mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2025-01-10 05:54:26 +00:00
395 lines
11 KiB
Python
395 lines
11 KiB
Python
import json
|
|
from typing import Any, Optional, Union
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from pydantic import BaseModel, Field, ValidationError
|
|
|
|
from numpydantic import NDArray, Shape, dtype
|
|
from numpydantic.dtype import Number
|
|
from numpydantic.exceptions import DtypeError
|
|
|
|
|
|
@pytest.mark.json_schema
|
|
def test_ndarray_type():
|
|
class Model(BaseModel):
|
|
array: NDArray[Shape["2 x, * y"], Number]
|
|
array_any: Optional[NDArray[Any, Any]] = None
|
|
|
|
schema = Model.model_json_schema()
|
|
assert schema["properties"]["array"]["items"] == {
|
|
"items": {"type": "number"},
|
|
"type": "array",
|
|
}
|
|
assert schema["properties"]["array"]["maxItems"] == 2
|
|
assert schema["properties"]["array"]["minItems"] == 2
|
|
|
|
# models should instantiate correctly!
|
|
_ = Model(array=np.zeros((2, 3)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=np.zeros((4, 6)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=np.ones((2, 3), dtype=bool))
|
|
|
|
_ = Model(array=np.zeros((2, 3)), array_any=np.ones((3, 4, 5)))
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
def test_schema_unsupported_type():
|
|
"""
|
|
Complex numbers should just be made with an `any` schema
|
|
"""
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Shape["2 x, * y"], complex]
|
|
|
|
schema = Model.model_json_schema()
|
|
assert schema["properties"]["array"]["items"] == {
|
|
"items": {},
|
|
"type": "array",
|
|
}
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
def test_schema_tuple():
|
|
"""
|
|
Types specified as tuples should have their schemas as a union
|
|
"""
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Shape["2 x, * y"], (np.uint8, np.uint16)]
|
|
|
|
schema = Model.model_json_schema()
|
|
assert "anyOf" in schema["properties"]["array"]["items"]["items"]
|
|
conditions = schema["properties"]["array"]["items"]["items"]["anyOf"]
|
|
|
|
assert all([i["type"] == "integer" for i in conditions])
|
|
assert sorted([i["maximum"] for i in conditions]) == [255, 65535]
|
|
assert all([i["minimum"] == 0 for i in conditions])
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
def test_schema_number():
|
|
"""
|
|
np.numeric should just be the float schema
|
|
"""
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Shape["2 x, * y"], np.number]
|
|
|
|
schema = Model.model_json_schema()
|
|
assert schema["properties"]["array"]["items"] == {
|
|
"items": {"type": "number"},
|
|
"type": "array",
|
|
}
|
|
|
|
|
|
def test_ndarray_union():
|
|
generator = np.random.default_rng()
|
|
|
|
class Model(BaseModel):
|
|
array: Optional[
|
|
Union[
|
|
NDArray[Shape["* x, * y"], Number],
|
|
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
|
|
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
|
|
]
|
|
] = Field(None)
|
|
|
|
_ = Model()
|
|
_ = Model(array=generator.random((5, 10)))
|
|
_ = Model(array=generator.random((5, 10, 3)))
|
|
_ = Model(array=generator.random((5, 10, 3, 4)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=generator.random((5,)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=generator.random((5, 10, 4)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=generator.random((5, 10, 3, 6)))
|
|
|
|
with pytest.raises(ValidationError):
|
|
_ = Model(array=generator.random((5, 10, 4, 6)))
|
|
|
|
|
|
@pytest.mark.shape
|
|
@pytest.mark.dtype
|
|
@pytest.mark.parametrize("dtype", dtype.Number)
|
|
def test_ndarray_unparameterized(dtype):
|
|
"""
|
|
NDArray without any parameters is any shape, any type
|
|
"""
|
|
generator = np.random.default_rng()
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray
|
|
|
|
# not very sophisticated fuzzing of "any shape"
|
|
test_cases = 10
|
|
for _ in range(test_cases):
|
|
n_dimensions = generator.integers(1, 8)
|
|
dim_sizes = generator.integers(1, 7, size=n_dimensions)
|
|
_ = Model(array=np.zeros(dim_sizes, dtype=dtype))
|
|
|
|
|
|
@pytest.mark.shape
|
|
def test_ndarray_any():
|
|
"""
|
|
using :class:`typing.Any` in for the shape means any shape
|
|
"""
|
|
generator = np.random.default_rng()
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Any, np.uint8]
|
|
|
|
# not very sophisticated fuzzing of "any shape"
|
|
test_cases = 100
|
|
for _ in range(test_cases):
|
|
n_dimensions = generator.integers(1, 8)
|
|
dim_sizes = generator.integers(1, 16, size=n_dimensions)
|
|
_ = Model(array=np.zeros(dim_sizes, dtype=np.uint8))
|
|
|
|
|
|
def test_ndarray_coercion():
|
|
"""
|
|
Coerce lists to arrays
|
|
"""
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Shape["* x"], Number]
|
|
|
|
amod = Model(array=[1, 2, 3, 4.5])
|
|
assert np.allclose(amod.array, np.array([1, 2, 3, 4.5]))
|
|
with pytest.raises(ValidationError):
|
|
amod = Model(array=["a", "b", "c"])
|
|
|
|
|
|
@pytest.mark.shape
|
|
def test_shape_ellipsis():
|
|
"""
|
|
Test that ellipsis is a wildcard, rather than "repeat the last index"
|
|
"""
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape["1, 2, ..."], Number]
|
|
|
|
_ = MyModel(array=np.zeros((1, 2, 3, 4, 5)))
|
|
|
|
|
|
@pytest.mark.serialization
|
|
def test_ndarray_serialize():
|
|
"""
|
|
Arrays should be dumped to a list when using json, but kept as ndarray otherwise
|
|
"""
|
|
|
|
class Model(BaseModel):
|
|
array: NDArray[Any, Number]
|
|
|
|
mod = Model(array=np.random.default_rng().random((3, 3)))
|
|
mod_str = mod.model_dump_json()
|
|
mod_json = json.loads(mod_str)
|
|
assert isinstance(mod_json["array"], list)
|
|
|
|
# but when we just dump to a dict we don't coerce
|
|
mod_dict = mod.model_dump()
|
|
assert isinstance(mod_dict["array"], np.ndarray)
|
|
|
|
|
|
_json_schema_types = [
|
|
*[(t, float) for t in dtype.Float],
|
|
*[(t, int) for t in dtype.Integer],
|
|
]
|
|
|
|
|
|
@pytest.mark.json_schema
|
|
def test_json_schema_basic(array_model):
|
|
"""
|
|
NDArray types should correctly generate a list of lists JSON schema
|
|
"""
|
|
shape = (15, 10)
|
|
dtype = float
|
|
model = array_model(shape, dtype)
|
|
schema = model.model_json_schema()
|
|
field = schema["properties"]["array"]
|
|
|
|
# outer shape
|
|
assert field["maxItems"] == shape[0]
|
|
assert field["minItems"] == shape[0]
|
|
assert field["type"] == "array"
|
|
|
|
# inner shape
|
|
inner = field["items"]
|
|
assert inner["minItems"] == shape[1]
|
|
assert inner["maxItems"] == shape[1]
|
|
assert inner["items"]["type"] == "number"
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
@pytest.mark.parametrize("dtype", [*dtype.Integer, *dtype.Float])
|
|
def test_json_schema_dtype_single(dtype, array_model):
|
|
"""
|
|
dtypes should have correct mins and maxes set, and store the source dtype
|
|
"""
|
|
if issubclass(dtype, np.floating):
|
|
info = np.finfo(dtype)
|
|
min_val = info.min
|
|
max_val = info.max
|
|
schema_type = "number"
|
|
elif issubclass(dtype, np.integer):
|
|
info = np.iinfo(dtype)
|
|
min_val = info.min
|
|
max_val = info.max
|
|
schema_type = "integer"
|
|
else:
|
|
raise ValueError("These should all be numpy types!")
|
|
|
|
shape = (15, 10)
|
|
model = array_model(shape, dtype)
|
|
schema = model.model_json_schema()
|
|
inner_type = schema["properties"]["array"]["items"]["items"]
|
|
assert inner_type["minimum"] == min_val
|
|
assert inner_type["maximum"] == max_val
|
|
assert inner_type["type"] == schema_type
|
|
assert schema["properties"]["array"]["dtype"] == ".".join(
|
|
[dtype.__module__, dtype.__name__]
|
|
)
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
@pytest.mark.parametrize(
|
|
"dtype,expected",
|
|
[
|
|
(dtype.Integer, "integer"),
|
|
(dtype.Float, "number"),
|
|
(dtype.Bool, "boolean"),
|
|
(int, "integer"),
|
|
(float, "number"),
|
|
(bool, "boolean"),
|
|
(complex, "any"),
|
|
],
|
|
)
|
|
def test_json_schema_dtype_builtin(dtype, expected, array_model):
|
|
"""
|
|
Using builtin or generic (eg. `dtype.Integer` ) dtypes should
|
|
make a simple json schema without mins/maxes/dtypes.
|
|
"""
|
|
model = array_model(dtype=dtype)
|
|
schema = model.model_json_schema()
|
|
inner_type = schema["properties"]["array"]["items"]["items"]
|
|
if expected == "any":
|
|
assert inner_type == {}
|
|
else:
|
|
assert inner_type["type"] == expected
|
|
|
|
|
|
@pytest.mark.dtype
|
|
@pytest.mark.json_schema
|
|
def test_json_schema_dtype_model():
|
|
"""
|
|
Pydantic models can be used in arrays as dtypes
|
|
"""
|
|
|
|
class TestModel(BaseModel):
|
|
x: int
|
|
y: int
|
|
z: int
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape["*, *"], TestModel]
|
|
|
|
schema = MyModel.model_json_schema()
|
|
# we should have a "$defs" with TestModel in it,
|
|
# and our array should be objects of that type
|
|
assert schema["properties"]["array"]["items"]["items"] == {
|
|
"$ref": "#/$defs/TestModel"
|
|
}
|
|
# we don't test pydantic' generic json schema model generation,
|
|
# just that one was defined
|
|
assert "TestModel" in schema["$defs"]
|
|
|
|
|
|
def _recursive_array(schema):
|
|
assert "$defs" in schema
|
|
# get the key uses for the array
|
|
array_key = list(schema["$defs"].keys())[0]
|
|
|
|
# the array property should be a ref to the recursive array
|
|
# get the innermost part of the field schema
|
|
field_schema = schema["properties"]["array"]
|
|
while "items" in field_schema:
|
|
field_schema = field_schema["items"]
|
|
assert field_schema["$ref"] == f"#/$defs/{array_key}"
|
|
|
|
# and the recursive array should indeed be recursive...
|
|
# specifically it should be an array whose items can be itself or
|
|
# of the type specified by the dtype
|
|
any_of = schema["$defs"][array_key]["anyOf"]
|
|
assert any_of[0]["items"]["$ref"] == f"#/$defs/{array_key}"
|
|
assert any_of[0]["type"] == "array"
|
|
# here we are just assuming that it's a uint8 array..
|
|
assert any_of[1]["type"] == "integer"
|
|
assert any_of[1]["maximum"] == 255
|
|
assert any_of[1]["minimum"] == 0
|
|
|
|
|
|
@pytest.mark.shape
|
|
@pytest.mark.json_schema
|
|
def test_json_schema_ellipsis():
|
|
"""
|
|
NDArray types should create a recursive JSON schema for any-shaped arrays
|
|
"""
|
|
|
|
class AnyShape(BaseModel):
|
|
array: NDArray[Shape["*, ..."], np.uint8]
|
|
|
|
schema = AnyShape.model_json_schema()
|
|
_recursive_array(schema)
|
|
|
|
class ConstrainedAnyShape(BaseModel):
|
|
array: NDArray[Shape["3, 4, ..."], np.uint8]
|
|
|
|
schema = ConstrainedAnyShape.model_json_schema()
|
|
_recursive_array(schema)
|
|
|
|
|
|
def test_instancecheck():
|
|
"""
|
|
NDArray should handle ``isinstance()`` s.t. valid arrays are ``True``
|
|
and invalid arrays are ``False``
|
|
|
|
We don't make this test exhaustive because correctness of validation
|
|
is tested elsewhere. We are just testing that the type checking works
|
|
"""
|
|
array_type = NDArray[Shape["1, 2, 3"], int]
|
|
|
|
assert isinstance(np.zeros((1, 2, 3), dtype=int), array_type)
|
|
assert not isinstance(np.zeros((2, 2, 3), dtype=int), array_type)
|
|
assert not isinstance(np.zeros((1, 2, 3), dtype=float), array_type)
|
|
|
|
def my_function(array: NDArray[Shape["1, 2, 3"], int]):
|
|
return array
|
|
|
|
my_function(np.zeros((1, 2, 3), int))
|
|
|
|
|
|
def test_callable():
|
|
"""
|
|
NDArray objects are callable to validate and cast
|
|
Don't test validation here, just that we can be called
|
|
"""
|
|
annotation = NDArray[Shape["3"], int]
|
|
array = np.array([1, 2, 3], dtype=int)
|
|
validated = annotation(array)
|
|
assert validated is array
|
|
|
|
with pytest.raises(DtypeError):
|
|
_ = annotation(np.zeros((1, 2, 3)))
|