# numpydantic A python package for specifying, validating, and serializing arrays with arbitrary backends in pydantic. **Problem:** 1) Pydantic is great for modeling data. 2) Arrays are one of a few elemental types in computing, but ... 3) Typical type annotations would only work for a single array library implementation 4) They wouldn't allow you to specify array shapes and dtypes, and 5) If you try and specify an array in pydantic, this happens: ```python >>> from pydantic import BaseModel >>> import numpy as np >>> class MyModel(BaseModel): >>> array: np.ndarray pydantic.errors.PydanticSchemaGenerationError: Unable to generate pydantic-core schema for . Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it. ``` **Solution:** Numpydantic allows you to do this: ```python from pydantic import BaseModel from numpydantic import NDArray, Shape class MyModel(BaseModel): array: NDArray[Shape["3 x, 4 y, * z"], int] ``` And use it with your favorite array library: ```python import numpy as np import dask.array as da import zarr # numpy model = MyModel(array=np.zeros((3, 4, 5), dtype=int)) # dask model = MyModel(array=da.zeros((3, 4, 5), dtype=int)) # hdf5 datasets model = MyModel(array=('data.h5', '/nested/dataset')) # zarr arrays model = MyModel(array=zarr.zeros((3,4,5), dtype=int)) model = MyModel(array='data.zarr') model = MyModel(array=('data.zarr', '/nested/dataset')) # video files model = MyModel(array="data.mp4") ``` ## Features: - **Types** - Annotations (based on [npytyping](https://github.com/ramonhagenaars/nptyping)) for specifying arrays in pydantic models - **Validation** - Shape, dtype, and other array validations - **Interfaces** - Works with {mod}`~.interface.numpy`, {mod}`~.interface.dask`, {mod}`~.interface.hdf5`, {mod}`~.interface.video`, and {mod}`~.interface.zarr`, and a simple extension system to make it work with whatever else you want! Provides a uniform and transparent interface so you can both use common indexing operations and also access any special features of a given array library. - **Serialization** - Dump an array as a JSON-compatible array-of-arrays with enough metadata to be able to recreate the model in the native format - **Schema Generation** - Correct JSON Schema for arrays, complete with shape and dtype constraints, to make your models interoperable Coming soon: - **Metadata** - This package was built to be used with [linkml arrays](https://linkml.io/linkml/schemas/arrays.html), so we will be extending it to include arbitrary metadata included in the type annotation object in the JSON schema representation. - **Extensible Specification** - for v1, we are implementing the existing nptyping syntax, but for v2 we will be updating that to an extensible specification syntax to allow interfaces to validate additional constraints like chunk sizes, as well as make array specifications more introspectable and friendly to runtime usage. - **Advanced dtype handling** - handling dtypes that only exist in some array backends, allowing minimum and maximum precision ranges, and so on as type maps provided by interface classes :) - (see [todo](./todo.md)) ## Installation numpydantic tries to keep dependencies minimal, so by default it only comes with dependencies to use the numpy interface. Add the extra relevant to your favorite array library to be able to use it! ```shell pip install numpydantic # dask pip install 'numpydantic[dask]' # hdf5 pip install 'numpydantic[hdf5]' # video pip install 'numpydantic[video]' # zarr pip install 'numpydantic[zarr]' # all array formats pip intsall 'numpydantic[array]' ``` ## Usage Specify an array using [nptyping syntax](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md) and use it with your favorite array library :) Use the {class}`~numpydantic.NDArray` class like you would any other python type, combine it with {class}`typing.Union`, make it {class}`~typing.Optional`, etc. For example, to specify a very special type of image that can either be - a 2D float array where the axes can be any size, or - a 3D uint8 array where the third axis must be size 3 - a 1080p video ```python from typing import Union from pydantic import BaseModel import numpy as np from numpydantic import NDArray, Shape class Image(BaseModel): array: Union[ NDArray[Shape["* x, * y"], float], NDArray[Shape["* x, * y, 3 rgb"], np.uint8], NDArray[Shape["* t, 1080 y, 1920 x, 3 rgb"], np.uint8] ] ``` And then use that as a transparent interface to your favorite array library! ### Interfaces #### Numpy The Coca-Cola of array libraries ```python import numpy as np # works frame_gray = Image(array=np.ones((1280, 720), dtype=float)) frame_rgb = Image(array=np.ones((1280, 720, 3), dtype=np.uint8)) # fails wrong_n_dimensions = Image(array=np.ones((1280,), dtype=float)) wrong_shape = Image(array=np.ones((1280,720,10), dtype=np.uint8)) # shapes and types are checked together, so this also fails wrong_shape_dtype_combo = Image(array=np.ones((1280, 720, 3), dtype=float)) ``` #### Dask High performance chunked arrays! The backend for many new array libraries! Works exactly the same as numpy arrays ```python import dask.array as da # validate a humongous image without having to load it into memory video_array = da.zeros(shape=(1e10,1e20,3), dtype=np.uint8) dask_video = Image(array=video_array) ``` #### HDF5 Array work increasingly can't fit on memory, but dealing with arrays on disk can become a pain in concurrent applications. Numpydantic allows you to specify the location of an array within an hdf5 file on disk and use it just like any other array! eg. Make an array on disk... ```python from pathlib import Path import h5py from numpydantic.interface.hdf5 import H5ArrayPath h5f_file = Path('my_file.h5') array_path = "/nested/array" # make an HDF5 array h5f = h5py.File(h5f_file, "w") array = np.random.randint(0, 255, (1920,1080,3), np.uint8) h5f.create_dataset(array_path, data=array) h5f.close() ``` Then use it in your model! numpydantic will only open the file as long as it's needed ```python >>> h5f_image = Image(array=H5ArrayPath(file=h5f_file, path=array_path)) >>> h5f_image.array[0:5,0:5,0] array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) >>> h5f_image.array[0:2,0:2,0] = 1 >>> h5f_image.array[0:5,0:5,0] array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) ``` Numpydantic tries to be a smart but transparent proxy, exposing the methods and attributes of the source type even when we aren't directly using them, like when dealing with on-disk HDF5 arrays. If you want, you can take full control and directly interact with the underlying :class:`h5py.Dataset` object and leave the file open between calls: ```python >>> dataset = h5f_image.array.open() >>> # do some stuff that requires the datset to be held open >>> h5f_image.array.close() ``` #### Video Videos are just arrays with fancy encoding! Numpydantic can validate shape and dtype as well as lazy load chunks of frames with arraylike syntax! Say we have some video `data.mp4` ... ```python video = Image(array='data.mp4') # get a single frame video.array[5] # or a range of frames! video.array[5:10] # or whatever slicing you want to do! video.array[5:50:5, 0:10, 50:70] ``` As elsewhere, a proxy class is a transparent pass-through interface to the underlying opencv class, so we can get the rest of the video properties ... ```python import cv2 # get the total frames from opencv video.array.get(cv2.CAP_PROP_FRAME_COUNT) # the proxy class also provides a convenience property video.array.n_frames ``` #### Zarr Zarr works similarly! Use it with any of Zarr's backends: Nested, Zipfile, S3, it's all the same! Eg. create a nested zarr array on disk and use it... ```python import zarr from numpydantic.interface.zarr import ZarrArrayPath array_file = 'data/array.zarr' nested_path = 'data/sets/here' root = zarr.open(array_file, mode='w') nested_array = root.zeros( nested_path, shape=(1000, 1080, 1920, 3), dtype=np.uint8 ) # validates just fine! zarr_video = Image(array=ZarrArrayPath(array_file, nested_path)) # or just pass a tuple, the interface can discover it's a zarr array zarr_video = Image(array=(array_file, nested_path)) ``` ### JSON Schema Numpydantic generates JSON Schema for all its array specifications, so for the above model, we get a schema for each of the possible array types that properly handles the shape and dtype constraints and includes the origin numpy type as a `dtype` annotation. ```python Image.model_json_schema() ``` ```json { "properties": { "array": { "anyOf": [ { "items": {"items": {"type": "number"}, "type": "array"}, "type": "array" }, { "dtype": "numpy.uint8", "items": { "items": { "items": { "maximum": 255, "minimum": 0, "type": "integer" }, "maxItems": 3, "minItems": 3, "type": "array" }, "type": "array" }, "type": "array" }, { "dtype": "numpy.uint8", "items": { "items": { "items": { "items": { "maximum": 255, "minimum": 0, "type": "integer" }, "maxItems": 3, "minItems": 3, "type": "array" }, "maxItems": 1920, "minItems": 1920, "type": "array" }, "maxItems": 1080, "minItems": 1080, "type": "array" }, "type": "array" } ], "title": "Array" } }, "required": ["array"], "title": "Image", "type": "object" } ``` numpydantic can even handle shapes with unbounded numbers of dimensions by using recursive JSON schema!!! So the any-shaped array (using nptyping's ellipsis notation): ```python class AnyShape(BaseModel): array: NDArray[Shape["*, ..."], np.uint8] ``` is rendered to JSON-Schema like this: ```json { "$defs": { "any-shape-array-9b5d89838a990d79": { "anyOf": [ { "items": { "$ref": "#/$defs/any-shape-array-9b5d89838a990d79" }, "type": "array" }, {"maximum": 255, "minimum": 0, "type": "integer"} ] } }, "properties": { "array": { "dtype": "numpy.uint8", "items": {"$ref": "#/$defs/any-shape-array-9b5d89838a990d79"}, "title": "Array", "type": "array" } }, "required": ["array"], "title": "AnyShape", "type": "object" } ``` where the key `"any-shape-array-9b5d89838a990d79"` uses a (blake2b) hash of the inner dtype specification so that having multiple any-shaped arrays in a single model schema are deduplicated without conflicts. ### Dumping One of the main reasons to use chunked array libraries like zarr is to avoid needing to load the entire array into memory. When dumping data to JSON, numpydantic tries to mirror this behavior, by default only dumping the metadata that is necessary to identify the array. For example, with zarr: ```python array = zarr.array([[1,2,3],[4,5,6],[7,8,9]], dtype=float) instance = Image(array=array) dumped = instance.model_dump_json() ``` ```json { "array": { "Chunk shape": "(3, 3)", "Chunks initialized": "1/1", "Compressor": "Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)", "Data type": "float64", "No. bytes": "72", "No. bytes stored": "421", "Order": "C", "Read-only": "False", "Shape": "(3, 3)", "Storage ratio": "0.2", "Store type": "zarr.storage.KVStore", "Type": "zarr.core.Array", "hexdigest": "c51604eace325fe42bbebf39146c0956bd2ed13c" } } ``` To print the whole array, we use pydantic's serialization contexts: ```python dumped = instance.model_dump_json(context={'zarr_dump_array': True}) ``` ```json { "array": { "same thing,": "except also...", "array": [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], "hexdigest": "c51604eace325fe42bbebf39146c0956bd2ed13c" } } ``` ```{toctree} :maxdepth: 2 :caption: Contents :hidden: true design interfaces todo ``` ```{toctree} :maxdepth: 2 :caption: API :hidden: true api/index api/interface/index api/dtype api/ndarray api/maps api/monkeypatch api/schema api/types ```