Merge pull request #39 from p2p-ld/bugfix-union-dtypes

Fix JSON Schema generation for union dtypes
This commit is contained in:
Jonny Saunders 2024-12-13 17:33:52 -08:00 committed by GitHub
commit d54698fc0f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 97 additions and 22 deletions

View file

@ -15,20 +15,28 @@ jobs:
matrix:
platform: ["ubuntu-latest", "macos-latest", "windows-latest"]
numpy-version: ["<2.0.0", ">=2.0.0"]
python-version: ["3.9", "3.10", "3.11", "3.12"]
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
exclude:
- numpy-version: "<2.0.0"
python-version: "3.10"
- numpy-version: "<2.0.0"
python-version: "3.11"
# let's call python 3.12 the last version we're going to support with numpy <2
# they don't provide wheels for <2 in 3.13 and beyond.
- numpy-version: "<2.0.0"
python-version: "3.13"
- platform: "macos-latest"
python-version: "3.10"
- platform: "macos-latest"
python-version: "3.11"
- platform: "macos-latest"
python-version: "3.12"
- platform: "windows-latest"
python-version: "3.10"
- platform: "windows-latest"
python-version: "3.11"
- platform: "windows-latest"
python-version: "3.12"
runs-on: ${{ matrix.platform }}

View file

@ -1,5 +1,21 @@
# Changelog
## Upcoming
**Bugfix**
- [#38](https://github.com/p2p-ld/numpydantic/issues/38), [#39](https://github.com/p2p-ld/numpydantic/pull/39) -
- JSON Schema generation failed when the `dtype` was embedded from dtypes that lack a `__name__` attribute.
An additional check was added for presence of `__name__` when embedding.
- `NDArray` types were incorrectly cached s.t. pipe-union dtypes were considered equivalent to `Union[]`
dtypes. An additional tuple with the type of the args was added to the cache key to disambiguate them.
**Testing**
- [#39](https://github.com/p2p-ld/numpydantic/pull/39) - Test that all combinations of shapes, dtypes, and interfaces
can generate JSON schema.
- [#39](https://github.com/p2p-ld/numpydantic/pull/39) - Add python 3.13 to the testing matrix.
- [#39](https://github.com/p2p-ld/numpydantic/pull/39) - Add an additional `marks` field to ValidationCase
for finer-grained control over running tests.
## 1.*
### 1.6.*

View file

@ -5,7 +5,7 @@
groups = ["default", "arrays", "dask", "dev", "docs", "hdf5", "tests", "video", "zarr"]
strategy = ["cross_platform", "inherit_metadata"]
lock_version = "4.5.0"
content_hash = "sha256:cc2b0fb32896c6df0ad747ddb5dee89af22f5c4c4643ee7a52db47fef30da936"
content_hash = "sha256:89ac87e811ecc42bf5117e9c9e4aa6a69011cb7c5c1a630fbfb2643b0045c526"
[[metadata.targets]]
requires_python = "~=3.9"

View file

@ -129,6 +129,8 @@ markers = [
"numpy: numpy interface",
"video: video interface",
"zarr: zarr interface",
"union: union dtypes",
"pipe_union: union dtypes specified with a pipe",
]
[tool.black]

View file

@ -204,9 +204,15 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
json_schema = handler(schema["metadata"])
json_schema = handler.resolve_ref_schema(json_schema)
if not isinstance(dtype, tuple) and dtype.__module__ not in (
"builtins",
"typing",
if (
not isinstance(dtype, tuple)
and dtype.__module__
not in (
"builtins",
"typing",
"types",
)
and hasattr(dtype, "__name__")
):
json_schema["dtype"] = ".".join([dtype.__module__, dtype.__name__])

View file

@ -143,27 +143,35 @@ DTYPE_CASES = [
dtype=np.uint32,
passes=True,
id="union-type-uint32",
marks={"union"},
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.float32,
passes=True,
id="union-type-float32",
marks={"union"},
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.uint64,
passes=False,
id="union-type-uint64",
marks={"union"},
),
ValidationCase(
annotation_dtype=UNION_TYPE,
dtype=np.float64,
passes=False,
id="union-type-float64",
marks={"union"},
),
ValidationCase(
annotation_dtype=UNION_TYPE, dtype=str, passes=False, id="union-type-str"
annotation_dtype=UNION_TYPE,
dtype=str,
passes=False,
id="union-type-str",
marks={"union"},
),
]
"""
@ -181,30 +189,35 @@ if YES_PIPE:
dtype=np.uint32,
passes=True,
id="union-pipe-uint32",
marks={"union", "pipe_union"},
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.float32,
passes=True,
id="union-pipe-float32",
marks={"union", "pipe_union"},
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.uint64,
passes=False,
id="union-pipe-uint64",
marks={"union", "pipe_union"},
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=np.float64,
passes=False,
id="union-pipe-float64",
marks={"union", "pipe_union"},
),
ValidationCase(
annotation_dtype=UNION_PIPE,
dtype=str,
passes=False,
id="union-pipe-str",
marks={"union", "pipe_union"},
),
]
)

View file

@ -4,16 +4,19 @@ from functools import reduce
from itertools import product
from operator import ior
from pathlib import Path
from typing import Generator, List, Literal, Optional, Tuple, Type, Union
from typing import TYPE_CHECKING, Generator, List, Literal, Optional, Tuple, Type, Union
import numpy as np
from pydantic import BaseModel, ConfigDict, ValidationError, computed_field
from pydantic import BaseModel, ConfigDict, Field, ValidationError, computed_field
from numpydantic import NDArray, Shape
from numpydantic.dtype import Float
from numpydantic.interface import Interface
from numpydantic.types import DtypeType, NDArrayType
if TYPE_CHECKING:
from _pytest.mark.structures import MarkDecorator
class InterfaceCase(ABC):
"""
@ -139,6 +142,8 @@ class ValidationCase(BaseModel):
"""The interface test case to generate and validate the array with"""
path: Optional[Path] = None
"""The path to generate arrays into, if any."""
marks: set[str] = Field(default_factory=set)
"""pytest marks to set for this test case"""
model_config = ConfigDict(arbitrary_types_allowed=True)
@ -179,6 +184,19 @@ class ValidationCase(BaseModel):
return Model
@property
def pytest_marks(self) -> list["MarkDecorator"]:
"""
Instantiated pytest marks from :attr:`.ValidationCase.marks`
plus the interface name.
"""
import pytest
marks = self.marks.copy()
if self.interface is not None:
marks.add(self.interface.interface.name)
return [getattr(pytest.mark, m) for m in marks]
def validate_case(self, path: Optional[Path] = None) -> bool:
"""
Whether the generated array correctly validated against the annotation,
@ -246,7 +264,10 @@ def merge_cases(*args: ValidationCase) -> ValidationCase:
return args[0]
dumped = [
m.model_dump(exclude_unset=True, exclude={"model", "annotation"}) for m in args
m.model_dump(
exclude_unset=True, exclude={"model", "annotation", "pytest_marks"}
)
for m in args
]
# self_dump = self.model_dump(exclude_unset=True)
@ -263,6 +284,7 @@ def merge_cases(*args: ValidationCase) -> ValidationCase:
merged = reduce(ior, dumped, {})
merged["passes"] = passes
merged["id"] = ids
merged["marks"] = set().union(*[v.get("marks", set()) for v in dumped])
return ValidationCase.model_construct(**merged)

View file

@ -120,7 +120,7 @@ class SubscriptableMeta(ABCMeta):
new type is returned for every unique set of arguments.
"""
_all_types: Dict[Tuple[type, Tuple[Any, ...]], type] = {}
_all_types: Dict[Tuple[type, Tuple[Any, ...], tuple[type, ...]], type] = {}
_parameterized: bool = False
@abstractmethod
@ -160,7 +160,7 @@ class SubscriptableMeta(ABCMeta):
def _create_type(
cls, args: Tuple[Any, ...], additional_values: Dict[str, Any]
) -> type:
key = (cls, args)
key = (cls, args, tuple(type(a) for a in args))
if key not in cls._all_types:
cls._all_types[key] = type(
cls.__name__,

View file

@ -14,7 +14,8 @@ def pytest_addoption(parser):
@pytest.fixture(
scope="function", params=[pytest.param(c, id=c.id) for c in SHAPE_CASES]
scope="function",
params=[pytest.param(c, id=c.id, marks=c.pytest_marks) for c in SHAPE_CASES],
)
def shape_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()
@ -23,7 +24,8 @@ def shape_cases(request, tmp_output_dir_func) -> ValidationCase:
@pytest.fixture(
scope="function", params=[pytest.param(c, id=c.id) for c in DTYPE_CASES]
scope="function",
params=[pytest.param(c, id=c.id, marks=c.pytest_marks) for c in DTYPE_CASES],
)
def dtype_cases(request, tmp_output_dir_func) -> ValidationCase:
case: ValidationCase = request.param.model_copy()

View file

@ -61,10 +61,7 @@ def interface_cases(request) -> InterfaceCase:
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
for p in ALL_CASES
)
params=(pytest.param(p, id=p.id, marks=p.pytest_marks) for p in ALL_CASES)
)
def all_cases(interface_cases, request) -> ValidationCase:
"""
@ -83,10 +80,7 @@ def all_cases(interface_cases, request) -> ValidationCase:
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
for p in ALL_CASES_PASSING
)
params=(pytest.param(p, id=p.id, marks=p.pytest_marks) for p in ALL_CASES_PASSING)
)
def all_passing_cases(request) -> ValidationCase:
"""
@ -132,7 +126,7 @@ def all_passing_cases_instance(all_passing_cases, tmp_output_dir_func):
@pytest.fixture(
params=(
pytest.param(p, id=p.id, marks=getattr(pytest.mark, p.interface.interface.name))
pytest.param(p, id=p.id, marks=p.pytest_marks)
for p in DTYPE_AND_INTERFACE_CASES_PASSING
)
)

View file

@ -61,6 +61,18 @@ def test_interface_revalidate(all_passing_cases_instance):
_ = type(all_passing_cases_instance)(array=all_passing_cases_instance.array)
@pytest.mark.json_schema
def test_interface_jsonschema(all_passing_cases_instance):
"""
All interfaces should be able to generate json schema
for all combinations of dtype and shape
Note that this does not test for json schema correctness -
see ndarray tests for that
"""
_ = all_passing_cases_instance.model_json_schema()
@pytest.mark.xfail
def test_interface_rematch(interface_cases, tmp_output_dir_func):
"""