nwb-linkml/nwb_linkml/tests/fixtures/schema.py

266 lines
9.9 KiB
Python
Raw Permalink Normal View History

from dataclasses import dataclass, field
from pathlib import Path
from types import ModuleType
from typing import Dict, Optional
import pytest
from linkml_runtime.dumpers import yaml_dumper
from linkml_runtime.linkml_model.meta import (
ArrayExpression,
ClassDefinition,
DimensionExpression,
Prefix,
SchemaDefinition,
SlotDefinition,
TypeDefinition,
)
from nwb_linkml.adapters import NamespacesAdapter
from nwb_linkml.io import schema as io
from nwb_linkml.providers import LinkMLProvider, PydanticProvider
from nwb_linkml.providers.linkml import LinkMLSchemaBuild
from nwb_schema_language import Attribute, Dataset, Group
@pytest.fixture(scope="session", params=[{"core_version": "2.7.0", "hdmf_version": "1.8.0"}])
def nwb_core_fixture(request) -> NamespacesAdapter:
nwb_core = io.load_nwb_core(**request.param)
assert (
request.param["core_version"] in nwb_core.versions["core"]
) # 2.6.0 is actually 2.6.0-alpha
assert nwb_core.versions["hdmf-common"] == request.param["hdmf_version"]
return nwb_core
@pytest.fixture(scope="session")
def nwb_core_linkml(nwb_core_fixture, tmp_output_dir) -> LinkMLSchemaBuild:
provider = LinkMLProvider(tmp_output_dir, allow_repo=False, verbose=False)
result = provider.build(ns_adapter=nwb_core_fixture, force=True)
return result["core"]
@pytest.fixture(scope="session")
def nwb_core_module(nwb_core_linkml: LinkMLSchemaBuild, tmp_output_dir) -> ModuleType:
"""
Generated pydantic namespace from nwb core
"""
provider = PydanticProvider(tmp_output_dir, verbose=False)
result = provider.build(nwb_core_linkml.namespace, force=True)
mod = provider.get("core", version=nwb_core_linkml.version, allow_repo=False)
return mod
@dataclass
class TestSchemas:
__test__ = False
core: SchemaDefinition
imported: SchemaDefinition
namespace: SchemaDefinition
core_path: Optional[Path] = None
imported_path: Optional[Path] = None
namespace_path: Optional[Path] = None
@pytest.fixture(scope="module")
def linkml_schema_bare() -> TestSchemas:
schema = TestSchemas(
core=SchemaDefinition(
name="core",
id="core",
version="1.0.1",
imports=["imported", "linkml:types"],
default_prefix="core",
prefixes={"linkml": Prefix("linkml", "https://w3id.org/linkml")},
description="Test core schema",
classes=[
ClassDefinition(
name="MainTopLevel",
description="The main class we are testing!",
is_a="MainThing",
tree_root=True,
attributes=[
SlotDefinition(
name="name",
description="A fixed property that should use Literal and be frozen",
range="string",
required=True,
ifabsent="string(toplevel)",
equals_string="toplevel",
identifier=True,
),
SlotDefinition(
name="inline_dict",
description=(
"This should be inlined as a dictionary despite this class having"
" an identifier"
),
multivalued=True,
inlined=True,
inlined_as_list=False,
any_of=[{"range": "OtherClass"}, {"range": "StillAnotherClass"}],
),
SlotDefinition(
name="named_slot",
description=(
"A slot that should use the Named[] generic to set the name param"
),
annotations=[{"named": True}],
range="OtherClass",
inlined=True,
),
SlotDefinition(
name="value",
description="Main class's array",
range="numeric",
any_of=[
{
"array": ArrayExpression(
dimensions=[
DimensionExpression(alias="x"),
DimensionExpression(alias="y"),
]
)
},
{
"array": ArrayExpression(
dimensions=[
DimensionExpression(alias="x"),
DimensionExpression(alias="y"),
DimensionExpression(alias="z", exact_cardinality=3),
]
)
},
{
"array": ArrayExpression(
dimensions=[
DimensionExpression(alias="x"),
DimensionExpression(alias="y"),
DimensionExpression(alias="z", exact_cardinality=3),
DimensionExpression(alias="a", exact_cardinality=4),
]
)
},
],
),
],
),
ClassDefinition(
name="OtherClass",
description="Another class yno!",
attributes=[
SlotDefinition(name="name", range="string", required=True, identifier=True)
],
),
ClassDefinition(
name="StillAnotherClass",
description="And yet another!",
attributes=[
SlotDefinition(name="name", range="string", required=True, identifier=True)
],
),
],
types=[TypeDefinition(name="numeric", typeof="float")],
),
imported=SchemaDefinition(
name="imported",
id="imported",
version="1.4.5",
default_prefix="core",
imports=["linkml:types"],
prefixes={"linkml": Prefix("linkml", "https://w3id.org/linkml")},
classes=[
ClassDefinition(
name="MainThing",
description="Class imported by our main thing class!",
attributes=[SlotDefinition(name="meta_slot", range="string")],
),
ClassDefinition(name="Arraylike", abstract=True),
],
),
namespace=SchemaDefinition(
name="namespace",
id="namespace",
version="1.1.1",
default_prefix="namespace",
annotations=[
{"tag": "is_namespace", "value": "True"},
{"tag": "namespace", "value": "core"},
],
description="A namespace package that should import all other classes",
imports=["core", "imported"],
),
)
return schema
@pytest.fixture(scope="module")
def linkml_schema(tmp_output_dir_mod, linkml_schema_bare) -> TestSchemas:
"""
A test schema that includes
- Two schemas, one importing from the other
- Arraylike
- Required/static "name" field
- linkml metadata like tree_root
- skipping classes
"""
schema = linkml_schema_bare
test_schema_path = tmp_output_dir_mod / "test_schema"
test_schema_path.mkdir()
core_path = test_schema_path / "core.yaml"
imported_path = test_schema_path / "imported.yaml"
namespace_path = test_schema_path / "namespace.yaml"
schema.core_path = core_path
schema.imported_path = imported_path
schema.namespace_path = namespace_path
yaml_dumper.dump(schema.core, schema.core_path)
yaml_dumper.dump(schema.imported, schema.imported_path)
yaml_dumper.dump(schema.namespace, schema.namespace_path)
return schema
@dataclass
class NWBSchemaTest:
datasets: Dict[str, Dataset] = field(default_factory=dict)
groups: Dict[str, Group] = field(default_factory=dict)
@pytest.fixture()
def nwb_schema() -> NWBSchemaTest:
"""Minimal NWB schema for testing"""
image = Dataset(
neurodata_type_def="Image",
dtype="numeric",
neurodata_type_inc="NWBData",
dims=[["x", "y"], ["x", "y", "r, g, b"], ["x", "y", "r, g, b, a"]],
shape=[[None, None], [None, None, 3], [None, None, 4]],
doc="An image!",
attributes=[
Attribute(dtype="float32", name="resolution", doc="resolution!"),
Attribute(dtype="text", name="description", doc="Description!"),
],
)
images = Group(
neurodata_type_def="Images",
neurodata_type_inc="NWBDataInterface",
default_name="Images",
doc="Images!",
attributes=[Attribute(dtype="text", name="description", doc="description!")],
datasets=[
Dataset(neurodata_type_inc="Image", quantity="+", doc="images!"),
Dataset(
neurodata_type_inc="ImageReferences",
name="order_of_images",
doc="Image references!",
quantity="?",
),
],
)
return NWBSchemaTest(datasets={"image": image}, groups={"images": images})