mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
working zarr impl
This commit is contained in:
parent
b82a49df1b
commit
a079fbcafc
6 changed files with 63 additions and 168 deletions
|
@ -52,7 +52,7 @@ LongLong = np.longlong
|
||||||
Timedelta64 = np.timedelta64
|
Timedelta64 = np.timedelta64
|
||||||
SignedInteger = (np.int8, np.int16, np.int32, np.int64, np.short)
|
SignedInteger = (np.int8, np.int16, np.int32, np.int64, np.short)
|
||||||
UnsignedInteger = (np.uint8, np.uint16, np.uint32, np.uint64, np.ushort)
|
UnsignedInteger = (np.uint8, np.uint16, np.uint32, np.uint64, np.ushort)
|
||||||
Integer = tuple([np.integer, *SignedInteger, *UnsignedInteger])
|
Integer = tuple([*SignedInteger, *UnsignedInteger])
|
||||||
Int = Integer # Int should translate to the "generic" int type.
|
Int = Integer # Int should translate to the "generic" int type.
|
||||||
|
|
||||||
Float16 = np.float16
|
Float16 = np.float16
|
||||||
|
@ -68,7 +68,6 @@ Float = (
|
||||||
np.float16,
|
np.float16,
|
||||||
np.float32,
|
np.float32,
|
||||||
np.float64,
|
np.float64,
|
||||||
np.floating,
|
|
||||||
np.single,
|
np.single,
|
||||||
np.double,
|
np.double,
|
||||||
)
|
)
|
||||||
|
|
|
@ -5,7 +5,6 @@ import dask.array as da
|
||||||
import zarr
|
import zarr
|
||||||
|
|
||||||
from numpydantic import interface
|
from numpydantic import interface
|
||||||
from tests.fixtures import hdf5_array, zarr_nested_array, zarr_array
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(
|
@pytest.fixture(
|
||||||
|
@ -13,11 +12,11 @@ from tests.fixtures import hdf5_array, zarr_nested_array, zarr_array
|
||||||
params=[
|
params=[
|
||||||
([[1, 2], [3, 4]], interface.NumpyInterface),
|
([[1, 2], [3, 4]], interface.NumpyInterface),
|
||||||
(np.zeros((3, 4)), interface.NumpyInterface),
|
(np.zeros((3, 4)), interface.NumpyInterface),
|
||||||
(hdf5_array, interface.H5Interface),
|
("hdf5_array", interface.H5Interface),
|
||||||
(da.random.random((10, 10)), interface.DaskInterface),
|
(da.random.random((10, 10)), interface.DaskInterface),
|
||||||
(zarr.ones((10, 10)), interface.ZarrInterface),
|
(zarr.ones((10, 10)), interface.ZarrInterface),
|
||||||
(zarr_nested_array, interface.ZarrInterface),
|
("zarr_nested_array", interface.ZarrInterface),
|
||||||
(zarr_array, interface.ZarrInterface),
|
("zarr_array", interface.ZarrInterface),
|
||||||
],
|
],
|
||||||
ids=[
|
ids=[
|
||||||
"numpy_list",
|
"numpy_list",
|
||||||
|
@ -34,4 +33,7 @@ def interface_type(request):
|
||||||
Test cases for each interface's ``check`` method - each input should match the
|
Test cases for each interface's ``check`` method - each input should match the
|
||||||
provided interface and that interface only
|
provided interface and that interface only
|
||||||
"""
|
"""
|
||||||
|
if isinstance(request.param[0], str):
|
||||||
|
return (request.getfixturevalue(request.param[0]), request.param[1])
|
||||||
|
else:
|
||||||
return request.param
|
return request.param
|
||||||
|
|
|
@ -4,6 +4,22 @@ import dask.array as da
|
||||||
from pydantic import ValidationError
|
from pydantic import ValidationError
|
||||||
|
|
||||||
from numpydantic.interface import DaskInterface
|
from numpydantic.interface import DaskInterface
|
||||||
|
from numpydantic.exceptions import DtypeError, ShapeError
|
||||||
|
|
||||||
|
from tests.conftest import ValidationCase
|
||||||
|
|
||||||
|
|
||||||
|
def dask_array(case: ValidationCase) -> da.Array:
|
||||||
|
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_dask_case(case: ValidationCase):
|
||||||
|
array = dask_array(case)
|
||||||
|
if case.passes:
|
||||||
|
case.model(array=array)
|
||||||
|
else:
|
||||||
|
with pytest.raises((ValidationError, DtypeError, ShapeError)):
|
||||||
|
case.model(array=array)
|
||||||
|
|
||||||
|
|
||||||
def test_dask_enabled():
|
def test_dask_enabled():
|
||||||
|
@ -20,25 +36,9 @@ def test_dask_check(interface_type):
|
||||||
assert not DaskInterface.check(interface_type[0])
|
assert not DaskInterface.check(interface_type[0])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
def test_dask_shape(shape_cases):
|
||||||
"array,passes",
|
_test_dask_case(shape_cases)
|
||||||
[
|
|
||||||
(da.random.random((5, 10)), True),
|
|
||||||
(da.random.random((5, 10, 3)), True),
|
|
||||||
(da.random.random((5, 10, 3, 4)), True),
|
|
||||||
(da.random.random((5, 10, 4)), False),
|
|
||||||
(da.random.random((5, 10, 3, 6)), False),
|
|
||||||
(da.random.random((5, 10, 4, 6)), False),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def test_dask_shape(model_rgb, array, passes):
|
|
||||||
if passes:
|
|
||||||
model_rgb(array=array)
|
|
||||||
else:
|
|
||||||
with pytest.raises(ValidationError):
|
|
||||||
model_rgb(array=array)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip("TODO")
|
def test_dask_dtype(dtype_cases):
|
||||||
def test_dask_dtype():
|
_test_dask_case(dtype_cases)
|
||||||
pass
|
|
||||||
|
|
|
@ -4,6 +4,9 @@ import zarr
|
||||||
from pydantic import ValidationError
|
from pydantic import ValidationError
|
||||||
|
|
||||||
from numpydantic.interface import ZarrInterface
|
from numpydantic.interface import ZarrInterface
|
||||||
|
from numpydantic.exceptions import DtypeError, ShapeError
|
||||||
|
|
||||||
|
from tests.conftest import ValidationCase
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture()
|
@pytest.fixture()
|
||||||
|
@ -24,11 +27,33 @@ def nested_dir_array(tmp_output_dir_func) -> zarr.NestedDirectoryStore:
|
||||||
return store
|
return store
|
||||||
|
|
||||||
|
|
||||||
STORES = (
|
def zarr_array(case: ValidationCase, store) -> zarr.core.Array:
|
||||||
dir_array,
|
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
|
||||||
zip_array,
|
|
||||||
|
|
||||||
|
def _test_zarr_case(case: ValidationCase, store):
|
||||||
|
array = zarr_array(case, store)
|
||||||
|
if case.passes:
|
||||||
|
case.model(array=array)
|
||||||
|
else:
|
||||||
|
with pytest.raises((ValidationError, DtypeError, ShapeError)):
|
||||||
|
case.model(array=array)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(
|
||||||
|
params=[
|
||||||
|
None, # use the default store
|
||||||
|
"dir_array",
|
||||||
|
"zip_array",
|
||||||
|
"nested_dir_array",
|
||||||
|
],
|
||||||
|
ids=["MutableMapping", "DirectoryStore", "ZipStore", "NestedDirectoryStore"],
|
||||||
)
|
)
|
||||||
"""stores for single arrays"""
|
def store(request):
|
||||||
|
if isinstance(request.param, str):
|
||||||
|
return request.getfixturevalue(request.param)
|
||||||
|
else:
|
||||||
|
return request.param
|
||||||
|
|
||||||
|
|
||||||
def test_zarr_enabled():
|
def test_zarr_enabled():
|
||||||
|
@ -45,20 +70,9 @@ def test_zarr_check(interface_type):
|
||||||
assert not ZarrInterface.check(interface_type[0])
|
assert not ZarrInterface.check(interface_type[0])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
def test_zarr_shape(store, shape_cases):
|
||||||
"array,passes",
|
_test_zarr_case(shape_cases, store)
|
||||||
[
|
|
||||||
(zarr.zeros((5, 10)), True),
|
|
||||||
(zarr.zeros((5, 10, 3)), True),
|
def test_zarr_dtype(dtype_cases, store):
|
||||||
(zarr.zeros((5, 10, 3, 4)), True),
|
_test_zarr_case(dtype_cases, store)
|
||||||
(zarr.zeros((5, 10, 4)), False),
|
|
||||||
(zarr.zeros((5, 10, 3, 6)), False),
|
|
||||||
(zarr.zeros((5, 10, 4, 6)), False),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def test_zarr_shape(model_rgb, array, passes):
|
|
||||||
if passes:
|
|
||||||
model_rgb(array=array)
|
|
||||||
else:
|
|
||||||
with pytest.raises(ValidationError):
|
|
||||||
model_rgb(array=array)
|
|
||||||
|
|
|
@ -1,120 +0,0 @@
|
||||||
"""
|
|
||||||
Test custom features of the pydantic generator
|
|
||||||
|
|
||||||
Note that since this is largely a subclass, we don't test all of the functionality of the generator
|
|
||||||
because it's tested in the base linkml package.
|
|
||||||
"""
|
|
||||||
import re
|
|
||||||
import sys
|
|
||||||
import typing
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pytest
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
|
|
||||||
# def test_arraylike(imported_schema):
|
|
||||||
# """
|
|
||||||
# Arraylike classes are converted to slots that specify nptyping arrays
|
|
||||||
#
|
|
||||||
# array: Optional[Union[
|
|
||||||
# NDArray[Shape["* x, * y"], Number],
|
|
||||||
# NDArray[Shape["* x, * y, 3 z"], Number],
|
|
||||||
# NDArray[Shape["* x, * y, 3 z, 4 a"], Number]
|
|
||||||
# ]] = Field(None)
|
|
||||||
# """
|
|
||||||
# # check that we have gotten an NDArray annotation and its shape is correct
|
|
||||||
# array = imported_schema["core"].MainTopLevel.model_fields["array"].annotation
|
|
||||||
# args = typing.get_args(array)
|
|
||||||
# for i, shape in enumerate(("* x, * y", "* x, * y, 3 z", "* x, * y, 3 z, 4 a")):
|
|
||||||
# assert isinstance(args[i], NDArrayMeta)
|
|
||||||
# assert args[i].__args__[0].__args__
|
|
||||||
# assert args[i].__args__[1] == np.number
|
|
||||||
#
|
|
||||||
# # we shouldn't have an actual class for the array
|
|
||||||
# assert not hasattr(imported_schema["core"], "MainTopLevel__Array")
|
|
||||||
# assert not hasattr(imported_schema["core"], "MainTopLevelArray")
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_inject_fields(imported_schema):
|
|
||||||
# """
|
|
||||||
# Our root model should have the special fields we injected
|
|
||||||
# """
|
|
||||||
# base = imported_schema["core"].ConfiguredBaseModel
|
|
||||||
# assert "hdf5_path" in base.model_fields
|
|
||||||
# assert "object_id" in base.model_fields
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_linkml_meta(imported_schema):
|
|
||||||
# """
|
|
||||||
# We should be able to store some linkml metadata with our classes
|
|
||||||
# """
|
|
||||||
# meta = imported_schema["core"].LinkML_Meta
|
|
||||||
# assert "tree_root" in meta.model_fields
|
|
||||||
# assert imported_schema["core"].MainTopLevel.linkml_meta.default.tree_root == True
|
|
||||||
# assert imported_schema["core"].OtherClass.linkml_meta.default.tree_root == False
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_skip(linkml_schema):
|
|
||||||
# """
|
|
||||||
# We can skip slots and classes
|
|
||||||
# """
|
|
||||||
# modules = generate_and_import(
|
|
||||||
# linkml_schema,
|
|
||||||
# split=False,
|
|
||||||
# generator_kwargs={
|
|
||||||
# "SKIP_SLOTS": ("SkippableSlot",),
|
|
||||||
# "SKIP_CLASSES": ("Skippable", "skippable"),
|
|
||||||
# },
|
|
||||||
# )
|
|
||||||
# assert not hasattr(modules["core"], "Skippable")
|
|
||||||
# assert "SkippableSlot" not in modules["core"].MainTopLevel.model_fields
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_inline_with_identifier(imported_schema):
|
|
||||||
# """
|
|
||||||
# By default, if a class has an identifier attribute, it is inlined
|
|
||||||
# as a string rather than its class. We overrode that to be able to make dictionaries of collections
|
|
||||||
# """
|
|
||||||
# main = imported_schema["core"].MainTopLevel
|
|
||||||
# inline = main.model_fields["inline_dict"].annotation
|
|
||||||
# assert typing.get_origin(typing.get_args(inline)[0]) == dict
|
|
||||||
# # god i hate pythons typing interface
|
|
||||||
# otherclass, stillanother = typing.get_args(
|
|
||||||
# typing.get_args(typing.get_args(inline)[0])[1]
|
|
||||||
# )
|
|
||||||
# assert otherclass is imported_schema["core"].OtherClass
|
|
||||||
# assert stillanother is imported_schema["core"].StillAnotherClass
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_namespace(imported_schema):
|
|
||||||
# """
|
|
||||||
# Namespace schema import all classes from the other schema
|
|
||||||
# Returns:
|
|
||||||
#
|
|
||||||
# """
|
|
||||||
# ns = imported_schema["namespace"]
|
|
||||||
#
|
|
||||||
# for classname, modname in (
|
|
||||||
# ("MainThing", "test_schema.imported"),
|
|
||||||
# ("Arraylike", "test_schema.imported"),
|
|
||||||
# ("MainTopLevel", "test_schema.core"),
|
|
||||||
# ("Skippable", "test_schema.core"),
|
|
||||||
# ("OtherClass", "test_schema.core"),
|
|
||||||
# ("StillAnotherClass", "test_schema.core"),
|
|
||||||
# ):
|
|
||||||
# assert hasattr(ns, classname)
|
|
||||||
# if imported_schema["split"]:
|
|
||||||
# assert getattr(ns, classname).__module__ == modname
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def test_get_set_item(imported_schema):
|
|
||||||
# """We can get and set without explicitly addressing array"""
|
|
||||||
# cls_ = imported_schema["core"].MainTopLevel(array=np.array([[1, 2, 3], [4, 5, 6]]))
|
|
||||||
# cls_[0] = 50
|
|
||||||
# assert (cls_[0] == 50).all()
|
|
||||||
# assert (cls_.array[0] == 50).all()
|
|
||||||
#
|
|
||||||
# cls_[1, 1] = 100
|
|
||||||
# assert cls_[1, 1] == 100
|
|
||||||
# assert cls_.array[1, 1] == 100
|
|
Loading…
Reference in a new issue