mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-11-14 10:44:28 +00:00
120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
"""
|
|
Test custom features of the pydantic generator
|
|
|
|
Note that since this is largely a subclass, we don't test all of the functionality of the generator
|
|
because it's tested in the base linkml package.
|
|
"""
|
|
import re
|
|
import sys
|
|
import typing
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from pydantic import BaseModel
|
|
|
|
|
|
# def test_arraylike(imported_schema):
|
|
# """
|
|
# Arraylike classes are converted to slots that specify nptyping arrays
|
|
#
|
|
# array: Optional[Union[
|
|
# NDArray[Shape["* x, * y"], Number],
|
|
# NDArray[Shape["* x, * y, 3 z"], Number],
|
|
# NDArray[Shape["* x, * y, 3 z, 4 a"], Number]
|
|
# ]] = Field(None)
|
|
# """
|
|
# # check that we have gotten an NDArray annotation and its shape is correct
|
|
# array = imported_schema["core"].MainTopLevel.model_fields["array"].annotation
|
|
# args = typing.get_args(array)
|
|
# for i, shape in enumerate(("* x, * y", "* x, * y, 3 z", "* x, * y, 3 z, 4 a")):
|
|
# assert isinstance(args[i], NDArrayMeta)
|
|
# assert args[i].__args__[0].__args__
|
|
# assert args[i].__args__[1] == np.number
|
|
#
|
|
# # we shouldn't have an actual class for the array
|
|
# assert not hasattr(imported_schema["core"], "MainTopLevel__Array")
|
|
# assert not hasattr(imported_schema["core"], "MainTopLevelArray")
|
|
#
|
|
#
|
|
# def test_inject_fields(imported_schema):
|
|
# """
|
|
# Our root model should have the special fields we injected
|
|
# """
|
|
# base = imported_schema["core"].ConfiguredBaseModel
|
|
# assert "hdf5_path" in base.model_fields
|
|
# assert "object_id" in base.model_fields
|
|
#
|
|
#
|
|
# def test_linkml_meta(imported_schema):
|
|
# """
|
|
# We should be able to store some linkml metadata with our classes
|
|
# """
|
|
# meta = imported_schema["core"].LinkML_Meta
|
|
# assert "tree_root" in meta.model_fields
|
|
# assert imported_schema["core"].MainTopLevel.linkml_meta.default.tree_root == True
|
|
# assert imported_schema["core"].OtherClass.linkml_meta.default.tree_root == False
|
|
#
|
|
#
|
|
# def test_skip(linkml_schema):
|
|
# """
|
|
# We can skip slots and classes
|
|
# """
|
|
# modules = generate_and_import(
|
|
# linkml_schema,
|
|
# split=False,
|
|
# generator_kwargs={
|
|
# "SKIP_SLOTS": ("SkippableSlot",),
|
|
# "SKIP_CLASSES": ("Skippable", "skippable"),
|
|
# },
|
|
# )
|
|
# assert not hasattr(modules["core"], "Skippable")
|
|
# assert "SkippableSlot" not in modules["core"].MainTopLevel.model_fields
|
|
#
|
|
#
|
|
# def test_inline_with_identifier(imported_schema):
|
|
# """
|
|
# By default, if a class has an identifier attribute, it is inlined
|
|
# as a string rather than its class. We overrode that to be able to make dictionaries of collections
|
|
# """
|
|
# main = imported_schema["core"].MainTopLevel
|
|
# inline = main.model_fields["inline_dict"].annotation
|
|
# assert typing.get_origin(typing.get_args(inline)[0]) == dict
|
|
# # god i hate pythons typing interface
|
|
# otherclass, stillanother = typing.get_args(
|
|
# typing.get_args(typing.get_args(inline)[0])[1]
|
|
# )
|
|
# assert otherclass is imported_schema["core"].OtherClass
|
|
# assert stillanother is imported_schema["core"].StillAnotherClass
|
|
#
|
|
#
|
|
# def test_namespace(imported_schema):
|
|
# """
|
|
# Namespace schema import all classes from the other schema
|
|
# Returns:
|
|
#
|
|
# """
|
|
# ns = imported_schema["namespace"]
|
|
#
|
|
# for classname, modname in (
|
|
# ("MainThing", "test_schema.imported"),
|
|
# ("Arraylike", "test_schema.imported"),
|
|
# ("MainTopLevel", "test_schema.core"),
|
|
# ("Skippable", "test_schema.core"),
|
|
# ("OtherClass", "test_schema.core"),
|
|
# ("StillAnotherClass", "test_schema.core"),
|
|
# ):
|
|
# assert hasattr(ns, classname)
|
|
# if imported_schema["split"]:
|
|
# assert getattr(ns, classname).__module__ == modname
|
|
#
|
|
#
|
|
# def test_get_set_item(imported_schema):
|
|
# """We can get and set without explicitly addressing array"""
|
|
# cls_ = imported_schema["core"].MainTopLevel(array=np.array([[1, 2, 3], [4, 5, 6]]))
|
|
# cls_[0] = 50
|
|
# assert (cls_[0] == 50).all()
|
|
# assert (cls_.array[0] == 50).all()
|
|
#
|
|
# cls_[1, 1] = 100
|
|
# assert cls_[1, 1] == 100
|
|
# assert cls_.array[1, 1] == 100
|