mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-09 13:44:26 +00:00
allow arbitrary dtypes, and allow pydantic models as the inner type in json schema array creation
This commit is contained in:
parent
32db88fc1b
commit
dd9a8e959f
8 changed files with 71 additions and 20 deletions
|
@ -125,14 +125,10 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
|||
check_type_names(dtype, dtype_per_name)
|
||||
elif isinstance(dtype_candidate, tuple): # pragma: no cover
|
||||
dtype = tuple([cls._get_dtype(dt) for dt in dtype_candidate])
|
||||
else: # pragma: no cover
|
||||
raise InvalidArgumentsError(
|
||||
f"Unexpected argument '{dtype_candidate}', expecting"
|
||||
" Structure[<StructureExpression>]"
|
||||
" or Literal[<StructureExpression>]"
|
||||
" or a dtype"
|
||||
" or typing.Any."
|
||||
)
|
||||
else:
|
||||
# arbitrary dtype - allow failure elsewhere :)
|
||||
dtype = dtype_candidate
|
||||
|
||||
return dtype
|
||||
|
||||
def _dtype_to_str(cls, dtype: Any) -> str:
|
||||
|
|
|
@ -8,7 +8,7 @@ import json
|
|||
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from pydantic import SerializationInfo
|
||||
from pydantic import BaseModel, SerializationInfo
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic_core.core_schema import ListSchema, ValidationInfo
|
||||
|
||||
|
@ -66,18 +66,18 @@ def _lol_dtype(dtype: DtypeType, _handler: _handler_type) -> CoreSchema:
|
|||
else:
|
||||
try:
|
||||
python_type = np_to_python[dtype]
|
||||
except KeyError as e: # pragma: no cover
|
||||
except KeyError: # pragma: no cover
|
||||
# this should pretty much only happen in downstream/3rd-party interfaces
|
||||
# that use interface-specific types. those need to provide mappings back
|
||||
# to base python types (making this more streamlined is TODO)
|
||||
if dtype in np_to_python.values():
|
||||
# it's already a python type
|
||||
python_type = dtype
|
||||
elif issubclass(dtype, BaseModel):
|
||||
python_type = dtype
|
||||
else:
|
||||
raise ValueError(
|
||||
"dtype given in model does not have a corresponding python base "
|
||||
"type - add one to the `maps.np_to_python` dict"
|
||||
) from e
|
||||
# does this need a warning?
|
||||
python_type = Any
|
||||
|
||||
if python_type in _UNSUPPORTED_TYPES:
|
||||
array_type = core_schema.any_schema()
|
||||
|
|
|
@ -58,6 +58,10 @@ class ValidationCase(BaseModel):
|
|||
return Model
|
||||
|
||||
|
||||
class BasicModel(BaseModel):
|
||||
x: int
|
||||
|
||||
|
||||
RGB_UNION: TypeAlias = Union[
|
||||
NDArray[Shape["* x, * y"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
|
||||
|
@ -68,6 +72,7 @@ NUMBER: TypeAlias = NDArray[Shape["*, *, *"], Number]
|
|||
INTEGER: TypeAlias = NDArray[Shape["*, *, *"], Integer]
|
||||
FLOAT: TypeAlias = NDArray[Shape["*, *, *"], Float]
|
||||
STRING: TypeAlias = NDArray[Shape["*, *, *"], str]
|
||||
MODEL: TypeAlias = NDArray[Shape["*, *, *"], BasicModel]
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
|
@ -131,6 +136,8 @@ def shape_cases(request) -> ValidationCase:
|
|||
ValidationCase(annotation=STRING, dtype=str, passes=True),
|
||||
ValidationCase(annotation=STRING, dtype=int, passes=False),
|
||||
ValidationCase(annotation=STRING, dtype=float, passes=False),
|
||||
ValidationCase(annotation=MODEL, dtype=BasicModel, passes=True),
|
||||
ValidationCase(annotation=MODEL, dtype=int, passes=False),
|
||||
],
|
||||
ids=[
|
||||
"float",
|
||||
|
@ -154,6 +161,8 @@ def shape_cases(request) -> ValidationCase:
|
|||
"str-str",
|
||||
"str-int",
|
||||
"str-float",
|
||||
"model-model",
|
||||
"model-int",
|
||||
],
|
||||
)
|
||||
def dtype_cases(request) -> ValidationCase:
|
||||
|
|
|
@ -4,7 +4,7 @@ import pytest
|
|||
import json
|
||||
|
||||
import dask.array as da
|
||||
from pydantic import ValidationError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from numpydantic.interface import DaskInterface
|
||||
from numpydantic.exceptions import DtypeError, ShapeError
|
||||
|
@ -13,7 +13,10 @@ from tests.conftest import ValidationCase
|
|||
|
||||
|
||||
def dask_array(case: ValidationCase) -> da.Array:
|
||||
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
|
||||
if issubclass(case.dtype, BaseModel):
|
||||
return da.full(shape=case.shape, fill_value=case.dtype(x=1), chunks=-1)
|
||||
else:
|
||||
return da.zeros(shape=case.shape, dtype=case.dtype, chunks=10)
|
||||
|
||||
|
||||
def _test_dask_case(case: ValidationCase):
|
||||
|
|
|
@ -20,6 +20,8 @@ def hdf5_array_case(case: ValidationCase, array_func) -> H5ArrayPath:
|
|||
Returns:
|
||||
|
||||
"""
|
||||
if issubclass(case.dtype, BaseModel):
|
||||
pytest.skip("hdf5 cant support arbitrary python objects")
|
||||
return array_func(case.shape, case.dtype)
|
||||
|
||||
|
||||
|
|
|
@ -1,13 +1,16 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
from pydantic import ValidationError
|
||||
from pydantic import ValidationError, BaseModel
|
||||
from numpydantic.exceptions import DtypeError, ShapeError
|
||||
|
||||
from tests.conftest import ValidationCase
|
||||
|
||||
|
||||
def numpy_array(case: ValidationCase) -> np.ndarray:
|
||||
return np.zeros(shape=case.shape, dtype=case.dtype)
|
||||
if issubclass(case.dtype, BaseModel):
|
||||
return np.full(shape=case.shape, fill_value=case.dtype(x=1))
|
||||
else:
|
||||
return np.zeros(shape=case.shape, dtype=case.dtype)
|
||||
|
||||
|
||||
def _test_np_case(case: ValidationCase):
|
||||
|
|
|
@ -3,7 +3,9 @@ import json
|
|||
import pytest
|
||||
import zarr
|
||||
|
||||
from pydantic import ValidationError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
from numcodecs import Pickle
|
||||
|
||||
|
||||
from numpydantic.interface import ZarrInterface
|
||||
from numpydantic.interface.zarr import ZarrArrayPath
|
||||
|
@ -31,7 +33,19 @@ def nested_dir_array(tmp_output_dir_func) -> zarr.NestedDirectoryStore:
|
|||
|
||||
|
||||
def _zarr_array(case: ValidationCase, store) -> zarr.core.Array:
|
||||
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
|
||||
if issubclass(case.dtype, BaseModel):
|
||||
pytest.skip(
|
||||
f"Zarr can't handle objects properly at the moment, "
|
||||
"see https://github.com/zarr-developers/zarr-python/issues/2081"
|
||||
)
|
||||
# return zarr.full(
|
||||
# shape=case.shape,
|
||||
# fill_value=case.dtype(x=1),
|
||||
# dtype=object,
|
||||
# object_codec=Pickle(),
|
||||
# )
|
||||
else:
|
||||
return zarr.zeros(shape=case.shape, dtype=case.dtype, store=store)
|
||||
|
||||
|
||||
def _test_zarr_case(case: ValidationCase, store):
|
||||
|
|
|
@ -266,6 +266,30 @@ def test_json_schema_dtype_builtin(dtype, expected, array_model):
|
|||
assert inner_type["type"] == expected
|
||||
|
||||
|
||||
def test_json_schema_dtype_model():
|
||||
"""
|
||||
Pydantic models can be used in arrays as dtypes
|
||||
"""
|
||||
|
||||
class TestModel(BaseModel):
|
||||
x: int
|
||||
y: int
|
||||
z: int
|
||||
|
||||
class MyModel(BaseModel):
|
||||
array: NDArray[Shape["*, *"], TestModel]
|
||||
|
||||
schema = MyModel.model_json_schema()
|
||||
# we should have a "$defs" with TestModel in it,
|
||||
# and our array should be objects of that type
|
||||
assert schema["properties"]["array"]["items"]["items"] == {
|
||||
"$ref": "#/$defs/TestModel"
|
||||
}
|
||||
# we don't test pydantic' generic json schema model generation,
|
||||
# just that one was defined
|
||||
assert "TestModel" in schema["$defs"]
|
||||
|
||||
|
||||
def _recursive_array(schema):
|
||||
assert "$defs" in schema
|
||||
# get the key uses for the array
|
||||
|
|
Loading…
Reference in a new issue