mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-11-14 02:34:28 +00:00
193 lines
5.7 KiB
Python
193 lines
5.7 KiB
Python
"""
|
|
Needs to be refactored to DRY, but works for now
|
|
"""
|
|
|
|
import pdb
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pathlib import Path
|
|
import cv2
|
|
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
from numpydantic import NDArray, Shape
|
|
from numpydantic import dtype as dt
|
|
from numpydantic.interface.video import VideoProxy
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def avi_video(tmp_path):
|
|
video_path = tmp_path / "test.avi"
|
|
|
|
def _make_video(shape=(100, 50), frames=10, is_color=True) -> Path:
|
|
writer = cv2.VideoWriter(
|
|
str(video_path),
|
|
cv2.VideoWriter_fourcc(*"RGBA"), # raw video for testing purposes
|
|
30,
|
|
(shape[1], shape[0]),
|
|
is_color,
|
|
)
|
|
if is_color:
|
|
shape = (*shape, 3)
|
|
|
|
for i in range(frames):
|
|
# make fresh array every time bc opencv eats them
|
|
array = np.zeros(shape, dtype=np.uint8)
|
|
if not is_color:
|
|
array[i, i] = i
|
|
else:
|
|
array[i, i, :] = i
|
|
writer.write(array)
|
|
writer.release()
|
|
return video_path
|
|
|
|
yield _make_video
|
|
|
|
video_path.unlink(missing_ok=True)
|
|
|
|
|
|
@pytest.mark.parametrize("input_type", [str, Path])
|
|
def test_video_validation(avi_video, input_type):
|
|
"""Color videos should validate for normal uint8 shape specs"""
|
|
|
|
shape = (100, 50)
|
|
vid = avi_video(shape=shape, is_color=True)
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
# should correctly validate :)
|
|
instance = MyModel(array=input_type(vid))
|
|
assert isinstance(instance.array, VideoProxy)
|
|
|
|
|
|
def test_video_from_videocapture(avi_video):
|
|
"""Should be able to pass an opened videocapture object"""
|
|
shape = (100, 50)
|
|
vid = avi_video(shape=shape, is_color=True)
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
# should still correctly validate!
|
|
opened_vid = cv2.VideoCapture(str(vid))
|
|
try:
|
|
instance = MyModel(array=opened_vid)
|
|
assert isinstance(instance.array, VideoProxy)
|
|
finally:
|
|
opened_vid.release()
|
|
|
|
|
|
def test_video_wrong_shape(avi_video):
|
|
shape = (100, 50)
|
|
|
|
# generate video with purposely wrong shape
|
|
vid = avi_video(shape=(shape[0] + 10, shape[1] + 10), is_color=True)
|
|
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
# should correctly validate :)
|
|
with pytest.raises(ValidationError):
|
|
instance = MyModel(array=vid)
|
|
|
|
|
|
def test_video_getitem(avi_video):
|
|
"""
|
|
Should be able to get individual frames and slices as if it were a normal array
|
|
"""
|
|
shape = (100, 50)
|
|
vid = avi_video(shape=shape, frames=10, is_color=True)
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
instance = MyModel(array=vid)
|
|
fifth_frame = instance.array[5]
|
|
# the first frame should have 1's in the 1,1 position
|
|
assert (fifth_frame[5, 5, :] == [5, 5, 5]).all()
|
|
# and nothing in the 6th position
|
|
assert (fifth_frame[6, 6, :] == [0, 0, 0]).all()
|
|
|
|
# slicing should also work as if it were just a numpy array
|
|
single_slice = instance.array[3, 0:10, 0:5]
|
|
assert single_slice[3, 3, 0] == 3
|
|
assert single_slice[4, 4, 0] == 0
|
|
assert single_slice.shape == (10, 5, 3)
|
|
|
|
# also get a range of frames
|
|
# range without further slices
|
|
range_slice = instance.array[3:5]
|
|
assert range_slice.shape == (2, 100, 50, 3)
|
|
assert range_slice[0, 3, 3, 0] == 3
|
|
assert range_slice[0, 4, 4, 0] == 0
|
|
|
|
# full range
|
|
range_slice = instance.array[3:5, 0:10, 0:5]
|
|
assert range_slice.shape == (2, 10, 5, 3)
|
|
assert range_slice[0, 3, 3, 0] == 3
|
|
assert range_slice[0, 4, 4, 0] == 0
|
|
|
|
# starting range
|
|
range_slice = instance.array[6:, 0:10, 0:10]
|
|
assert range_slice.shape == (4, 10, 10, 3)
|
|
assert range_slice[-1, 9, 9, 0] == 9
|
|
assert range_slice[-2, 9, 9, 0] == 0
|
|
|
|
# ending range
|
|
range_slice = instance.array[:3, 0:5, 0:5]
|
|
assert range_slice.shape == (3, 5, 5, 3)
|
|
|
|
# stepped range
|
|
range_slice = instance.array[0:5:2, 0:6, 0:6]
|
|
# second slice should be the second frame (instead of the first)
|
|
assert range_slice.shape == (3, 6, 6, 3)
|
|
assert range_slice[1, 2, 2, 0] == 2
|
|
assert range_slice[1, 3, 3, 0] == 0
|
|
# and the third should be the fourth (instead of the second)
|
|
assert range_slice[2, 4, 4, 0] == 4
|
|
assert range_slice[2, 5, 5, 0] == 0
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
# shouldn't be allowed to set
|
|
instance.array[5] = 10
|
|
|
|
|
|
def test_video_attrs(avi_video):
|
|
"""Should be able to access opencv properties"""
|
|
shape = (100, 50)
|
|
vid = avi_video(shape=shape, is_color=True)
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
instance = MyModel(array=vid)
|
|
|
|
instance.array.set(cv2.CAP_PROP_POS_FRAMES, 5)
|
|
assert int(instance.array.get(cv2.CAP_PROP_POS_FRAMES)) == 5
|
|
|
|
|
|
def test_video_close(avi_video):
|
|
"""Should close and reopen video file if needed"""
|
|
shape = (100, 50)
|
|
vid = avi_video(shape=shape, is_color=True)
|
|
shape_str = f"*, {shape[0]}, {shape[1]}, 3"
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape[shape_str], dt.UInt8]
|
|
|
|
instance = MyModel(array=vid)
|
|
assert isinstance(instance.array.video, cv2.VideoCapture)
|
|
# closes releases and removed reference
|
|
instance.array.close()
|
|
assert instance.array._video is None
|
|
# reopen
|
|
assert isinstance(instance.array.video, cv2.VideoCapture)
|