_array", [True, False])
@pytest.mark.parametrize("roundtrip", [True, False])
def test_zarr_to_json(store, model_blank, roundtrip, dump_array):
def test_zarr_to_json(zarr_case, model_blank, roundtrip, dump_array, tmp_path):
expected_fields = (
"Type",
"Data type",
@ -139,9 +104,9 @@ def test_zarr_to_json(store, model_blank, roundtrip, dump_array):
"Store type",
"hexdigest",
)
lol_array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
lol_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=int)
array = zarr.array(lol_array, store=store)
array = zarr_case.make_array(array=lol_array, dtype=int, path=tmp_path)
instance = model_blank(array=array)
context = {"dump_array": dump_array}
@ -151,7 +116,7 @@ def test_zarr_to_json(store, model_blank, roundtrip, dump_array):
if roundtrip:
if dump_array:
assert as_json["value"] == lol_array
assert np.array_equal(as_json["value"], lol_array)
else:
if as_json.get("file", False):
assert "array" not in as_json
@ -161,4 +126,4 @@ def test_zarr_to_json(store, model_blank, roundtrip, dump_array):
assert len(as_json["info"]["hexdigest"]) == 40
else:
assert as_json == lol_array
assert np.array_equal(as_json, lol_array)

View file

@ -1,4 +1,5 @@
import sys
import pytest
from numpydantic import NDArray
@ -40,4 +41,4 @@ def test_stub_revealed_type():
"""
Check that the revealed type matches the stub
"""
type = reveal_type(NDArray)
_ = reveal_type(NDArray)

View file

@ -1,16 +1,13 @@
import pytest
from typing import Union, Optional, Any
import json
from typing import Any, Optional, Union
import numpy as np
from pydantic import BaseModel, ValidationError, Field
import pytest
from pydantic import BaseModel, Field, ValidationError
from numpydantic import NDArray, Shape
from numpydantic.exceptions import ShapeError, DtypeError
from numpydantic import dtype
from numpydantic import NDArray, Shape, dtype
from numpydantic.dtype import Number
from numpydantic.exceptions import DtypeError
@pytest.mark.json_schema
@ -28,15 +25,15 @@ def test_ndarray_type():
assert schema["properties"]["array"]["minItems"] == 2
# models should instantiate correctly!
instance = Model(array=np.zeros((2, 3)))
_ = Model(array=np.zeros((2, 3)))
with pytest.raises(ValidationError):
instance = Model(array=np.zeros((4, 6)))
_ = Model(array=np.zeros((4, 6)))
with pytest.raises(ValidationError):
instance = Model(array=np.ones((2, 3), dtype=bool))
_ = Model(array=np.ones((2, 3), dtype=bool))
instance = Model(array=np.zeros((2, 3)), array_any=np.ones((3, 4, 5)))
_ = Model(array=np.zeros((2, 3)), array_any=np.ones((3, 4, 5)))
@pytest.mark.dtype
@ -93,6 +90,8 @@ def test_schema_number():
def test_ndarray_union():
generator = np.random.default_rng()
class Model(BaseModel):
array: Optional[
Union[
@ -102,22 +101,22 @@ def test_ndarray_union():
]
] = Field(None)
instance = Model()
instance = Model(array=np.random.random((5, 10)))
instance = Model(array=np.random.random((5, 10, 3)))
instance = Model(array=np.random.random((5, 10, 3, 4)))
_ = Model()
_ = Model(array=generator.random((5, 10)))
_ = Model(array=generator.random((5, 10, 3)))
_ = Model(array=generator.random((5, 10, 3, 4)))
with pytest.raises(ValidationError):
instance = Model(array=np.random.random((5,)))
_ = Model(array=generator.random((5,)))
with pytest.raises(ValidationError):
instance = Model(array=np.random.random((5, 10, 4)))
_ = Model(array=generator.random((5, 10, 4)))
with pytest.raises(ValidationError):
instance = Model(array=np.random.random((5, 10, 3, 6)))
_ = Model(array=generator.random((5, 10, 3, 6)))
with pytest.raises(ValidationError):
instance = Model(array=np.random.random((5, 10, 4, 6)))
_ = Model(array=generator.random((5, 10, 4, 6)))
@pytest.mark.shape
@ -127,15 +126,16 @@ def test_ndarray_unparameterized(dtype):
"""
NDArray without any parameters is any shape, any type
"""
generator = np.random.default_rng()
class Model(BaseModel):
array: NDArray
# not very sophisticated fuzzing of "any shape"
test_cases = 10
for i in range(test_cases):
n_dimensions = np.random.randint(1, 8)
dim_sizes = np.random.randint(1, 7, size=n_dimensions)
for _ in range(test_cases):
n_dimensions = generator.integers(1, 8)
dim_sizes = generator.integers(1, 7, size=n_dimensions)
_ = Model(array=np.zeros(dim_sizes, dtype=dtype))
@ -144,15 +144,16 @@ def test_ndarray_any():
"""
using :class:`typing.Any` in for the shape means any shape
"""
generator = np.random.default_rng()
class Model(BaseModel):
array: NDArray[Any, np.uint8]
# not very sophisticated fuzzing of "any shape"
test_cases = 100
for i in range(test_cases):
n_dimensions = np.random.randint(1, 8)
dim_sizes = np.random.randint(1, 16, size=n_dimensions)
for _ in range(test_cases):
n_dimensions = generator.integers(1, 8)
dim_sizes = generator.integers(1, 16, size=n_dimensions)
_ = Model(array=np.zeros(dim_sizes, dtype=np.uint8))
@ -191,7 +192,7 @@ def test_ndarray_serialize():
class Model(BaseModel):
array: NDArray[Any, Number]
mod = Model(array=np.random.random((3, 3)))
mod = Model(array=np.random.default_rng().random((3, 3)))
mod_str = mod.model_dump_json()
mod_json = json.loads(mod_str)
assert isinstance(mod_json["array"], list)

View file

@ -3,14 +3,15 @@ Test serialization-specific functionality that doesn't need to be
applied across every interface (use test_interface/test_interfaces for that
"""
import h5py
import pytest
import json
from pathlib import Path
from typing import Callable
import numpy as np
import json
from numpydantic.serialization import _walk_and_apply, _relativize_paths, relative_path
import h5py
import numpy as np
import pytest
from numpydantic.serialization import _relativize_paths, _walk_and_apply, relative_path
pytestmark = pytest.mark.serialization
@ -115,7 +116,8 @@ def test_absolute_path(hdf5_at_path, tmp_output_dir, model_blank):
def test_walk_and_apply():
"""
Walk and apply should recursively apply a function to everything in a nesty structure
Walk and apply should recursively apply a function to everything in a
nesty structure
"""
test = {
"a": 1,

View file

@ -1,9 +1,8 @@
import pytest
from typing import Any
from pydantic import BaseModel, ValidationError
import numpy as np
import pytest
from pydantic import BaseModel, ValidationError
from numpydantic import NDArray, Shape

View file

@ -0,0 +1,60 @@
"""
Tests for the testing helpers lmao
"""
import numpy as np
import pytest
from pydantic import BaseModel
from numpydantic import NDArray, Shape
from numpydantic.testing.cases import INTERFACE_CASES
from numpydantic.testing.helpers import ValidationCase
from numpydantic.testing.interfaces import NumpyCase
def test_validation_case_merge():
case_1 = ValidationCase(id="1", interface=NumpyCase, passes=False)
case_2 = ValidationCase(id="2", dtype=str, passes=True)
case_3 = ValidationCase(id="3", shape=(1, 2, 3), passes=True)
merged_simple = case_2.merge(case_3)
assert merged_simple.dtype == case_2.dtype
assert merged_simple.shape == case_3.shape
merged_multi = case_1.merge([case_2, case_3])
assert merged_multi.dtype == case_2.dtype
assert merged_multi.shape == case_3.shape
assert merged_multi.interface == case_1.interface
# passes should be true only if all the cases are
assert merged_simple.passes
assert not merged_multi.passes
# ids should merge
assert merged_simple.id == "2-3"
assert merged_multi.id == "1-2-3"
@pytest.mark.parametrize(
"interface",
[
pytest.param(
i.interface, marks=getattr(pytest.mark, i.interface.interface.name)
)
for i in INTERFACE_CASES
if i.id not in ("hdf5_compound")
],
)
def test_make_array(interface, tmp_output_dir_func):
"""
An interface case can generate an array from params or a given array
Not testing correctness here, that's what hte rest of the testing does.
"""
arr = np.zeros((10, 10, 2, 3), dtype=np.uint8)
arr = interface.make_array(array=arr, dtype=np.uint8, path=tmp_output_dir_func)
class MyModel(BaseModel):
array: NDArray[Shape["10, 10, 2, 3"], np.uint8]
_ = MyModel(array=arr)