mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 14:14:27 +00:00
121 lines
3.6 KiB
Python
121 lines
3.6 KiB
Python
|
from typing import Tuple
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from nwb_linkml.models import (
|
||
|
ElectricalSeries,
|
||
|
ExtracellularEphysElectrodes,
|
||
|
Device,
|
||
|
ElectrodeGroup,
|
||
|
DynamicTableRegion,
|
||
|
Units,
|
||
|
IntracellularElectrode,
|
||
|
IntracellularElectrodesTable,
|
||
|
IntracellularResponsesTable,
|
||
|
IntracellularStimuliTable,
|
||
|
IntracellularRecordingsTable,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def electrical_series() -> Tuple["ElectricalSeries", "ExtracellularEphysElectrodes"]:
|
||
|
"""
|
||
|
Demo electrical series with adjoining electrodes
|
||
|
"""
|
||
|
n_electrodes = 5
|
||
|
n_times = 100
|
||
|
data = np.arange(0, n_electrodes * n_times).reshape(n_times, n_electrodes).astype(float)
|
||
|
timestamps = np.linspace(0, 1, n_times)
|
||
|
|
||
|
device = Device(name="my electrode")
|
||
|
|
||
|
# electrode group is the physical description of the electrodes
|
||
|
electrode_group = ElectrodeGroup(
|
||
|
name="GroupA",
|
||
|
device=device,
|
||
|
description="an electrode group",
|
||
|
location="you know where it is",
|
||
|
)
|
||
|
|
||
|
# make electrodes tables
|
||
|
electrodes = ExtracellularEphysElectrodes(
|
||
|
description="idk these are also electrodes",
|
||
|
id=np.arange(0, n_electrodes),
|
||
|
x=np.arange(0, n_electrodes).astype(float),
|
||
|
y=np.arange(n_electrodes, n_electrodes * 2).astype(float),
|
||
|
group=[electrode_group] * n_electrodes,
|
||
|
group_name=[electrode_group.name] * n_electrodes,
|
||
|
location=[str(i) for i in range(n_electrodes)],
|
||
|
extra_column=["sup"] * n_electrodes,
|
||
|
)
|
||
|
|
||
|
electrical_series = ElectricalSeries(
|
||
|
name="my recording!",
|
||
|
electrodes=DynamicTableRegion(
|
||
|
table=electrodes,
|
||
|
value=np.arange(n_electrodes - 1, -1, step=-1),
|
||
|
name="electrodes",
|
||
|
description="hey",
|
||
|
),
|
||
|
timestamps=timestamps,
|
||
|
data=data,
|
||
|
)
|
||
|
return electrical_series, electrodes
|
||
|
|
||
|
|
||
|
def _ragged_array(n_units: int) -> tuple[list[np.ndarray], np.ndarray]:
|
||
|
generator = np.random.default_rng()
|
||
|
spike_times = [
|
||
|
np.full(shape=generator.integers(10, 50), fill_value=i, dtype=float) for i in range(n_units)
|
||
|
]
|
||
|
spike_idx = []
|
||
|
for i in range(n_units):
|
||
|
if i == 0:
|
||
|
spike_idx.append(len(spike_times[0]))
|
||
|
else:
|
||
|
spike_idx.append(len(spike_times[i]) + spike_idx[i - 1])
|
||
|
spike_idx = np.array(spike_idx)
|
||
|
return spike_times, spike_idx
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[True, False])
|
||
|
def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]:
|
||
|
"""
|
||
|
Test case for units
|
||
|
|
||
|
Parameterized by extra_column because pandas likes to pivot dataframes
|
||
|
to long when there is only one column and it's not len() == 1
|
||
|
"""
|
||
|
spike_times, spike_idx = _ragged_array(24)
|
||
|
|
||
|
spike_times_flat = np.concatenate(spike_times)
|
||
|
|
||
|
kwargs = {
|
||
|
"description": "units!!!!",
|
||
|
"spike_times": spike_times_flat,
|
||
|
"spike_times_index": spike_idx,
|
||
|
}
|
||
|
if request.param:
|
||
|
kwargs["extra_column"] = ["hey!"] * 24
|
||
|
units = Units(**kwargs)
|
||
|
return units, spike_times, spike_idx
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def intracellular_recordings_table() -> IntracellularRecordingsTable:
|
||
|
n_recordings = 10
|
||
|
device = Device(name="my device")
|
||
|
electrode = IntracellularElectrode(
|
||
|
name="my_electrode", description="an electrode", device=device
|
||
|
)
|
||
|
electrodes = IntracellularElectrodesTable(
|
||
|
name="intracellular_electrodes", electrode=[electrode] * n_recordings
|
||
|
)
|
||
|
stimuli = IntracellularStimuliTable(
|
||
|
name="intracellular_stimuli",
|
||
|
)
|
||
|
responses = IntracellularResponsesTable()
|
||
|
|
||
|
recordings_table = IntracellularRecordingsTable()
|