mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-11-14 02:34:28 +00:00
116 lines
3.2 KiB
Python
116 lines
3.2 KiB
Python
import pdb
|
|
import json
|
|
import pytest
|
|
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
from numpydantic.interface import H5Interface
|
|
from numpydantic.interface.hdf5 import H5ArrayPath
|
|
from numpydantic.exceptions import DtypeError, ShapeError
|
|
|
|
from tests.conftest import ValidationCase
|
|
|
|
|
|
def hdf5_array_case(case: ValidationCase, array_func) -> H5ArrayPath:
|
|
"""
|
|
Args:
|
|
case:
|
|
array_func: ( the function returned from the `hdf5_array` fixture )
|
|
|
|
Returns:
|
|
|
|
"""
|
|
return array_func(case.shape, case.dtype)
|
|
|
|
|
|
def _test_hdf5_case(case: ValidationCase, array_func):
|
|
array = hdf5_array_case(case, array_func)
|
|
if case.passes:
|
|
case.model(array=array)
|
|
else:
|
|
with pytest.raises((ValidationError, DtypeError, ShapeError)):
|
|
case.model(array=array)
|
|
|
|
|
|
def test_hdf5_enabled():
|
|
assert H5Interface.enabled()
|
|
|
|
|
|
def test_hdf5_check(interface_type):
|
|
if interface_type[1] is H5Interface:
|
|
if interface_type[0].__name__ == "_hdf5_array":
|
|
interface_type = (interface_type[0](), interface_type[1])
|
|
assert H5Interface.check(interface_type[0])
|
|
if isinstance(interface_type[0], H5ArrayPath):
|
|
# also test that we can instantiate from a tuple like the H5ArrayPath
|
|
assert H5Interface.check((interface_type[0].file, interface_type[0].path))
|
|
else:
|
|
assert not H5Interface.check(interface_type[0])
|
|
|
|
|
|
def test_hdf5_check_not_exists():
|
|
"""We should fail a check for a nonexistent hdf5 file"""
|
|
spec = ("./fakefile.h5", "/fake/array")
|
|
assert not H5Interface.check(spec)
|
|
|
|
|
|
def test_hdf5_check_not_hdf5(tmp_path):
|
|
"""Files that exist but aren't actually hdf5 files should fail a check"""
|
|
afile = tmp_path / "not_an_hdf.h5"
|
|
with open(afile, "w") as af:
|
|
af.write("hey")
|
|
|
|
spec = (afile, "/fake/array")
|
|
assert not H5Interface.check(spec)
|
|
|
|
|
|
def test_hdf5_shape(shape_cases, hdf5_array):
|
|
_test_hdf5_case(shape_cases, hdf5_array)
|
|
|
|
|
|
def test_hdf5_dtype(dtype_cases, hdf5_array):
|
|
if dtype_cases.dtype is str:
|
|
pytest.skip("hdf5 cant do string arrays")
|
|
_test_hdf5_case(dtype_cases, hdf5_array)
|
|
|
|
|
|
def test_hdf5_dataset_not_exists(hdf5_array, model_blank):
|
|
array = hdf5_array()
|
|
with pytest.raises(ValueError) as e:
|
|
model_blank(array=H5ArrayPath(file=array.file, path="/some/random/path"))
|
|
assert "file located" in e
|
|
assert "no array found" in e
|
|
|
|
|
|
def test_assignment(hdf5_array, model_blank):
|
|
array = hdf5_array()
|
|
|
|
model = model_blank(array=array)
|
|
model.array[1, 1] = 5
|
|
assert model.array[1, 1] == 5
|
|
|
|
model.array[1:3, 2:4] = 10
|
|
assert (model.array[1:3, 2:4] == 10).all()
|
|
|
|
|
|
def test_to_json(hdf5_array, array_model):
|
|
"""
|
|
Test serialization of HDF5 arrays to JSON
|
|
Args:
|
|
hdf5_array:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
array = hdf5_array((10, 10), int)
|
|
model = array_model((10, 10), int)
|
|
|
|
instance = model(array=array) # type: BaseModel
|
|
|
|
json_str = instance.model_dump_json()
|
|
json_dict = json.loads(json_str)["array"]
|
|
|
|
assert json_dict["file"] == str(array.file)
|
|
assert json_dict["path"] == str(array.path)
|
|
assert json_dict["attrs"] == {}
|
|
assert json_dict["array"] == instance.array[:].tolist()
|