mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
video interface!
This commit is contained in:
parent
8f382977e9
commit
e2231cc9f0
8 changed files with 483 additions and 24 deletions
|
@ -20,6 +20,7 @@ extensions = [
|
||||||
"sphinxcontrib.autodoc_pydantic",
|
"sphinxcontrib.autodoc_pydantic",
|
||||||
"sphinx.ext.intersphinx",
|
"sphinx.ext.intersphinx",
|
||||||
"sphinx.ext.viewcode",
|
"sphinx.ext.viewcode",
|
||||||
|
"sphinx.ext.doctest",
|
||||||
"sphinx_design",
|
"sphinx_design",
|
||||||
"myst_parser",
|
"myst_parser",
|
||||||
"sphinx.ext.todo",
|
"sphinx.ext.todo",
|
||||||
|
|
|
@ -1,18 +1,50 @@
|
||||||
# numpydantic
|
# numpydantic
|
||||||
|
|
||||||
A python package for array types in pydantic.
|
A python package for specifying, validating, and serializing arrays with arbitrary backends in pydantic.
|
||||||
|
|
||||||
|
**Problem:**
|
||||||
|
1) Pydantic is great for modeling data.
|
||||||
|
2) Arrays are one of a few elemental types in computing,
|
||||||
|
|
||||||
|
but ...
|
||||||
|
|
||||||
|
3) if you try and specify an array in pydantic, this happens:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from pydantic import BaseModel
|
||||||
|
>>> import numpy as np
|
||||||
|
|
||||||
|
>>> class MyModel(BaseModel):
|
||||||
|
>>> array: np.ndarray
|
||||||
|
pydantic.errors.PydanticSchemaGenerationError:
|
||||||
|
Unable to generate pydantic-core schema for <class 'numpy.ndarray'>.
|
||||||
|
Set `arbitrary_types_allowed=True` in the model_config to ignore this error
|
||||||
|
or implement `__get_pydantic_core_schema__` on your type to fully support it.
|
||||||
|
```
|
||||||
|
|
||||||
|
And setting `arbitrary_types_allowed = True` still prohibits you from
|
||||||
|
generating JSON Schema, serialization to JSON
|
||||||
|
|
||||||
|
|
||||||
## Features:
|
## Features:
|
||||||
- **Types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
- **Types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping))
|
||||||
for specifying arrays in pydantic models
|
for specifying arrays in pydantic models
|
||||||
- **Validation** - Shape, dtype, and other array validations
|
- **Validation** - Shape, dtype, and other array validations
|
||||||
- **Seralization** - JSON-Schema List-of-list schema generation
|
- **Interfaces** - Works with {mod}`~.interface.numpy`, {mod}`~.interface.dask`, {mod}`~.interface.hdf5`, {mod}`~.interface.zarr`,
|
||||||
- **Interfaces** - Works with numpy, dask, HDF5, zarr, and a simple extension system to make it work with
|
and a simple extension system to make it work with whatever else you want!
|
||||||
whatever else you want!
|
- **Serialization** - Dump an array as a JSON-compatible array-of-arrays with enough metadata to be able to
|
||||||
|
recreate the model in the native format
|
||||||
|
- **Schema Generation** - Correct JSON Schema for arrays, complete with shape and dtype constraints, to
|
||||||
|
make your models interoperable
|
||||||
|
|
||||||
Coming soon:
|
Coming soon:
|
||||||
- **Metadata** - This package was built to be used with [linkml arrays](https://linkml.io/linkml/schemas/arrays.html),
|
- **Metadata** - This package was built to be used with [linkml arrays](https://linkml.io/linkml/schemas/arrays.html),
|
||||||
so we will be extending it to include any metadata included in the type annotation object in the JSON schema representation.
|
so we will be extending it to include arbitrary metadata included in the type annotation object in the JSON schema representation.
|
||||||
|
- **Extensible Specification** - for v1, we are implementing the existing nptyping syntax, but
|
||||||
|
for v2 we will be updating that to an extensible specification syntax to allow interfaces to validate additional
|
||||||
|
constraints like chunk sizes, as well as make array specifications more introspectable and friendly to runtime usage.
|
||||||
|
- **Advanced dtype handling** - handling dtypes that only exist in some array backends, allowing
|
||||||
|
minimum and maximum precision ranges, and so on as type maps provided by interface classes :)
|
||||||
- (see [todo](./todo.md))
|
- (see [todo](./todo.md))
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
@ -20,18 +52,11 @@ Coming soon:
|
||||||
Specify an array using [nptyping syntax](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
|
Specify an array using [nptyping syntax](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
|
||||||
and use it with your favorite array library :)
|
and use it with your favorite array library :)
|
||||||
|
|
||||||
```{todo}
|
|
||||||
We will be moving away from using nptyping in v2.0.0.
|
|
||||||
|
|
||||||
It was written for an older era in python before the dramatic changes in the Python
|
|
||||||
type system and is no longer actively maintained. We will be reimplementing a syntax
|
|
||||||
that extends its array specification syntax to include things like ranges and extensible
|
|
||||||
dtypes with varying precision (and is much less finnicky to deal with).
|
|
||||||
```
|
|
||||||
|
|
||||||
Use the {class}`~numpydantic.NDArray` class like you would any other python type,
|
Use the {class}`~numpydantic.NDArray` class like you would any other python type,
|
||||||
combine it with {class}`typing.Union`, make it {class}`~typing.Optional`, etc.
|
combine it with {class}`typing.Union`, make it {class}`~typing.Optional`, etc.
|
||||||
|
|
||||||
|
For example, to support a
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from typing import Union
|
from typing import Union
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
@ -46,8 +71,6 @@ class Image(BaseModel):
|
||||||
array: Union[
|
array: Union[
|
||||||
NDArray[Shape["* x, * y"], np.uint8],
|
NDArray[Shape["* x, * y"], np.uint8],
|
||||||
NDArray[Shape["* x, * y, 3 rgb"], np.uint8],
|
NDArray[Shape["* x, * y, 3 rgb"], np.uint8],
|
||||||
NDArray[Shape["* x, * y, 4 rgba"], np.uint8],
|
|
||||||
NDArray[Shape["* t, * x, * y, 3 rgb"], np.uint8],
|
|
||||||
NDArray[Shape["* t, * x, * y, 4 rgba"], np.float64]
|
NDArray[Shape["* t, * x, * y, 4 rgba"], np.float64]
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
11
docs/todo.md
11
docs/todo.md
|
@ -1,5 +1,16 @@
|
||||||
# TODO
|
# TODO
|
||||||
|
|
||||||
|
## Syntax
|
||||||
|
|
||||||
|
```{todo}
|
||||||
|
We will be moving away from using nptyping in v2.0.0.
|
||||||
|
|
||||||
|
It was written for an older era in python before the dramatic changes in the Python
|
||||||
|
type system and is no longer actively maintained. We will be reimplementing a syntax
|
||||||
|
that extends its array specification syntax to include things like ranges and extensible
|
||||||
|
dtypes with varying precision (and is much less finnicky to deal with).
|
||||||
|
```
|
||||||
|
|
||||||
## Validation
|
## Validation
|
||||||
|
|
||||||
```{todo}
|
```{todo}
|
||||||
|
|
41
pdm.lock
41
pdm.lock
|
@ -2,10 +2,10 @@
|
||||||
# It is not intended for manual editing.
|
# It is not intended for manual editing.
|
||||||
|
|
||||||
[metadata]
|
[metadata]
|
||||||
groups = ["default", "arrays", "dask", "dev", "docs", "hdf5", "tests"]
|
groups = ["default", "arrays", "dask", "dev", "docs", "hdf5", "tests", "video"]
|
||||||
strategy = ["cross_platform", "inherit_metadata"]
|
strategy = ["cross_platform", "inherit_metadata"]
|
||||||
lock_version = "4.4.1"
|
lock_version = "4.4.1"
|
||||||
content_hash = "sha256:4e22ffd83cb1ae3916c6c41c77f74b84db5a77e572c796cc537023bd6c3e3128"
|
content_hash = "sha256:893fe47e35966aa6ed1564645326f6f67d1c64b984b5ea6f6b45f58b4fd732c2"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "alabaster"
|
name = "alabaster"
|
||||||
|
@ -50,7 +50,7 @@ files = [
|
||||||
name = "asciitree"
|
name = "asciitree"
|
||||||
version = "0.3.3"
|
version = "0.3.3"
|
||||||
summary = "Draws ASCII trees."
|
summary = "Draws ASCII trees."
|
||||||
groups = ["default"]
|
groups = ["arrays", "dev", "tests"]
|
||||||
files = [
|
files = [
|
||||||
{file = "asciitree-0.3.3.tar.gz", hash = "sha256:4aa4b9b649f85e3fcb343363d97564aa1fb62e249677f2e18a96765145cc0f6e"},
|
{file = "asciitree-0.3.3.tar.gz", hash = "sha256:4aa4b9b649f85e3fcb343363d97564aa1fb62e249677f2e18a96765145cc0f6e"},
|
||||||
]
|
]
|
||||||
|
@ -409,7 +409,7 @@ name = "fasteners"
|
||||||
version = "0.19"
|
version = "0.19"
|
||||||
requires_python = ">=3.6"
|
requires_python = ">=3.6"
|
||||||
summary = "A python package that provides useful locks"
|
summary = "A python package that provides useful locks"
|
||||||
groups = ["default"]
|
groups = ["arrays", "dev", "tests"]
|
||||||
marker = "sys_platform != \"emscripten\""
|
marker = "sys_platform != \"emscripten\""
|
||||||
files = [
|
files = [
|
||||||
{file = "fasteners-0.19-py3-none-any.whl", hash = "sha256:758819cb5d94cdedf4e836988b74de396ceacb8e2794d21f82d131fd9ee77237"},
|
{file = "fasteners-0.19-py3-none-any.whl", hash = "sha256:758819cb5d94cdedf4e836988b74de396ceacb8e2794d21f82d131fd9ee77237"},
|
||||||
|
@ -718,7 +718,7 @@ name = "numcodecs"
|
||||||
version = "0.12.1"
|
version = "0.12.1"
|
||||||
requires_python = ">=3.8"
|
requires_python = ">=3.8"
|
||||||
summary = "A Python package providing buffer compression and transformation codecs for use in data storage and communication applications."
|
summary = "A Python package providing buffer compression and transformation codecs for use in data storage and communication applications."
|
||||||
groups = ["default"]
|
groups = ["arrays", "dev", "tests"]
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"numpy>=1.7",
|
"numpy>=1.7",
|
||||||
]
|
]
|
||||||
|
@ -747,7 +747,7 @@ name = "numpy"
|
||||||
version = "1.26.4"
|
version = "1.26.4"
|
||||||
requires_python = ">=3.9"
|
requires_python = ">=3.9"
|
||||||
summary = "Fundamental package for array computing in Python"
|
summary = "Fundamental package for array computing in Python"
|
||||||
groups = ["arrays", "default", "dev", "hdf5", "tests"]
|
groups = ["arrays", "default", "dev", "hdf5", "tests", "video"]
|
||||||
files = [
|
files = [
|
||||||
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
|
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
|
||||||
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
|
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
|
||||||
|
@ -787,6 +787,33 @@ files = [
|
||||||
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
|
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "opencv-python"
|
||||||
|
version = "4.9.0.80"
|
||||||
|
requires_python = ">=3.6"
|
||||||
|
summary = "Wrapper package for OpenCV python bindings."
|
||||||
|
groups = ["video"]
|
||||||
|
dependencies = [
|
||||||
|
"numpy>=1.17.0; python_version >= \"3.7\"",
|
||||||
|
"numpy>=1.17.3; python_version >= \"3.8\"",
|
||||||
|
"numpy>=1.19.3; python_version >= \"3.6\" and platform_system == \"Linux\" and platform_machine == \"aarch64\"",
|
||||||
|
"numpy>=1.19.3; python_version >= \"3.9\"",
|
||||||
|
"numpy>=1.21.0; python_version <= \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\"",
|
||||||
|
"numpy>=1.21.2; python_version >= \"3.10\"",
|
||||||
|
"numpy>=1.21.4; python_version >= \"3.10\" and platform_system == \"Darwin\"",
|
||||||
|
"numpy>=1.23.5; python_version >= \"3.11\"",
|
||||||
|
"numpy>=1.26.0; python_version >= \"3.12\"",
|
||||||
|
]
|
||||||
|
files = [
|
||||||
|
{file = "opencv-python-4.9.0.80.tar.gz", hash = "sha256:1a9f0e6267de3a1a1db0c54213d022c7c8b5b9ca4b580e80bdc58516c922c9e1"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-macosx_10_16_x86_64.whl", hash = "sha256:7e5f7aa4486651a6ebfa8ed4b594b65bd2d2f41beeb4241a3e4b1b85acbbbadb"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:71dfb9555ccccdd77305fc3dcca5897fbf0cf28b297c51ee55e079c065d812a3"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b34a52e9da36dda8c151c6394aed602e4b17fa041df0b9f5b93ae10b0fcca2a"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4088cab82b66a3b37ffc452976b14a3c599269c247895ae9ceb4066d8188a57"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-win32.whl", hash = "sha256:dcf000c36dd1651118a2462257e3a9e76db789a78432e1f303c7bac54f63ef6c"},
|
||||||
|
{file = "opencv_python-4.9.0.80-cp37-abi3-win_amd64.whl", hash = "sha256:3f16f08e02b2a2da44259c7cc712e779eff1dd8b55fdb0323e8cab09548086c0"},
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "packaging"
|
name = "packaging"
|
||||||
version = "24.0"
|
version = "24.0"
|
||||||
|
@ -1514,7 +1541,7 @@ name = "zarr"
|
||||||
version = "2.17.2"
|
version = "2.17.2"
|
||||||
requires_python = ">=3.9"
|
requires_python = ">=3.9"
|
||||||
summary = "An implementation of chunked, compressed, N-dimensional arrays for Python"
|
summary = "An implementation of chunked, compressed, N-dimensional arrays for Python"
|
||||||
groups = ["default"]
|
groups = ["arrays", "dev", "tests"]
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"asciitree",
|
"asciitree",
|
||||||
"fasteners; sys_platform != \"emscripten\"",
|
"fasteners; sys_platform != \"emscripten\"",
|
||||||
|
|
|
@ -25,8 +25,11 @@ hdf5 = [
|
||||||
zarr = [
|
zarr = [
|
||||||
"zarr>=2.17.2",
|
"zarr>=2.17.2",
|
||||||
]
|
]
|
||||||
|
video = [
|
||||||
|
"opencv-python>=4.9.0.80",
|
||||||
|
]
|
||||||
arrays = [
|
arrays = [
|
||||||
"numpydantic[dask,hdf5,zarr]"
|
"numpydantic[dask,hdf5,zarr,video]"
|
||||||
]
|
]
|
||||||
tests = [
|
tests = [
|
||||||
"numpydantic[arrays]",
|
"numpydantic[arrays]",
|
||||||
|
@ -50,6 +53,7 @@ dev = [
|
||||||
"ruff<1.0.0,>=0.2.0"
|
"ruff<1.0.0,>=0.2.0"
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
[tool.pdm]
|
[tool.pdm]
|
||||||
distribution = true
|
distribution = true
|
||||||
|
|
||||||
|
|
|
@ -6,6 +6,7 @@ from numpydantic.interface.dask import DaskInterface
|
||||||
from numpydantic.interface.hdf5 import H5Interface
|
from numpydantic.interface.hdf5 import H5Interface
|
||||||
from numpydantic.interface.interface import Interface
|
from numpydantic.interface.interface import Interface
|
||||||
from numpydantic.interface.numpy import NumpyInterface
|
from numpydantic.interface.numpy import NumpyInterface
|
||||||
|
from numpydantic.interface.video import VideoInterface
|
||||||
from numpydantic.interface.zarr import ZarrInterface
|
from numpydantic.interface.zarr import ZarrInterface
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
@ -13,5 +14,6 @@ __all__ = [
|
||||||
"DaskInterface",
|
"DaskInterface",
|
||||||
"H5Interface",
|
"H5Interface",
|
||||||
"NumpyInterface",
|
"NumpyInterface",
|
||||||
|
"VideoInterface",
|
||||||
"ZarrInterface",
|
"ZarrInterface",
|
||||||
]
|
]
|
||||||
|
|
205
src/numpydantic/interface/video.py
Normal file
205
src/numpydantic/interface/video.py
Normal file
|
@ -0,0 +1,205 @@
|
||||||
|
"""
|
||||||
|
Interface to support treating videos like arrays using OpenCV
|
||||||
|
"""
|
||||||
|
|
||||||
|
import pdb
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from numpydantic.interface.interface import Interface
|
||||||
|
|
||||||
|
try:
|
||||||
|
import cv2
|
||||||
|
from cv2 import VideoCapture
|
||||||
|
except ImportError:
|
||||||
|
cv2 = None
|
||||||
|
VideoCapture = None
|
||||||
|
|
||||||
|
VIDEO_EXTENSIONS = (".mp4", ".avi", ".mov", ".mkv")
|
||||||
|
|
||||||
|
|
||||||
|
class VideoProxy:
|
||||||
|
"""
|
||||||
|
Passthrough proxy class to interact with videos as arrays
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, path: Optional[Path] = None, video: Optional[VideoCapture] = None
|
||||||
|
):
|
||||||
|
if path is None and video is None:
|
||||||
|
raise ValueError(
|
||||||
|
"Need to either supply a path or an opened VideoCapture object"
|
||||||
|
)
|
||||||
|
|
||||||
|
if path is not None:
|
||||||
|
path = Path(path)
|
||||||
|
self.path = path
|
||||||
|
|
||||||
|
self._video = video # type: Optional[VideoCapture]
|
||||||
|
self._n_frames = None # type: Optional[int]
|
||||||
|
self._dtype = None # type: Optional[np.dtype]
|
||||||
|
self._shape = None # type: Optional[Tuple[int, ...]]
|
||||||
|
self._sample_frame = None # type: Optional[np.ndarray]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def video(self) -> VideoCapture:
|
||||||
|
"""Opened video capture object"""
|
||||||
|
if self._video is None:
|
||||||
|
if self.path is None:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Instantiated with a VideoCapture object that has been closed, "
|
||||||
|
"and it cant be reopened since source path cant be gotten "
|
||||||
|
"from VideoCapture objects"
|
||||||
|
)
|
||||||
|
self._video = VideoCapture(str(self.path))
|
||||||
|
return self._video
|
||||||
|
|
||||||
|
def close(self) -> None:
|
||||||
|
"""Close the opened VideoCapture object"""
|
||||||
|
if self._video is not None:
|
||||||
|
self._video.release()
|
||||||
|
self._video = None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sample_frame(self) -> np.ndarray:
|
||||||
|
"""A stored frame from the video to use when calculating shape and dtype"""
|
||||||
|
if self._sample_frame is None:
|
||||||
|
current_frame = int(self.video.get(cv2.CAP_PROP_POS_FRAMES))
|
||||||
|
|
||||||
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, max(0, current_frame - 1))
|
||||||
|
status, frame = self.video.read()
|
||||||
|
if not status: # pragma: no cover
|
||||||
|
raise RuntimeError("Could not read frame from video")
|
||||||
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, current_frame)
|
||||||
|
self._sample_frame = frame
|
||||||
|
return self._sample_frame
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shape(self) -> Tuple[int, ...]:
|
||||||
|
"""
|
||||||
|
Shape of video like
|
||||||
|
``(n_frames, height, width, channels)``
|
||||||
|
|
||||||
|
Note that this order flips the order of height and width from typical resolution
|
||||||
|
specifications: eg. 1080p video is typically 1920x1080, but here it would be
|
||||||
|
1080x1920. This follows opencv's ordering, which matches expectations when
|
||||||
|
eg. an image is read and plotted with matplotlib: the first index is the position
|
||||||
|
in the 0th dimension - the height, or "y" axis - and the second is the width/x.
|
||||||
|
"""
|
||||||
|
if self._shape is None:
|
||||||
|
self._shape = (self.n_frames, *self.sample_frame.shape)
|
||||||
|
return self._shape
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dtype(self) -> np.dtype:
|
||||||
|
"""Numpy dtype (from ``sample_frame`` )"""
|
||||||
|
return self.sample_frame.dtype
|
||||||
|
|
||||||
|
@property
|
||||||
|
def n_frames(self) -> int:
|
||||||
|
"""
|
||||||
|
Try to get number of frames using opencv metadata, and manually count if no
|
||||||
|
t"""
|
||||||
|
if self._n_frames is None:
|
||||||
|
n_frames = self.video.get(cv2.CAP_PROP_FRAME_COUNT)
|
||||||
|
if n_frames == 0:
|
||||||
|
# have to count manually for some containers with bad metadata
|
||||||
|
current_frame = self.video.get(cv2.CAP_PROP_POS_FRAMES)
|
||||||
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
||||||
|
n_frames = 0
|
||||||
|
while True:
|
||||||
|
status, _ = self.video.read()
|
||||||
|
if not status:
|
||||||
|
break
|
||||||
|
n_frames += 1
|
||||||
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, current_frame)
|
||||||
|
self._n_frames = int(n_frames)
|
||||||
|
return self._n_frames
|
||||||
|
|
||||||
|
def _get_frame(self, frame: int):
|
||||||
|
self.video.set(cv2.CAP_PROP_POS_FRAMES, frame)
|
||||||
|
status, frame = self.video.read()
|
||||||
|
if not status: # pragma: no cover
|
||||||
|
raise ValueError(f"Could not get frame {frame}")
|
||||||
|
return frame
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[int, slice, tuple]) -> np.ndarray:
|
||||||
|
if isinstance(item, int):
|
||||||
|
# want a single frame
|
||||||
|
return self._get_frame(item)
|
||||||
|
else:
|
||||||
|
# slices are passes as tuples
|
||||||
|
# first arg needs to be handled specially
|
||||||
|
if isinstance(item[0], int):
|
||||||
|
# single frame
|
||||||
|
frame = self._get_frame(item[0])
|
||||||
|
return frame[*item[1:]]
|
||||||
|
|
||||||
|
elif isinstance(item[0], slice):
|
||||||
|
frames = []
|
||||||
|
# make a new slice since range cant take Nones, filling in missing vals
|
||||||
|
fslice = item[0]
|
||||||
|
if fslice.step is None:
|
||||||
|
fslice = slice(fslice.start, fslice.stop, 1)
|
||||||
|
if fslice.stop is None:
|
||||||
|
fslice = slice(fslice.start, self.n_frames, fslice.step)
|
||||||
|
if fslice.start is None:
|
||||||
|
fslice = slice(0, fslice.stop, fslice.step)
|
||||||
|
|
||||||
|
for i in range(fslice.start, fslice.stop, fslice.step):
|
||||||
|
frames.append(self._get_frame(i))
|
||||||
|
frame = np.stack(frames)
|
||||||
|
return frame[:, *item[1:]]
|
||||||
|
else: # pragma: no cover
|
||||||
|
raise ValueError(f"indices must be an int or a slice! got {item}")
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, slice], value: Union[int, float, np.ndarray]):
|
||||||
|
raise NotImplementedError("Setting pixel values on videos is not supported!")
|
||||||
|
|
||||||
|
def __getattr__(self, item: str):
|
||||||
|
return getattr(self.video, item)
|
||||||
|
|
||||||
|
|
||||||
|
class VideoInterface(Interface):
|
||||||
|
"""
|
||||||
|
OpenCV interface to treat videos as arrays.
|
||||||
|
"""
|
||||||
|
|
||||||
|
input_types = (str, Path, VideoCapture)
|
||||||
|
return_type = VideoProxy
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def enabled(cls) -> bool:
|
||||||
|
"""Check if opencv-python is available in the environment"""
|
||||||
|
return cv2 is not None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def check(cls, array: Any) -> bool:
|
||||||
|
"""
|
||||||
|
Check if array is a string or Path with a supported video extension,
|
||||||
|
or an opened VideoCapture object
|
||||||
|
"""
|
||||||
|
if VideoCapture is not None and isinstance(array, VideoCapture):
|
||||||
|
return True
|
||||||
|
|
||||||
|
if isinstance(array, str):
|
||||||
|
try:
|
||||||
|
array = Path(array)
|
||||||
|
except TypeError:
|
||||||
|
# fine, just not a video
|
||||||
|
return False
|
||||||
|
|
||||||
|
if isinstance(array, Path) and array.suffix.lower() in VIDEO_EXTENSIONS:
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def before_validation(self, array: Any) -> VideoProxy:
|
||||||
|
"""Get a :class:`.VideoProxy` object for this video"""
|
||||||
|
if isinstance(array, VideoCapture):
|
||||||
|
proxy = VideoProxy(video=array)
|
||||||
|
else:
|
||||||
|
proxy = VideoProxy(path=array)
|
||||||
|
return proxy
|
186
tests/test_interface/test_video.py
Normal file
186
tests/test_interface/test_video.py
Normal file
|
@ -0,0 +1,186 @@
|
||||||
|
"""
|
||||||
|
Needs to be refactored to DRY, but works for now
|
||||||
|
"""
|
||||||
|
|
||||||
|
import pdb
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
from pydantic import BaseModel, ValidationError
|
||||||
|
|
||||||
|
from numpydantic import NDArray, Shape
|
||||||
|
from numpydantic import dtype as dt
|
||||||
|
from numpydantic.interface.video import VideoProxy
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="function")
|
||||||
|
def avi_video(tmp_path):
|
||||||
|
video_path = tmp_path / "test.avi"
|
||||||
|
|
||||||
|
def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path:
|
||||||
|
writer = cv2.VideoWriter(
|
||||||
|
str(video_path),
|
||||||
|
cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes
|
||||||
|
30,
|
||||||
|
(shape[1], shape[0]),
|
||||||
|
is_color,
|
||||||
|
)
|
||||||
|
if is_color:
|
||||||
|
shape = (*shape, 3)
|
||||||
|
|
||||||
|
for i in range(frames):
|
||||||
|
# make fresh array every time bc opencv eats them
|
||||||
|
array = np.zeros(shape, dtype=np.uint8)
|
||||||
|
if not is_color:
|
||||||
|
array[i, i] = i
|
||||||
|
else:
|
||||||
|
array[i, i, :] = i
|
||||||
|
writer.write(array)
|
||||||
|
writer.release()
|
||||||
|
return video_path
|
||||||
|
|
||||||
|
yield _make_video
|
||||||
|
|
||||||
|
video_path.unlink(missing_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_validation(avi_video):
|
||||||
|
"""Color videos should validate for normal uint8 shape specs"""
|
||||||
|
|
||||||
|
shape = (100, 50)
|
||||||
|
vid = avi_video(shape=shape, is_color=True)
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
# should correctly validate :)
|
||||||
|
instance = MyModel(array=vid)
|
||||||
|
assert isinstance(instance.array, VideoProxy)
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_from_videocapture(avi_video):
|
||||||
|
"""Should be able to pass an opened videocapture object"""
|
||||||
|
shape = (100, 50)
|
||||||
|
vid = avi_video(shape=shape, is_color=True)
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
# should still correctly validate!
|
||||||
|
opened_vid = cv2.VideoCapture(str(vid))
|
||||||
|
try:
|
||||||
|
instance = MyModel(array=opened_vid)
|
||||||
|
assert isinstance(instance.array, VideoProxy)
|
||||||
|
finally:
|
||||||
|
opened_vid.release()
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_wrong_shape(avi_video):
|
||||||
|
shape = (100, 50)
|
||||||
|
|
||||||
|
# generate video with purposely wrong shape
|
||||||
|
vid = avi_video(shape=(shape[0] + 10, shape[1] + 10), is_color=True)
|
||||||
|
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
# should correctly validate :)
|
||||||
|
with pytest.raises(ValidationError):
|
||||||
|
instance = MyModel(array=vid)
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_getitem(avi_video):
|
||||||
|
"""
|
||||||
|
Should be able to get individual frames and slices as if it were a normal array
|
||||||
|
"""
|
||||||
|
shape = (100, 50)
|
||||||
|
vid = avi_video(shape=shape, frames=10, is_color=True)
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
instance = MyModel(array=vid)
|
||||||
|
fifth_frame = instance.array[5]
|
||||||
|
# the first frame should have 1's in the 1,1 position
|
||||||
|
assert (fifth_frame[5, 5, :] == [5, 5, 5]).all()
|
||||||
|
# and nothing in the 6th position
|
||||||
|
assert (fifth_frame[6, 6, :] == [0, 0, 0]).all()
|
||||||
|
|
||||||
|
# slicing should also work as if it were just a numpy array
|
||||||
|
single_slice = instance.array[3, 0:10, 0:5]
|
||||||
|
assert single_slice[3, 3, 0] == 3
|
||||||
|
assert single_slice[4, 4, 0] == 0
|
||||||
|
assert single_slice.shape == (10, 5, 3)
|
||||||
|
|
||||||
|
# also get a range of frames
|
||||||
|
# full range
|
||||||
|
range_slice = instance.array[3:5, 0:10, 0:5]
|
||||||
|
assert range_slice.shape == (2, 10, 5, 3)
|
||||||
|
assert range_slice[0, 3, 3, 0] == 3
|
||||||
|
assert range_slice[0, 4, 4, 0] == 0
|
||||||
|
|
||||||
|
# starting range
|
||||||
|
range_slice = instance.array[6:, 0:10, 0:10]
|
||||||
|
assert range_slice.shape == (4, 10, 10, 3)
|
||||||
|
assert range_slice[-1, 9, 9, 0] == 9
|
||||||
|
assert range_slice[-2, 9, 9, 0] == 0
|
||||||
|
|
||||||
|
# ending range
|
||||||
|
range_slice = instance.array[:3, 0:5, 0:5]
|
||||||
|
assert range_slice.shape == (3, 5, 5, 3)
|
||||||
|
|
||||||
|
# stepped range
|
||||||
|
range_slice = instance.array[0:5:2, 0:6, 0:6]
|
||||||
|
# second slice should be the second frame (instead of the first)
|
||||||
|
assert range_slice.shape == (3, 6, 6, 3)
|
||||||
|
assert range_slice[1, 2, 2, 0] == 2
|
||||||
|
assert range_slice[1, 3, 3, 0] == 0
|
||||||
|
# and the third should be the fourth (instead of the second)
|
||||||
|
assert range_slice[2, 4, 4, 0] == 4
|
||||||
|
assert range_slice[2, 5, 5, 0] == 0
|
||||||
|
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
# shouldn't be allowed to set
|
||||||
|
instance.array[5] = 10
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_attrs(avi_video):
|
||||||
|
"""Should be able to access opencv properties"""
|
||||||
|
shape = (100, 50)
|
||||||
|
vid = avi_video(shape=shape, is_color=True)
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
instance = MyModel(array=vid)
|
||||||
|
|
||||||
|
instance.array.set(cv2.CAP_PROP_POS_FRAMES, 5)
|
||||||
|
assert int(instance.array.get(cv2.CAP_PROP_POS_FRAMES)) == 5
|
||||||
|
|
||||||
|
|
||||||
|
def test_video_close(avi_video):
|
||||||
|
"""Should close and reopen video file if needed"""
|
||||||
|
shape = (100, 50)
|
||||||
|
vid = avi_video(shape=shape, is_color=True)
|
||||||
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
||||||
|
|
||||||
|
class MyModel(BaseModel):
|
||||||
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
||||||
|
|
||||||
|
instance = MyModel(array=vid)
|
||||||
|
assert isinstance(instance.array.video, cv2.VideoCapture)
|
||||||
|
# closes releases and removed reference
|
||||||
|
instance.array.close()
|
||||||
|
assert instance.array._video is None
|
||||||
|
# reopen
|
||||||
|
assert isinstance(instance.array.video, cv2.VideoCapture)
|
Loading…
Reference in a new issue