nwb-linkml/nwb_linkml/tests/test_includes/test_hdmf.py

306 lines
9.8 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
from numpydantic import NDArray, Shape
from nwb_linkml.includes import hdmf
from nwb_linkml.includes.hdmf import DynamicTableMixin, VectorDataMixin, VectorIndexMixin
2024-07-29 23:28:48 +00:00
# FIXME: Make this just be the output of the provider by patching into import machinery
2024-07-29 23:28:48 +00:00
from nwb_linkml.models.pydantic.core.v2_7_0.namespace import (
2024-08-07 09:03:04 +00:00
DynamicTable,
2024-08-06 03:51:52 +00:00
DynamicTableRegion,
ElectrodeGroup,
2024-08-07 09:03:04 +00:00
VectorIndex,
VoltageClampStimulusSeries,
2024-07-29 23:28:48 +00:00
)
2024-08-13 05:59:15 +00:00
from .conftest import _ragged_array
2024-08-06 03:51:52 +00:00
def test_dynamictable_indexing(electrical_series):
"""
Can index values from a dynamictable
"""
series, electrodes = electrical_series
colnames = [
"id",
"x",
"y",
"group",
"group_name",
"location",
"extra_column",
]
dtypes = [
np.dtype("int64"),
np.dtype("float64"),
np.dtype("float64"),
] + ([np.dtype("O")] * 4)
row = electrodes[0]
# successfully get a single row :)
assert row.shape == (1, 7)
assert row.dtypes.values.tolist() == dtypes
assert row.columns.tolist() == colnames
# slice a range of rows
rows = electrodes[0:3]
assert rows.shape == (3, 7)
assert rows.dtypes.values.tolist() == dtypes
assert rows.columns.tolist() == colnames
# get a single column
col = electrodes["y"]
assert all(col.value == [5, 6, 7, 8, 9])
2024-08-06 03:51:52 +00:00
# get a single cell
val = electrodes[0, "y"]
assert val == 5
val = electrodes[0, 2]
assert val == 5
# get a slice of rows and columns
subsection = electrodes[0:3, 0:3]
assert subsection.shape == (3, 3)
assert subsection.columns.tolist() == colnames[0:3]
assert subsection.dtypes.values.tolist() == dtypes[0:3]
2024-08-08 02:22:29 +00:00
def test_dynamictable_ragged(units):
"""
Should be able to index ragged arrays using an implicit _index column
Also tests:
- passing arrays directly instead of wrapping in vectordata/index specifically,
if the models in the fixture instantiate then this works
"""
units, spike_times, spike_idx = units
# ensure we don't pivot to long when indexing
assert units[0].shape[0] == 1
# check that we got the indexing boundaries corrunect
# (and that we are forwarding attr calls to the dataframe by accessing shape
for i in range(units.shape[0]):
assert np.all(units.iloc[i, 0] == spike_times[i])
2024-08-07 09:03:04 +00:00
def test_dynamictable_region_basic(electrical_series):
"""
DynamicTableRegion should be able to refer to a row or rows of another table
itself as a column within a table
"""
2024-08-07 09:03:04 +00:00
series, electrodes = electrical_series
row = series.electrodes[0]
# check that we correctly got the 4th row instead of the 0th row,
# since the indexed table was constructed with inverted indexes because it's a test, ya dummy.
# we will only vaguely check the basic functionality here bc
# a) the indexing behavior of the indexed objects is tested above, and
# b) every other object in the chain is strictly validated,
# so we assume if we got a right shaped df that it is the correct one.
# feel free to @ me when i am wrong about this
2024-08-08 01:56:01 +00:00
assert all(row.id == 4)
2024-08-07 09:03:04 +00:00
assert row.shape == (1, 7)
# and we should still be preserving the model that is the contents of the cell of this row
# so this is a dataframe row with a column "group" that contains an array of ElectrodeGroup
# objects and that's as far as we are going to chase the recursion in this basic indexing test
# ElectrodeGroup is strictly validating so an instance check is all we need.
assert isinstance(row.group.values[0], ElectrodeGroup)
# getting a list of table rows is actually correct behavior here because
# this list of table rows is actually the cell of another table
rows = series.electrodes[0:3]
2024-08-08 02:22:29 +00:00
assert all([all(row.id == idx) for row, idx in zip(rows, [4, 3, 2])])
2024-08-07 09:03:04 +00:00
def test_dynamictable_region_ragged():
"""
2024-08-07 09:03:04 +00:00
Dynamictables can also have indexes so that they are ragged arrays of column rows
"""
spike_times, spike_idx = _ragged_array(24)
spike_times_flat = np.concatenate(spike_times)
2024-08-07 09:03:04 +00:00
# construct a secondary index that selects overlapping segments of the first table
value = np.array([0, 1, 2, 1, 2, 3, 2, 3, 4])
idx = np.array([3, 6, 9])
2024-08-07 09:03:04 +00:00
table = DynamicTable(
name="table",
description="a table what else would it be",
id=np.arange(len(spike_idx)),
timeseries=spike_times_flat,
2024-08-07 09:03:04 +00:00
timeseries_index=spike_idx,
)
region = DynamicTableRegion(
name="dynamictableregion",
description="this field should be optional",
table=table,
value=value,
)
index = VectorIndex(name="index", description="hgggggggjjjj", target=region, value=idx)
region._index = index
rows = region[1]
# i guess this is right?
# the region should be a set of three rows of the table, with a ragged array column timeseries
# like...
#
# id timeseries
# 0 1 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ...
# 1 2 [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, ...
# 2 3 [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, ...
2024-08-07 09:28:06 +00:00
assert rows.shape == (3, 2)
2024-08-07 09:03:04 +00:00
assert all(rows.id == [1, 2, 3])
assert all([all(row[1].timeseries == i) for i, row in zip([1, 2, 3], rows.iterrows())])
2024-08-06 03:51:52 +00:00
def test_dynamictable_append_column():
pass
def test_dynamictable_append_row():
pass
def test_dynamictable_extra_coercion():
"""
Extra fields should be coerced to VectorData and have their
indexing relationships handled when passed as plain arrays.
"""
def test_aligned_dynamictable(intracellular_recordings_table):
"""
Multiple aligned dynamictables should be indexable with a multiindex
"""
# can get a single row.. (check correctness below)
row = intracellular_recordings_table[0]
# can get a single table with its name
stimuli = intracellular_recordings_table["stimuli"]
assert stimuli.shape == (10, 1)
# nab a few rows to make the dataframe
rows = intracellular_recordings_table[0:3]
assert all(
rows.columns
== pd.MultiIndex.from_tuples(
[
("electrodes", "index"),
("electrodes", "electrode"),
("stimuli", "index"),
("stimuli", "stimulus"),
("responses", "index"),
("responses", "response"),
]
)
)
# ensure that we get the actual values from the TimeSeriesReferenceVectorData
# also tested separately
# each individual cell should be an array of VoltageClampStimulusSeries...
# and then we should be able to index within that as well
stims = rows["stimuli", "stimulus"][0]
for i in range(len(stims)):
assert isinstance(stims[i], VoltageClampStimulusSeries)
assert all([i == val for val in stims[i][:]])
# --------------------------------------------------
# Direct mixin tests
# --------------------------------------------------
def test_dynamictable_mixin_indexing():
"""
This is just a placeholder test to say that indexing is tested above
with actual model objects in case i ever ctrl+f for this
"""
pass
def test_dynamictable_mixin_colnames():
"""
Should correctly infer colnames
"""
class MyDT(DynamicTableMixin):
existing_col: NDArray[Shape["* col"], int]
new_col_1 = VectorDataMixin(value=np.arange(10))
new_col_2 = VectorDataMixin(value=np.arange(10))
inst = MyDT(existing_col=np.arange(10), new_col_1=new_col_1, new_col_2=new_col_2)
assert inst.colnames == ["existing_col", "new_col_1", "new_col_2"]
def test_dynamictable_mixin_colnames_index():
"""
Exclude index columns in colnames
"""
class MyDT(DynamicTableMixin):
existing_col: NDArray[Shape["* col"], int]
cols = {
"existing_col": np.arange(10),
"new_col_1": hdmf.VectorData(value=np.arange(10)),
"new_col_2": hdmf.VectorData(value=np.arange(10)),
}
# explicit index with mismatching name
cols["weirdname_index"] = VectorIndexMixin(value=np.arange(10), target=cols["new_col_1"])
# implicit index with matching name
cols["new_col_2_index"] = VectorIndexMixin(value=np.arange(10))
inst = MyDT(**cols)
assert inst.colnames == ["existing_col", "new_col_1", "new_col_2"]
def test_dynamictable_mixin_colnames_ordered():
"""
Should be able to pass explicit order to colnames
"""
class MyDT(DynamicTableMixin):
existing_col: NDArray[Shape["* col"], int]
cols = {
"existing_col": np.arange(10),
"new_col_1": hdmf.VectorData(value=np.arange(10)),
"new_col_2": hdmf.VectorData(value=np.arange(10)),
"new_col_3": hdmf.VectorData(value=np.arange(10)),
}
order = ["new_col_2", "existing_col", "new_col_1", "new_col_3"]
inst = MyDT(**cols, colnames=order)
assert inst.colnames == order
# this should get reflected in the columns selector and the df produces
assert all([key1 == key2 for key1, key2 in zip(order, inst._columns)])
assert all(inst[0].columns == order)
# partial lists should append unnamed columsn at the end
partial_order = ["new_col_3", "new_col_2"]
inst = MyDT(**cols, colnames=partial_order)
assert inst.colnames == [*partial_order, "existing_col", "new_col_1"]
def test_dynamictable_mixin_getattr():
"""
Dynamictable should forward unknown getattr requests to the df
"""
class MyDT(DynamicTableMixin):
existing_col: NDArray[Shape["* col"], int]
class AModel(DynamicTableMixin):
col: hdmf.VectorData[NDArray[Shape["3, 3"], int]]
col = hdmf.VectorData(value=np.arange(10))
inst = MyDT(existing_col=col)
# regular lookup for attrs that exist
# pdb.set_trace()
# inst.existing_col
# assert inst.existing_col == col
# df lookup otherwise
# inst.columns