import shutil from pathlib import Path from typing import Any, Callable, Optional, Tuple, Type, Union from warnings import warn from datetime import datetime, timezone import h5py import numpy as np import pytest from pydantic import BaseModel, Field import zarr import cv2 from numpydantic.interface.hdf5 import H5ArrayPath from numpydantic.interface.zarr import ZarrArrayPath from numpydantic import NDArray, Shape from numpydantic.maps import python_to_nptyping from numpydantic.dtype import Number @pytest.fixture(scope="session") def tmp_output_dir(request: pytest.FixtureRequest) -> Path: path = Path(__file__).parent.resolve() / "__tmp__" if path.exists(): shutil.rmtree(str(path)) path.mkdir() yield path if not request.config.getvalue("--with-output"): try: shutil.rmtree(str(path)) except PermissionError as e: # sporadic error on windows machines... warn( f"Temporary directory could not be removed due to a permissions error: \n{str(e)}" ) @pytest.fixture(scope="function") def tmp_output_dir_func(tmp_output_dir, request: pytest.FixtureRequest) -> Path: """ tmp output dir that gets cleared between every function cleans at the start rather than at cleanup in case the output is to be inspected """ subpath = tmp_output_dir / f"__tmpfunc_{request.node.name}__" if subpath.exists(): shutil.rmtree(str(subpath)) subpath.mkdir() return subpath @pytest.fixture(scope="module") def tmp_output_dir_mod(tmp_output_dir, request: pytest.FixtureRequest) -> Path: """ tmp output dir that gets cleared between every function cleans at the start rather than at cleanup in case the output is to be inspected """ subpath = tmp_output_dir / f"__tmpmod_{request.module}__" if subpath.exists(): shutil.rmtree(str(subpath)) subpath.mkdir() return subpath @pytest.fixture(scope="function") def array_model() -> ( Callable[[Tuple[int, ...], Union[Type, np.dtype]], Type[BaseModel]] ): def _model( shape: Tuple[int, ...] = (10, 10), dtype: Union[Type, np.dtype] = float ) -> Type[BaseModel]: shape_str = ", ".join([str(s) for s in shape]) class MyModel(BaseModel): array: NDArray[Shape[shape_str], dtype] return MyModel return _model @pytest.fixture(scope="session") def model_rgb() -> Type[BaseModel]: class RGB(BaseModel): array: Optional[ Union[ NDArray[Shape["* x, * y"], Number], NDArray[Shape["* x, * y, 3 r_g_b"], Number], NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number], ] ] = Field(None) return RGB @pytest.fixture(scope="session") def model_blank() -> Type[BaseModel]: """A model with any shape and dtype""" class BlankModel(BaseModel): array: NDArray[Shape["*, ..."], Any] return BlankModel @pytest.mark.hdf5 @pytest.fixture(scope="function") def hdf5_file(tmp_output_dir_func) -> h5py.File: h5f_file = tmp_output_dir_func / "h5f.h5" h5f = h5py.File(h5f_file, "w") yield h5f h5f.close() @pytest.mark.hdf5 @pytest.fixture(scope="function") def hdf5_array( hdf5_file, request ) -> Callable[[Tuple[int, ...], Union[np.dtype, type]], H5ArrayPath]: def _hdf5_array( shape: Tuple[int, ...] = (10, 10), dtype: Union[np.dtype, type] = float, compound: bool = False, ) -> H5ArrayPath: array_path = "/" + "_".join([str(s) for s in shape]) + "__" + dtype.__name__ if not compound: if dtype is str: data = np.random.random(shape).astype(bytes) elif dtype is datetime: data = np.empty(shape, dtype="S32") data.fill(datetime.now(timezone.utc).isoformat().encode("utf-8")) else: data = np.random.random(shape).astype(dtype) _ = hdf5_file.create_dataset(array_path, data=data) return H5ArrayPath(Path(hdf5_file.filename), array_path) else: if dtype is str: dt = np.dtype([("data", np.dtype("S10")), ("extra", "i8")]) data = np.array([("hey", 0)] * np.prod(shape), dtype=dt).reshape(shape) elif dtype is datetime: dt = np.dtype([("data", np.dtype("S32")), ("extra", "i8")]) data = np.array( [(datetime.now(timezone.utc).isoformat().encode("utf-8"), 0)] * np.prod(shape), dtype=dt, ).reshape(shape) else: dt = np.dtype([("data", dtype), ("extra", "i8")]) data = np.zeros(shape, dtype=dt) _ = hdf5_file.create_dataset(array_path, data=data) return H5ArrayPath(Path(hdf5_file.filename), array_path, "data") return _hdf5_array @pytest.mark.zarr @pytest.fixture(scope="function") def zarr_nested_array(tmp_output_dir_func) -> ZarrArrayPath: """Zarr array within a nested array""" file = tmp_output_dir_func / "nested.zarr" path = "a/b/c" root = zarr.open(str(file), mode="w") array = root.zeros(path, shape=(100, 100), chunks=(10, 10)) return ZarrArrayPath(file=file, path=path) @pytest.mark.zarr @pytest.fixture(scope="function") def zarr_array(tmp_output_dir_func) -> Path: file = tmp_output_dir_func / "array.zarr" array = zarr.open(str(file), mode="w", shape=(100, 100), chunks=(10, 10)) array[:] = 0 return file @pytest.mark.video @pytest.fixture(scope="function") def avi_video(tmp_path) -> Callable[[Tuple[int, int], int, bool], Path]: video_path = tmp_path / "test.avi" def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path: writer = cv2.VideoWriter( str(video_path), cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes 30, (shape[1], shape[0]), is_color, ) if is_color: shape = (*shape, 3) for i in range(frames): # make fresh array every time bc opencv eats them array = np.zeros(shape, dtype=np.uint8) if not is_color: array[i, i] = i else: array[i, i, :] = i writer.write(array) writer.release() return video_path return _make_video