mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
Merge pull request #8 from p2p-ld/constructable
Make NDArray callable as a functional validator
This commit is contained in:
commit
6a397a9aba
6 changed files with 78 additions and 5 deletions
|
@ -2,6 +2,61 @@
|
|||
|
||||
## 1.*
|
||||
|
||||
### 1.3.3 - 24-08-13 - Callable type annotations
|
||||
|
||||
Problem, when you use a numpydantic `"wrap"` validator, it gives the annotation as a `handler` function.
|
||||
|
||||
So this is effectively what happens
|
||||
|
||||
```python
|
||||
@field_validator("*", mode="wrap")
|
||||
@classmethod
|
||||
def cast_specified_columns(
|
||||
cls, val: Any, handler: ValidatorFunctionWrapHandler, info: ValidationInfo
|
||||
) -> Any:
|
||||
# where handler is the callable here
|
||||
# so
|
||||
# return handler(val)
|
||||
|
||||
return NDArray[Any, Any](val)
|
||||
```
|
||||
|
||||
where `Any, Any` is whatever you had put in there.
|
||||
|
||||
So this makes it so you can use an annotation as a functional validator. it looks a little bit whacky but idk it makes sense as a PARAMETERIZED TYPE
|
||||
|
||||
```python
|
||||
>>> from numpydantic import NDArray, Shape
|
||||
>>> import numpy as np
|
||||
|
||||
>>> array = np.array([1,2,3], dtype=int)
|
||||
>>> validated = NDArray[Shape["3"], int](array)
|
||||
>>> assert validated is array
|
||||
True
|
||||
|
||||
>>> bad_array = np.array([1,2,3,4], dtype=int)
|
||||
>>> _ = NDArray[Shape["3"], int](bad_array)
|
||||
175 """
|
||||
176 Raise a ShapeError if the shape is invalid.
|
||||
177
|
||||
178 Raises:
|
||||
179 :class:`~numpydantic.exceptions.ShapeError`
|
||||
180 """
|
||||
181 if not valid:
|
||||
--> 182 raise ShapeError(
|
||||
183 f"Invalid shape! expected shape {self.shape.prepared_args}, "
|
||||
184 f"got shape {shape}"
|
||||
185 )
|
||||
|
||||
ShapeError: Invalid shape! expected shape ['3'], got shape (4,)
|
||||
|
||||
```
|
||||
|
||||
**Performance:**
|
||||
- Don't import the pandas module if we don't have to, since we are not
|
||||
using it. This shaves ~600ms off import time.
|
||||
|
||||
|
||||
### 1.3.2 - 24-08-12 - Allow subclasses of dtypes
|
||||
|
||||
(also when using objects for dtypes, subclasses of that object are allowed to validate)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[project]
|
||||
name = "numpydantic"
|
||||
version = "1.3.2"
|
||||
version = "1.3.3"
|
||||
description = "Type and shape validation and serialization for numpy arrays in pydantic models"
|
||||
authors = [
|
||||
{name = "sneakers-the-rat", email = "sneakers-the-rat@protonmail.com"},
|
||||
|
|
|
@ -29,7 +29,7 @@ from numpydantic.schema import (
|
|||
get_validate_interface,
|
||||
make_json_schema,
|
||||
)
|
||||
from numpydantic.types import DtypeType, ShapeType
|
||||
from numpydantic.types import DtypeType, NDArrayType, ShapeType
|
||||
from numpydantic.vendor.nptyping.error import InvalidArgumentsError
|
||||
from numpydantic.vendor.nptyping.ndarray import NDArrayMeta as _NDArrayMeta
|
||||
from numpydantic.vendor.nptyping.nptyping_type import NPTypingType
|
||||
|
@ -54,6 +54,10 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
|||
if TYPE_CHECKING: # pragma: no cover
|
||||
__getitem__ = SubscriptableMeta.__getitem__
|
||||
|
||||
def __call__(cls, val: NDArrayType) -> NDArrayType:
|
||||
"""Call ndarray as a validator function"""
|
||||
return get_validate_interface(cls.__args__[0], cls.__args__[1])(val)
|
||||
|
||||
def __instancecheck__(self, instance: Any):
|
||||
"""
|
||||
Extended type checking that determines whether
|
||||
|
|
4
src/numpydantic/vendor/nptyping/__init__.py
vendored
4
src/numpydantic/vendor/nptyping/__init__.py
vendored
|
@ -32,7 +32,9 @@ from numpydantic.vendor.nptyping.error import (
|
|||
)
|
||||
from numpydantic.vendor.nptyping.ndarray import NDArray
|
||||
from numpydantic.vendor.nptyping.package_info import __version__
|
||||
from numpydantic.vendor.nptyping.pandas_.dataframe import DataFrame
|
||||
|
||||
# don't import unnecessarily since we don't use it
|
||||
# from numpydantic.vendor.nptyping.pandas_.dataframe import DataFrame
|
||||
from numpydantic.vendor.nptyping.recarray import RecArray
|
||||
from numpydantic.vendor.nptyping.shape import Shape
|
||||
from numpydantic.vendor.nptyping.shape_expression import (
|
||||
|
|
2
src/numpydantic/vendor/nptyping/ndarray.py
vendored
2
src/numpydantic/vendor/nptyping/ndarray.py
vendored
|
@ -31,7 +31,6 @@ import numpy as np
|
|||
from numpydantic.vendor.nptyping.base_meta_classes import (
|
||||
FinalMeta,
|
||||
ImmutableMeta,
|
||||
InconstructableMeta,
|
||||
MaybeCheckableMeta,
|
||||
PrintableMeta,
|
||||
SubscriptableMeta,
|
||||
|
@ -54,7 +53,6 @@ from numpydantic.vendor.nptyping.typing_ import (
|
|||
|
||||
class NDArrayMeta(
|
||||
SubscriptableMeta,
|
||||
InconstructableMeta,
|
||||
ImmutableMeta,
|
||||
FinalMeta,
|
||||
MaybeCheckableMeta,
|
||||
|
|
|
@ -350,3 +350,17 @@ def test_instancecheck():
|
|||
return array
|
||||
|
||||
my_function(np.zeros((1, 2, 3), int))
|
||||
|
||||
|
||||
def test_callable():
|
||||
"""
|
||||
NDArray objects are callable to validate and cast
|
||||
Don't test validation here, just that we can be called
|
||||
"""
|
||||
annotation = NDArray[Shape["3"], int]
|
||||
array = np.array([1, 2, 3], dtype=int)
|
||||
validated = annotation(array)
|
||||
assert validated is array
|
||||
|
||||
with pytest.raises(DtypeError):
|
||||
_ = annotation(np.zeros((1, 2, 3)))
|
||||
|
|
Loading…
Reference in a new issue