mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
regenerate models
This commit is contained in:
parent
ce096db349
commit
10965743eb
12 changed files with 2400 additions and 528 deletions
|
@ -148,31 +148,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -203,9 +234,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -220,20 +259,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -244,9 +290,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -260,10 +307,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -312,6 +355,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -329,11 +373,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -345,31 +393,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -396,6 +453,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -420,6 +479,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -455,19 +516,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -499,8 +562,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -536,15 +599,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -562,7 +629,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -580,25 +647,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -625,6 +745,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -148,31 +148,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -203,9 +234,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -220,20 +259,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -244,9 +290,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -260,10 +307,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -312,6 +355,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -329,11 +373,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -345,31 +393,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -396,6 +453,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -420,6 +479,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -455,19 +516,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -499,8 +562,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -536,15 +599,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -562,7 +629,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -580,25 +647,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -625,6 +745,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -148,31 +148,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -203,9 +234,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -220,20 +259,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -244,9 +290,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -260,10 +307,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -312,6 +355,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -329,11 +373,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -345,31 +393,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -396,6 +453,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -420,6 +479,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -455,19 +516,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -499,8 +562,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -536,15 +599,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -562,7 +629,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -580,25 +647,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -625,6 +745,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
|
@ -149,31 +149,62 @@ class VectorIndexMixin(BaseModel, Generic[T]):
|
|||
kwargs["value"] = value
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _getitem_helper(self, arg: int) -> Union[list, NDArray]:
|
||||
def _slice(self, arg: int) -> slice:
|
||||
"""
|
||||
Mimicking :func:`hdmf.common.table.VectorIndex.__getitem_helper`
|
||||
"""
|
||||
start = 0 if arg == 0 else self.value[arg - 1]
|
||||
end = self.value[arg]
|
||||
return self.target.value[slice(start, end)]
|
||||
return slice(start, end)
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
if self.target is None:
|
||||
return self.value[item]
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self._getitem_helper(item)
|
||||
return self.target.value[self._slice(item)]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self._getitem_helper(i) for i in item]
|
||||
else:
|
||||
return [self.target.value[self._slice(i)] for i in item]
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {item}")
|
||||
|
||||
def __setitem__(self, key: Union[int, slice], value: Any) -> None:
|
||||
if self._index:
|
||||
# VectorIndex is the thing that knows how to do the slicing
|
||||
self._index[key] = value
|
||||
"""
|
||||
Set a value on the :attr:`.target` .
|
||||
|
||||
.. note::
|
||||
|
||||
Even though we correct the indexing logic from HDMF where the
|
||||
_data_ is the thing that is provided by the API when one accesses
|
||||
table.data (rather than table.data_index as hdmf does),
|
||||
we will set to the target here (rather than to the index)
|
||||
to be consistent. To modify the index, modify `self.value` directly
|
||||
|
||||
"""
|
||||
if self.target:
|
||||
if isinstance(key, (int, np.integer)):
|
||||
self.target.value[self._slice(key)] = value
|
||||
elif isinstance(key, (slice, Iterable)):
|
||||
if isinstance(key, slice):
|
||||
key = range(*key.indices(len(self.value)))
|
||||
|
||||
if isinstance(value, Iterable):
|
||||
if len(key) != len(value):
|
||||
raise ValueError(
|
||||
"Can only assign equal-length iterable to a slice, manually index the"
|
||||
" ragged values of of the target VectorData object if you need more"
|
||||
" control"
|
||||
)
|
||||
for i, subval in zip(key, value):
|
||||
self.target.value[self._slice(i)] = subval
|
||||
else:
|
||||
for i in key:
|
||||
self.target.value[self._slice(i)] = value
|
||||
else: # pragma: no cover
|
||||
raise AttributeError(f"Could not index with {key}")
|
||||
|
||||
else:
|
||||
self.value[key] = value
|
||||
|
||||
|
@ -204,9 +235,17 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
table: "DynamicTableMixin"
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[NDArray[Shape["*"], int]] = None
|
||||
|
||||
def __getitem__(self, item: Union[int, slice, Iterable]) -> Any:
|
||||
@overload
|
||||
def __getitem__(self, item: int) -> pd.DataFrame: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: Union[slice, Iterable]) -> List[pd.DataFrame]: ...
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, slice, Iterable]
|
||||
) -> Union[pd.DataFrame, List[pd.DataFrame]]:
|
||||
"""
|
||||
Use ``value`` to index the table. Works analogously to ``VectorIndex`` despite
|
||||
this being a subclass of ``VectorData``
|
||||
|
@ -221,20 +260,27 @@ class DynamicTableRegionMixin(BaseModel):
|
|||
# so we index table with an array to construct
|
||||
# a list of lists of rows
|
||||
return [self.table[idx] for idx in self._index[item]]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
else:
|
||||
if isinstance(item, (int, np.integer)):
|
||||
return self.table[self.value[item]]
|
||||
elif isinstance(item, (slice, Iterable)):
|
||||
# Return a list of dataframe rows because this is most often used
|
||||
# as a column in a DynamicTable, so while it would normally be
|
||||
# ideal to just return the slice as above as a single df,
|
||||
# we need each row to be separate to fill the column
|
||||
if isinstance(item, slice):
|
||||
item = range(*item.indices(len(self.value)))
|
||||
return [self.table[self.value[i]] for i in item]
|
||||
else:
|
||||
else: # pragma: no cover
|
||||
raise ValueError(f"Dont know how to index with {item}, need an int or a slice")
|
||||
|
||||
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||
self.table[self.value[key]] = value
|
||||
# self.table[self.value[key]] = value
|
||||
raise NotImplementedError(
|
||||
"Assigning values to tables is not implemented yet!"
|
||||
) # pragma: no cover
|
||||
|
||||
|
||||
class DynamicTableMixin(BaseModel):
|
||||
|
@ -245,9 +291,10 @@ class DynamicTableMixin(BaseModel):
|
|||
but simplifying along the way :)
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"id",
|
||||
"name",
|
||||
"colnames",
|
||||
"description",
|
||||
|
@ -261,10 +308,6 @@ class DynamicTableMixin(BaseModel):
|
|||
def _columns(self) -> Dict[str, Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return {k: getattr(self, k) for i, k in enumerate(self.colnames)}
|
||||
|
||||
@property
|
||||
def _columns_list(self) -> List[Union[list, "NDArray", "VectorDataMixin"]]:
|
||||
return [getattr(self, k) for i, k in enumerate(self.colnames)]
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: str) -> Union[list, "NDArray", "VectorDataMixin"]: ...
|
||||
|
||||
|
@ -313,6 +356,7 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
data = self._slice_range(item)
|
||||
index = self.id[item]
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -330,11 +374,15 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
index = self.id[rows]
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return pd.DataFrame(data)
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
|
@ -346,31 +394,40 @@ class DynamicTableMixin(BaseModel):
|
|||
data = {}
|
||||
for k in cols:
|
||||
if isinstance(rows, np.ndarray):
|
||||
# help wanted - this is probably cr*zy slow
|
||||
val = [self._columns[k][i] for i in rows]
|
||||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
# scalars need to be wrapped in series for pandas
|
||||
# do this by the iterability of the rows index not the value because
|
||||
# we want all lengths from this method to be equal, and if the rows are
|
||||
# scalar, that means length == 1
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = pd.Series([val])
|
||||
val = [val]
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
raise NotImplementedError("TODO")
|
||||
raise NotImplementedError("TODO") # pragma: no cover
|
||||
|
||||
def __setattr__(self, key: str, value: Union[list, "NDArray", "VectorData"]):
|
||||
"""
|
||||
Add a column, appending it to ``colnames``
|
||||
"""
|
||||
# don't use this while building the model
|
||||
if not getattr(self, "__pydantic_complete__", False):
|
||||
if not getattr(self, "__pydantic_complete__", False): # pragma: no cover
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
if key not in self.model_fields_set and not key.endswith("_index"):
|
||||
self.colnames.append(key)
|
||||
|
||||
# we get a recursion error if we setattr without having first added to
|
||||
# extras if we need it to be there
|
||||
if key not in self.model_fields and key not in self.__pydantic_extra__:
|
||||
self.__pydantic_extra__[key] = value
|
||||
|
||||
return super().__setattr__(key, value)
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
|
@ -397,6 +454,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
|
@ -421,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if not isinstance(model, dict):
|
||||
return model
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k
|
||||
|
@ -456,19 +517,21 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
|
||||
if isinstance(model, dict):
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e: # pragma: no cover
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -500,8 +563,8 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._columns.values()]
|
||||
assert [length == lengths[0] for length in lengths], (
|
||||
lengths = [len(v) for v in self._columns.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||
)
|
||||
|
@ -537,15 +600,19 @@ class DynamicTableMixin(BaseModel):
|
|||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
raise e from None
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
class AlignedDynamicTableMixin(BaseModel):
|
||||
"""
|
||||
Mixin to allow indexing multiple tables that are aligned on a common ID
|
||||
|
||||
A great deal of code duplication because we need to avoid diamond inheritance
|
||||
and also it's not so easy to copy a pydantic validator method.
|
||||
"""
|
||||
|
||||
__pydantic_extra__: Dict[str, "DynamicTableMixin"]
|
||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||
__pydantic_extra__: Dict[str, Union["DynamicTableMixin", "VectorDataMixin", "VectorIndexMixin"]]
|
||||
|
||||
NON_CATEGORY_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
|
@ -563,7 +630,7 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
return {k: getattr(self, k) for i, k in enumerate(self.categories)}
|
||||
|
||||
def __getitem__(
|
||||
self, item: Union[int, str, slice, Tuple[Union[int, slice], str]]
|
||||
self, item: Union[int, str, slice, NDArray[Shape["*"], int], Tuple[Union[int, slice], str]]
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Mimic hdmf:
|
||||
|
@ -581,25 +648,78 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
elif isinstance(item, tuple) and len(item) == 2 and isinstance(item[1], str):
|
||||
# get a slice of a single table
|
||||
return self._categories[item[1]][item[0]]
|
||||
elif isinstance(item, (int, slice)):
|
||||
elif isinstance(item, (int, slice, Iterable)):
|
||||
# get a slice of all the tables
|
||||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
tables = [ids] + [table[item].reset_index() for table in self._categories.values()]
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
if isinstance(table, pd.DataFrame):
|
||||
table = table.reset_index()
|
||||
elif isinstance(table, np.ndarray):
|
||||
table = pd.DataFrame({category_name: [table]})
|
||||
elif isinstance(table, Iterable):
|
||||
table = pd.DataFrame({category_name: table})
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Don't know how to construct category table for {category_name}"
|
||||
)
|
||||
tables.append(table)
|
||||
|
||||
names = [self.name] + self.categories
|
||||
# construct below in case we need to support array indexing in the future
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Dont know how to index with {item}, "
|
||||
"need an int, string, slice, or tuple[int | slice, str]"
|
||||
"need an int, string, slice, ndarray, or tuple[int | slice, str]"
|
||||
)
|
||||
|
||||
df = pd.concat(tables, axis=1, keys=names)
|
||||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
"""Try and use pandas df attrs if we don't have them"""
|
||||
try:
|
||||
return BaseModel.__getattr__(self, item)
|
||||
except AttributeError as e:
|
||||
try:
|
||||
return getattr(self[:], item)
|
||||
except AttributeError:
|
||||
raise e from None
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Use the id column to determine length.
|
||||
|
||||
If the id column doesn't represent length accurately, it's a bug
|
||||
"""
|
||||
return len(self.id)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_id(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Create ID column if not provided
|
||||
"""
|
||||
if "id" not in model:
|
||||
lengths = []
|
||||
for key, val in model.items():
|
||||
# don't get lengths of columns with an index
|
||||
if (
|
||||
f"{key}_index" in model
|
||||
or (isinstance(val, VectorData) and val._index)
|
||||
or key in cls.NON_CATEGORY_FIELDS
|
||||
):
|
||||
continue
|
||||
lengths.append(len(val))
|
||||
model["id"] = np.arange(np.max(lengths))
|
||||
|
||||
return model
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
|
@ -626,6 +746,42 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that any implicitly indexed columns are linked, and create backlinks
|
||||
"""
|
||||
for key, col in self._categories.items():
|
||||
if isinstance(col, VectorData):
|
||||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_CATEGORY_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
field_name == f"{key}_index" or field.target is col
|
||||
):
|
||||
idx = field
|
||||
break
|
||||
if idx is not None:
|
||||
col._index = idx
|
||||
idx.target = col
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length_cols(self) -> "DynamicTableMixin":
|
||||
"""
|
||||
Ensure that all columns are equal length
|
||||
"""
|
||||
lengths = [len(v) for v in self._categories.values()] + [len(self.id)]
|
||||
assert all([length == lengths[0] for length in lengths]), (
|
||||
"Columns are not of equal length! "
|
||||
f"Got colnames:\n{self.categories}\nand lengths: {lengths}"
|
||||
)
|
||||
return self
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue