README demo :)

This commit is contained in:
sneakers-the-rat 2024-02-05 11:50:56 -08:00
parent c9e7bb243c
commit d5a3a09bed
Signed by untrusted user who does not match committer: jonny
GPG key ID: 6DCB96EF1E4D232D
3 changed files with 115 additions and 1 deletions

108
README.md
View file

@ -17,3 +17,111 @@ It does two primary things:
- **Generate models from LinkML** - extend the LinkML pydantic generator to create models that
that use the [linkml-arrays](https://github.com/linkml/linkml-arrays) syntax
## Parameterized Arrays
Arrays use the npytying syntax:
```python
from typing import Union
from pydantic import BaseModel
from numpydantic import NDArray, Shape, UInt8, Float, Int
class Image(BaseModel):
"""
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
"""
array: Union[
NDArray[Shape["* x, * y"], UInt8],
NDArray[Shape["* x, * y, 3 rgb"], UInt8],
NDArray[Shape["* x, * y, 4 rgba"], UInt8],
NDArray[Shape["* t, * x, * y, 3 rgb"], UInt8],
NDArray[Shape["* t, * x, * y, 4 rgba"], Float]
]
```
### Validation:
```python
import numpy as np
# works
frame_gray = Image(array=np.ones((1280, 720), dtype=np.uint8))
frame_rgb = Image(array=np.ones((1280, 720, 3), dtype=np.uint8))
frame_rgba = Image(array=np.ones((1280, 720, 4), dtype=np.uint8))
video_rgb = Image(array=np.ones((100, 1280, 720, 3), dtype=np.uint8))
# fails
wrong_n_dimensions = Image(array=np.ones((1280,), dtype=np.uint8))
wrong_shape = Image(array=np.ones((1280,720,10), dtype=np.uint8))
wrong_type = Image(array=np.ones((1280,720,3), dtype=np.float64))
# shapes and types are checked together
float_video = Image(array=np.ones((100, 1280, 720, 4),dtype=float))
wrong_shape_float_video = Image(array=np.ones((100, 1280, 720, 3),dtype=float))
```
### JSON schema generation:
```python
class MyArray(BaseModel):
array: NDArray[Shape["2 x, * y, 4 z"], Float]
```
```python
>>> print(json.dumps(MyArray.model_json_schema(), indent=2))
```
```json
{
"properties": {
"array": {
"items": {
"items": {
"items": {
"type": "number"
},
"maxItems": 4,
"minItems": 4,
"type": "array"
},
"type": "array"
},
"maxItems": 2,
"minItems": 2,
"title": "Array",
"type": "array"
}
},
"required": [
"array"
],
"title": "MyArray",
"type": "object"
}
```
### Serialization
```python
class SmolArray(BaseModel):
array: NDArray[Shape["2 x, 2 y"], Int]
class BigArray(BaseModel):
array: NDArray[Shape["1000 x, 1000 y"], Int]
```
Serialize small arrays as lists of lists, and big arrays as a b64-encoded blosc compressed string
```python
>>> smol = SmolArray(array=np.array([[1,2],[3,4]], dtype=int))
>>> big = BigArray(array=np.random.randint(0,255,(1000,1000),int))
>>> print(smol.model_dump_json())
{"array":[[1,2],[3,4]]}
>>> print(big.model_dump_json())
{
"array": "( long b64 encoded string )",
"shape": [1000, 1000],
"dtype": "int64",
"unpack_fns": ["base64.b64decode", "blosc2.unpack_array2"],
}
```

View file

@ -4,4 +4,9 @@ from numpydantic.monkeypatch import apply_patches
apply_patches()
# convenience imports for typing - finish this!
from typing import Any
from nptyping import Float, Int, Number, Shape, UInt8
from numpydantic.ndarray import NDArray

View file

@ -147,7 +147,8 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
"""
Kept here to allow for hooking into metaclass, which has
been necessary on and off as we work this class into a stable
state"""
state
"""
class NDArray(NPTypingType, metaclass=NDArrayMeta):