numpydantic/tests/test_interface/test_video.py
sneakers-the-rat 1187b37b2d
hoo boy. working combinatoric testing.
Split out annotation dtype and shape, swap out all interface tests, fix numpy and dask model casting, make merging models more efficient, correctly parameterize and mark tests!
2024-10-10 23:56:45 -07:00

198 lines
5.6 KiB
Python

"""
Needs to be refactored to DRY, but works for now
"""
from pathlib import Path
import cv2
import pytest
from pydantic import BaseModel, ValidationError
from numpydantic import NDArray, Shape
from numpydantic import dtype as dt
from numpydantic.interface.video import VideoProxy
pytestmark = pytest.mark.video
@pytest.mark.parametrize("input_type", [str, Path])
def test_video_validation(avi_video, input_type):
"""Color videos should validate for normal uint8 shape specs"""
shape = (100, 50)
vid = avi_video(shape=shape, is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
# should correctly validate :)
instance = MyModel(array=input_type(vid))
assert isinstance(instance.array, VideoProxy)
def test_video_from_videocapture(avi_video):
"""Should be able to pass an opened videocapture object"""
shape = (100, 50)
vid = avi_video(shape=shape, is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
# should still correctly validate!
opened_vid = cv2.VideoCapture(str(vid))
try:
instance = MyModel(array=opened_vid)
assert isinstance(instance.array, VideoProxy)
finally:
opened_vid.release()
@pytest.mark.shape
def test_video_wrong_shape(avi_video):
shape = (100, 50)
# generate video with purposely wrong shape
vid = avi_video(shape=(shape[0] + 10, shape[1] + 10), is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
# should correctly validate :)
with pytest.raises(ValidationError):
_ = MyModel(array=vid)
@pytest.mark.proxy
def test_video_getitem(avi_video):
"""
Should be able to get individual frames and slices as if it were a normal array
"""
shape = (100, 50)
vid = avi_video(shape=shape, frames=10, is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
instance = MyModel(array=vid)
fifth_frame = instance.array[5]
# the fifth frame should be all 5s
assert (fifth_frame[5, 5, :] == [5, 5, 5]).all()
# slicing should also work as if it were just a numpy array
single_slice = instance.array[3, 0:10, 0:5]
assert single_slice[3, 3, 0] == 3
assert single_slice.shape == (10, 5, 3)
# also get a range of frames
# range without further slices
range_slice = instance.array[3:5]
assert range_slice.shape == (2, 100, 50, 3)
assert range_slice[0, 3, 3, 0] == 3
assert range_slice[1, 4, 4, 0] == 4
# full range
range_slice = instance.array[3:5, 0:10, 0:5]
assert range_slice.shape == (2, 10, 5, 3)
assert range_slice[0, 3, 3, 0] == 3
assert range_slice[1, 4, 4, 0] == 4
# starting range
range_slice = instance.array[6:, 0:10, 0:10]
assert range_slice.shape == (4, 10, 10, 3)
assert range_slice[-1, 9, 9, 0] == 9
assert range_slice[-2, 9, 9, 0] == 8
# ending range
range_slice = instance.array[:3, 0:5, 0:5]
assert range_slice.shape == (3, 5, 5, 3)
# stepped range
range_slice = instance.array[0:5:2, 0:6, 0:6]
# second slice should be the second frame (instead of the first)
assert range_slice.shape == (3, 6, 6, 3)
assert range_slice[1, 2, 2, 0] == 2
# and the third should be the fourth (instead of the second)
assert range_slice[2, 4, 4, 0] == 4
with pytest.raises(NotImplementedError):
# shouldn't be allowed to set
instance.array[5] = 10
@pytest.mark.proxy
def test_video_attrs(avi_video):
"""Should be able to access opencv properties"""
shape = (100, 50)
vid = avi_video(shape=shape, is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
instance = MyModel(array=vid)
instance.array.set(cv2.CAP_PROP_POS_FRAMES, 5)
assert int(instance.array.get(cv2.CAP_PROP_POS_FRAMES)) == 5
@pytest.mark.proxy
def test_video_close(avi_video):
"""Should close and reopen video file if needed"""
shape = (100, 50)
vid = avi_video(shape=shape, is_color=True)
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
class MyModel(BaseModel):
array: NDArray[Shape[shape_str], dt.UInt8]
instance = MyModel(array=vid)
assert isinstance(instance.array.video, cv2.VideoCapture)
# closes releases and removed reference
instance.array.close()
assert instance.array._video is None
# reopen
assert isinstance(instance.array.video, cv2.VideoCapture)
@pytest.mark.proxy
def test_video_not_exists(tmp_path):
"""
A video file that doesn't exist should raise an error
"""
video = VideoProxy(tmp_path / "not_real.avi")
with pytest.raises(FileNotFoundError):
_ = video.video
@pytest.mark.proxy
@pytest.mark.parametrize(
"comparison,valid",
[
(VideoProxy("test_video.avi"), True),
(VideoProxy("not_real_video.avi"), False),
("not even a video proxy", TypeError),
],
)
def test_video_proxy_eq(comparison, valid):
"""
Comparing a video proxy's equality should be valid if the path matches
Args:
comparison:
valid:
Returns:
"""
proxy_a = VideoProxy("test_video.avi")
if valid is True:
assert proxy_a == comparison
elif valid is False:
assert proxy_a != comparison
else:
with pytest.raises(valid):
assert proxy_a == comparison