mirror of
https://github.com/p2p-ld/numpydantic.git
synced 2024-11-10 00:34:29 +00:00
220 lines
6.3 KiB
Python
220 lines
6.3 KiB
Python
import json
|
|
from datetime import datetime, timezone
|
|
from typing import Any
|
|
|
|
import h5py
|
|
import pytest
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
import numpy as np
|
|
from numpydantic import NDArray, Shape
|
|
from numpydantic.interface import H5Interface
|
|
from numpydantic.interface.hdf5 import H5ArrayPath, H5Proxy
|
|
from numpydantic.exceptions import DtypeError, ShapeError
|
|
|
|
from tests.conftest import ValidationCase
|
|
|
|
|
|
def hdf5_array_case(
|
|
case: ValidationCase, array_func, compound: bool = False
|
|
) -> H5ArrayPath:
|
|
"""
|
|
Args:
|
|
case:
|
|
array_func: ( the function returned from the `hdf5_array` fixture )
|
|
|
|
Returns:
|
|
|
|
"""
|
|
if issubclass(case.dtype, BaseModel):
|
|
pytest.skip("hdf5 cant support arbitrary python objects")
|
|
return array_func(case.shape, case.dtype, compound)
|
|
|
|
|
|
def _test_hdf5_case(case: ValidationCase, array_func, compound: bool = False) -> None:
|
|
array = hdf5_array_case(case, array_func, compound)
|
|
if case.passes:
|
|
case.model(array=array)
|
|
else:
|
|
with pytest.raises((ValidationError, DtypeError, ShapeError)):
|
|
case.model(array=array)
|
|
|
|
|
|
def test_hdf5_enabled():
|
|
assert H5Interface.enabled()
|
|
|
|
|
|
def test_hdf5_check(interface_type):
|
|
if interface_type[1] is H5Interface:
|
|
if interface_type[0].__name__ == "_hdf5_array":
|
|
interface_type = (interface_type[0](), interface_type[1])
|
|
assert H5Interface.check(interface_type[0])
|
|
if isinstance(interface_type[0], H5ArrayPath):
|
|
# also test that we can instantiate from a tuple like the H5ArrayPath
|
|
assert H5Interface.check((interface_type[0].file, interface_type[0].path))
|
|
else:
|
|
assert not H5Interface.check(interface_type[0])
|
|
|
|
|
|
def test_hdf5_check_not_exists():
|
|
"""We should fail a check for a nonexistent hdf5 file"""
|
|
spec = ("./fakefile.h5", "/fake/array")
|
|
assert not H5Interface.check(spec)
|
|
|
|
|
|
def test_hdf5_check_not_hdf5(tmp_path):
|
|
"""Files that exist but aren't actually hdf5 files should fail a check"""
|
|
afile = tmp_path / "not_an_hdf.h5"
|
|
with open(afile, "w") as af:
|
|
af.write("hey")
|
|
|
|
spec = (afile, "/fake/array")
|
|
assert not H5Interface.check(spec)
|
|
|
|
|
|
@pytest.mark.parametrize("compound", [True, False])
|
|
def test_hdf5_shape(shape_cases, hdf5_array, compound):
|
|
_test_hdf5_case(shape_cases, hdf5_array, compound)
|
|
|
|
|
|
@pytest.mark.parametrize("compound", [True, False])
|
|
def test_hdf5_dtype(dtype_cases, hdf5_array, compound):
|
|
_test_hdf5_case(dtype_cases, hdf5_array, compound)
|
|
|
|
|
|
def test_hdf5_dataset_not_exists(hdf5_array, model_blank):
|
|
array = hdf5_array()
|
|
with pytest.raises(ValueError) as e:
|
|
model_blank(array=H5ArrayPath(file=array.file, path="/some/random/path"))
|
|
assert "file located" in e
|
|
assert "no array found" in e
|
|
|
|
|
|
def test_assignment(hdf5_array, model_blank):
|
|
array = hdf5_array()
|
|
|
|
model = model_blank(array=array)
|
|
model.array[1, 1] = 5
|
|
assert model.array[1, 1] == 5
|
|
|
|
model.array[1:3, 2:4] = 10
|
|
assert (model.array[1:3, 2:4] == 10).all()
|
|
|
|
|
|
def test_to_json(hdf5_array, array_model):
|
|
"""
|
|
Test serialization of HDF5 arrays to JSON
|
|
Args:
|
|
hdf5_array:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
array = hdf5_array((10, 10), int)
|
|
model = array_model((10, 10), int)
|
|
|
|
instance = model(array=array) # type: BaseModel
|
|
|
|
json_str = instance.model_dump_json()
|
|
json_dict = json.loads(json_str)["array"]
|
|
|
|
assert json_dict["file"] == str(array.file)
|
|
assert json_dict["path"] == str(array.path)
|
|
assert json_dict["attrs"] == {}
|
|
assert json_dict["array"] == instance.array[:].tolist()
|
|
|
|
|
|
def test_compound_dtype(tmp_path):
|
|
"""
|
|
hdf5 proxy indexes compound dtypes as single fields when field is given
|
|
"""
|
|
h5f_path = tmp_path / "test.h5"
|
|
dataset_path = "/dataset"
|
|
field = "data"
|
|
dtype = np.dtype([(field, "i8"), ("extra", "f8")])
|
|
data = np.zeros((10, 20), dtype=dtype)
|
|
with h5py.File(h5f_path, "w") as h5f:
|
|
dset = h5f.create_dataset(dataset_path, data=data)
|
|
assert dset.dtype == dtype
|
|
|
|
proxy = H5Proxy(h5f_path, dataset_path, field=field)
|
|
assert proxy.dtype == np.dtype("int64")
|
|
assert proxy.shape == (10, 20)
|
|
assert proxy[0, 0] == 0
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape["10, 20"], np.int64]
|
|
|
|
instance = MyModel(array=(h5f_path, dataset_path, field))
|
|
assert instance.array.dtype == np.dtype("int64")
|
|
assert instance.array.shape == (10, 20)
|
|
assert instance.array[0, 0] == 0
|
|
|
|
# set values too
|
|
instance.array[0, :] = 1
|
|
assert all(instance.array[0, :] == 1)
|
|
assert all(instance.array[1, :] == 0)
|
|
instance.array[1] = 2
|
|
assert all(instance.array[1] == 2)
|
|
|
|
|
|
@pytest.mark.parametrize("compound", [True, False])
|
|
def test_strings(hdf5_array, compound):
|
|
"""
|
|
HDF5 proxy can get and set strings just like any other dtype
|
|
"""
|
|
array = hdf5_array((10, 10), str, compound=compound)
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Shape["10, 10"], str]
|
|
|
|
instance = MyModel(array=array)
|
|
instance.array[0, 0] = "hey"
|
|
assert instance.array[0, 0] == "hey"
|
|
assert isinstance(instance.array[0, 1], str)
|
|
|
|
instance.array[1] = "sup"
|
|
assert all(instance.array[1] == "sup")
|
|
|
|
|
|
@pytest.mark.parametrize("compound", [True, False])
|
|
def test_datetime(hdf5_array, compound):
|
|
"""
|
|
We can treat S32 byte arrays as datetimes if our type annotation
|
|
says to, including validation, setting and getting values
|
|
"""
|
|
array = hdf5_array((10, 10), datetime, compound=compound)
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Any, datetime]
|
|
|
|
instance = MyModel(array=array)
|
|
assert isinstance(instance.array[0, 0], np.datetime64)
|
|
assert instance.array[0:5].dtype.type is np.datetime64
|
|
|
|
now = datetime.now()
|
|
|
|
instance.array[0, 0] = now
|
|
assert instance.array[0, 0] == now
|
|
instance.array[0] = now
|
|
assert all(instance.array[0] == now)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [int, float, str, datetime])
|
|
def test_empty_dataset(dtype, tmp_path):
|
|
"""
|
|
Empty datasets shouldn't choke us during validation
|
|
"""
|
|
array_path = tmp_path / "test.h5"
|
|
if dtype in (str, datetime):
|
|
np_dtype = "S32"
|
|
else:
|
|
np_dtype = dtype
|
|
|
|
with h5py.File(array_path, "w") as h5f:
|
|
_ = h5f.create_dataset(name="/data", dtype=np_dtype)
|
|
|
|
class MyModel(BaseModel):
|
|
array: NDArray[Any, dtype]
|
|
|
|
_ = MyModel(array=(array_path, "/data"))
|