mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
Actually generating some translations at this point
This commit is contained in:
parent
3996f319e2
commit
170a424fb1
12 changed files with 476 additions and 38 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -160,3 +160,4 @@ cython_debug/
|
||||||
#.idea/
|
#.idea/
|
||||||
|
|
||||||
nwb.schema.json
|
nwb.schema.json
|
||||||
|
__tmp__
|
||||||
|
|
0
nwb_linkml/adapters/__init__.py
Normal file
0
nwb_linkml/adapters/__init__.py
Normal file
71
nwb_linkml/adapters/adapter.py
Normal file
71
nwb_linkml/adapters/adapter.py
Normal file
|
@ -0,0 +1,71 @@
|
||||||
|
"""
|
||||||
|
Base class for adapters
|
||||||
|
"""
|
||||||
|
from typing import List, Dict, Type, Generator, Any, Tuple
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
class Adapter(BaseModel):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def walk(self, input: BaseModel | list | dict):
|
||||||
|
yield input
|
||||||
|
if isinstance(input, BaseModel):
|
||||||
|
for key in input.__fields__.keys():
|
||||||
|
val = getattr(input, key)
|
||||||
|
yield (key, val)
|
||||||
|
if isinstance(val, (BaseModel, dict, list)):
|
||||||
|
yield from self.walk(val)
|
||||||
|
|
||||||
|
elif isinstance(input, dict):
|
||||||
|
for key, val in input.items():
|
||||||
|
yield (key, val)
|
||||||
|
if isinstance(val, (BaseModel, dict, list)):
|
||||||
|
yield from self.walk(val)
|
||||||
|
|
||||||
|
elif isinstance(input, (list, tuple)):
|
||||||
|
yield input
|
||||||
|
for val in input:
|
||||||
|
yield from self.walk(val)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# do nothing, is a string or whatever
|
||||||
|
pass
|
||||||
|
|
||||||
|
def walk_fields(self, input: BaseModel | list | dict, field: str):
|
||||||
|
for item in self.walk(input):
|
||||||
|
if isinstance(item, tuple) and item[0] == field and item[1] is not None:
|
||||||
|
yield item[1]
|
||||||
|
|
||||||
|
|
||||||
|
def walk_types(self, input: BaseModel | list | dict, get_type: Type | List[Type] | Tuple[Type]):
|
||||||
|
if not isinstance(get_type, (list, tuple)):
|
||||||
|
get_type = [get_type]
|
||||||
|
|
||||||
|
for item in self.walk(input):
|
||||||
|
if any([type(item) == atype for atype in get_type]):
|
||||||
|
yield item
|
||||||
|
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# if isinstance(input, BaseModel):
|
||||||
|
# for key in input.__fields__.keys():
|
||||||
|
# val = getattr(input, key)
|
||||||
|
# if key == field:
|
||||||
|
# yield val
|
||||||
|
# if isinstance(val, (BaseModel, dict, list)):
|
||||||
|
# yield from self.walk(val, field)
|
||||||
|
#
|
||||||
|
# elif isinstance(input, dict):
|
||||||
|
# for key, val in input.items():
|
||||||
|
# if key == field:
|
||||||
|
# yield val
|
||||||
|
# if isinstance(val, (BaseModel, dict, list)):
|
||||||
|
# yield from self.walk(val, field)
|
||||||
|
#
|
||||||
|
# elif isinstance(input, (list, tuple)):
|
||||||
|
# for val in input:
|
||||||
|
# yield from self.walk(val, field)
|
||||||
|
#
|
||||||
|
# else:
|
||||||
|
# # do nothing, is a string or whatever
|
||||||
|
# pass
|
36
nwb_linkml/adapters/classes.py
Normal file
36
nwb_linkml/adapters/classes.py
Normal file
|
@ -0,0 +1,36 @@
|
||||||
|
"""
|
||||||
|
Adapters to linkML classes
|
||||||
|
"""
|
||||||
|
|
||||||
|
from nwb_schema_language import Dataset, Group
|
||||||
|
from nwb_linkml.adapters.adapter import Adapter
|
||||||
|
from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition
|
||||||
|
|
||||||
|
|
||||||
|
class ClassAdapter(Adapter):
|
||||||
|
"""
|
||||||
|
Adapter to class-like things in linkml, including datasets and groups
|
||||||
|
"""
|
||||||
|
cls: Dataset | Group
|
||||||
|
|
||||||
|
def build(self) -> ClassDefinition:
|
||||||
|
if self.cls.neurodata_type_def:
|
||||||
|
name = self.cls.neurodata_type_def
|
||||||
|
else:
|
||||||
|
name = self.cls.name
|
||||||
|
|
||||||
|
attrs = [
|
||||||
|
SlotDefinition(
|
||||||
|
name=attr.name,
|
||||||
|
description=attr.doc,
|
||||||
|
|
||||||
|
) for attr in self.cls.attributes
|
||||||
|
]
|
||||||
|
|
||||||
|
cls = ClassDefinition(
|
||||||
|
name = name,
|
||||||
|
is_a = self.cls.neurodata_type_inc,
|
||||||
|
description=self.cls.doc,
|
||||||
|
attributes=attrs
|
||||||
|
)
|
||||||
|
return cls
|
81
nwb_linkml/adapters/namespaces.py
Normal file
81
nwb_linkml/adapters/namespaces.py
Normal file
|
@ -0,0 +1,81 @@
|
||||||
|
"""
|
||||||
|
Namespaces adapter
|
||||||
|
|
||||||
|
Wraps the :class:`nwb_schema_language.Namespaces` and other objects with convenience methods
|
||||||
|
for extracting information and generating translated schema
|
||||||
|
"""
|
||||||
|
import pdb
|
||||||
|
from typing import List, Optional
|
||||||
|
from pydantic import BaseModel, Field, validator
|
||||||
|
from pprint import pformat
|
||||||
|
|
||||||
|
from nwb_schema_language import Namespaces
|
||||||
|
|
||||||
|
from nwb_linkml.adapters.adapter import Adapter
|
||||||
|
from nwb_linkml.adapters.schema import SchemaAdapter
|
||||||
|
|
||||||
|
class NamespacesAdapter(Adapter):
|
||||||
|
namespaces: Namespaces
|
||||||
|
schemas: List[SchemaAdapter]
|
||||||
|
imported: List['NamespacesAdapter'] = Field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super(NamespacesAdapter, self).__init__(**kwargs)
|
||||||
|
self._populate_schema_namespaces()
|
||||||
|
|
||||||
|
def _populate_schema_namespaces(self):
|
||||||
|
# annotate for each schema which namespace imports it
|
||||||
|
for sch in self.schemas:
|
||||||
|
# imports seem to always be from same folder, so we can just use name part
|
||||||
|
sch_name = sch.path.name
|
||||||
|
# find which namespace imports this schema file
|
||||||
|
for ns in self.namespaces.namespaces:
|
||||||
|
sources = [sch.source for sch in ns.schema_]
|
||||||
|
if sch_name in sources:
|
||||||
|
sch.namespace = ns.name
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def find_type_source(self, name:str) -> SchemaAdapter:
|
||||||
|
"""
|
||||||
|
Given some neurodata_type_inc, find the schema that it's defined in.
|
||||||
|
"""
|
||||||
|
# First check within the main schema
|
||||||
|
internal_matches = []
|
||||||
|
for schema in self.schemas:
|
||||||
|
class_names = [cls.neurodata_type_def for cls in schema.created_classes]
|
||||||
|
if name in class_names:
|
||||||
|
internal_matches.append(schema)
|
||||||
|
|
||||||
|
import_matches = []
|
||||||
|
for imported_ns in self.imported:
|
||||||
|
for schema in imported_ns.schemas:
|
||||||
|
class_names = [cls.neurodata_type_def for cls in schema.created_classes]
|
||||||
|
if name in class_names:
|
||||||
|
import_matches.append(schema)
|
||||||
|
|
||||||
|
all_matches = [*internal_matches, *import_matches]
|
||||||
|
|
||||||
|
if len(all_matches)>1:
|
||||||
|
pdb.set_trace()
|
||||||
|
raise KeyError(f"Found multiple schemas in namespace that define {name}:\ninternal: {pformat(internal_matches)}\nimported:{pformat(import_matches)}")
|
||||||
|
elif len(all_matches) == 1:
|
||||||
|
return all_matches[0]
|
||||||
|
else:
|
||||||
|
raise KeyError(f"No schema found that define {name}")
|
||||||
|
|
||||||
|
def populate_imports(self):
|
||||||
|
"""
|
||||||
|
Populate the imports that are needed for each schema file
|
||||||
|
|
||||||
|
"""
|
||||||
|
for sch in self.schemas:
|
||||||
|
for needs in sch.needed_imports:
|
||||||
|
# shouldn't be recursive references, since imports should form a tree
|
||||||
|
depends_on = self.find_type_source(needs)
|
||||||
|
if depends_on not in sch.imports:
|
||||||
|
sch.imports.append(depends_on)
|
||||||
|
|
||||||
|
|
95
nwb_linkml/adapters/schema.py
Normal file
95
nwb_linkml/adapters/schema.py
Normal file
|
@ -0,0 +1,95 @@
|
||||||
|
"""
|
||||||
|
Since NWB doesn't necessarily have a term for a single nwb schema file, we're going
|
||||||
|
to call them "schema" objects
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Optional, List, TYPE_CHECKING
|
||||||
|
from pathlib import Path
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from nwb_linkml.adapters.adapter import Adapter
|
||||||
|
from nwb_linkml.adapters.classes import ClassAdapter
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
||||||
|
|
||||||
|
from nwb_schema_language import Group, Dataset
|
||||||
|
|
||||||
|
from linkml_runtime.linkml_model import SchemaDefinition
|
||||||
|
|
||||||
|
class SchemaAdapter(Adapter):
|
||||||
|
"""
|
||||||
|
An individual schema file in nwb_schema_language
|
||||||
|
"""
|
||||||
|
path: Path
|
||||||
|
groups: List[Group] = Field(default_factory=list)
|
||||||
|
datasets: List[Dataset] = Field(default_factory=list)
|
||||||
|
imports: List['SchemaAdapter'] = Field(default_factory=list)
|
||||||
|
namespace: Optional[str] = None
|
||||||
|
"""Populated by NamespacesAdapter"""
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self) -> str:
|
||||||
|
return '.'.join([self.namespace, self.path.with_suffix('').name])
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
out_str = '\n' + self.name + '\n'
|
||||||
|
out_str += '-'*len(self.name) + '\n'
|
||||||
|
if len(self.imports) > 0:
|
||||||
|
out_str += "Imports:\n"
|
||||||
|
out_str += " " + ', '.join([i.name for i in self.imports]) + '\n'
|
||||||
|
|
||||||
|
out_str += 'Groups:\n'
|
||||||
|
out_str += ' ' + ', '.join([g.neurodata_type_def for g in self.groups])
|
||||||
|
out_str += '\n'
|
||||||
|
out_str += 'Datasets:\n'
|
||||||
|
out_str += ' ' + ', '.join([d.neurodata_type_def for d in self.datasets])
|
||||||
|
out_str += "\n"
|
||||||
|
|
||||||
|
return out_str
|
||||||
|
|
||||||
|
def build(self) -> SchemaDefinition:
|
||||||
|
"""
|
||||||
|
Make the LinkML representation for this schema file
|
||||||
|
|
||||||
|
Things that will be populated later
|
||||||
|
- `id` (but need to have a placeholder to instantiate)
|
||||||
|
- `version`
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
classes = [ClassAdapter(cls=dset) for dset in self.datasets]
|
||||||
|
classes.extend(ClassAdapter(cls=group) for group in self.groups)
|
||||||
|
built_classes = [c.build() for c in classes]
|
||||||
|
|
||||||
|
|
||||||
|
sch = SchemaDefinition(
|
||||||
|
name = self.name,
|
||||||
|
id = self.name,
|
||||||
|
imports = [i.name for i in self.imports],
|
||||||
|
classes=built_classes
|
||||||
|
)
|
||||||
|
return sch
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def created_classes(self) -> List[Group|Dataset]:
|
||||||
|
classes = [t for t in self.walk_types([self.groups, self.datasets], (Group, Dataset)) if t.neurodata_type_def is not None]
|
||||||
|
return classes
|
||||||
|
|
||||||
|
@property
|
||||||
|
def needed_imports(self) -> List[str]:
|
||||||
|
"""
|
||||||
|
Classes that need to be imported from other namespaces
|
||||||
|
|
||||||
|
TODO:
|
||||||
|
- Need to also check classes used in links/references
|
||||||
|
|
||||||
|
"""
|
||||||
|
type_incs = self.walk_fields(self, 'neurodata_type_inc')
|
||||||
|
definitions = [c.neurodata_type_def for c in self.created_classes]
|
||||||
|
need = [inc for inc in type_incs if inc not in definitions]
|
||||||
|
return need
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -9,17 +9,13 @@ import warnings
|
||||||
from linkml_runtime.loaders import yaml_loader
|
from linkml_runtime.loaders import yaml_loader
|
||||||
import yaml
|
import yaml
|
||||||
|
|
||||||
from nwb_schema_language import Namespaces, Namespace, Group, Dataset
|
from nwb_schema_language import Namespaces, Group, Dataset
|
||||||
from nwb_linkml.namespaces import GitRepo, NamespaceRepo, NWB_CORE_REPO, HDMF_COMMON_REPO
|
from nwb_linkml.namespaces import NamespaceRepo, NWB_CORE_REPO, HDMF_COMMON_REPO
|
||||||
from nwb_linkml.maps import preload
|
from nwb_linkml.maps import preload
|
||||||
from nwb_linkml.map import PHASES, Map
|
from nwb_linkml.map import PHASES, Map
|
||||||
|
from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
||||||
|
from nwb_linkml.adapters.schema import SchemaAdapter
|
||||||
|
|
||||||
class NamespaceBundle(TypedDict):
|
|
||||||
"""
|
|
||||||
A complete namespaces file and all indicated schema files
|
|
||||||
"""
|
|
||||||
namespace: Namespaces
|
|
||||||
schema: Dict[str, List[Dataset | Group]]
|
|
||||||
|
|
||||||
def load_yaml(path:Path) -> dict:
|
def load_yaml(path:Path) -> dict:
|
||||||
with open(path, 'r') as file:
|
with open(path, 'r') as file:
|
||||||
|
@ -43,30 +39,34 @@ def load_namespaces(path:Path|NamespaceRepo) -> Namespaces:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_schema_file(path:Path) -> List[Dataset | Group]:
|
def load_schema_file(path:Path) -> SchemaAdapter:
|
||||||
source = load_yaml(path)
|
source = load_yaml(path)
|
||||||
|
|
||||||
schema = []
|
datasets = []
|
||||||
|
|
||||||
for dataset in source.get('datasets', []):
|
for dataset in source.get('datasets', []):
|
||||||
try:
|
try:
|
||||||
schema.append(Dataset(**dataset))
|
datasets.append(Dataset(**dataset))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pprint(dataset)
|
pprint(dataset)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
|
groups = []
|
||||||
for group in source.get('groups', []):
|
for group in source.get('groups', []):
|
||||||
try:
|
try:
|
||||||
schema.append(Group(**group))
|
groups.append(Group(**group))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pprint(group)
|
pprint(group)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
#schema.extend([Dataset(**dataset) for dataset in source.get('datasets', [])])
|
schema = SchemaAdapter(
|
||||||
#schema.extend([Group(**group) for group in source.get('groups', [])])
|
path=path,
|
||||||
|
datasets=datasets,
|
||||||
|
groups=groups
|
||||||
|
)
|
||||||
return schema
|
return schema
|
||||||
|
|
||||||
def load_namespace_schema(namespace: Namespace | Namespaces, path:Path=Path('.')) -> Dict[str, List[Dataset | Group]]:
|
def load_namespace_schema(namespace: Namespaces, path:Path=Path('.')) -> NamespacesAdapter:
|
||||||
"""
|
"""
|
||||||
Load all schema referenced by a namespace file
|
Load all schema referenced by a namespace file
|
||||||
|
|
||||||
|
@ -75,32 +75,31 @@ def load_namespace_schema(namespace: Namespace | Namespaces, path:Path=Path('.')
|
||||||
path (:class:`pathlib.Path`): Location of the namespace file - all relative paths are interpreted relative to this
|
path (:class:`pathlib.Path`): Location of the namespace file - all relative paths are interpreted relative to this
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[Union[Dataset|Group]]
|
:class:`.NamespacesAdapter`
|
||||||
"""
|
"""
|
||||||
if isinstance(namespace, Namespace):
|
|
||||||
ns_iter = [namespace]
|
|
||||||
elif isinstance(namespace, Namespaces):
|
|
||||||
ns_iter = namespace.namespaces
|
|
||||||
else:
|
|
||||||
raise TypeError("Need to pass a namespace or namespaces :)")
|
|
||||||
|
|
||||||
path = Path(path).resolve()
|
path = Path(path).resolve()
|
||||||
if path.is_file():
|
if path.is_file():
|
||||||
# given the namespace file itself, so find paths relative to its directory
|
# given the namespace file itself, so find paths relative to its directory
|
||||||
path = path.parent
|
path = path.parent
|
||||||
|
|
||||||
sch = {}
|
sch = []
|
||||||
for ns in ns_iter:
|
for ns in namespace.namespaces:
|
||||||
for schema in ns.schema_:
|
for schema in ns.schema_:
|
||||||
if schema.source is None:
|
if schema.source is None:
|
||||||
warnings.warn(f"No source specified for {schema}")
|
warnings.warn(f"No source specified for {schema}")
|
||||||
continue
|
continue
|
||||||
yml_file = (path / schema.source).resolve()
|
yml_file = (path / schema.source).resolve()
|
||||||
sch[schema.source] = load_schema_file(yml_file)
|
sch.append(load_schema_file(yml_file))
|
||||||
|
|
||||||
return sch
|
adapter = NamespacesAdapter(
|
||||||
|
namespaces=namespace,
|
||||||
|
schemas=sch
|
||||||
|
)
|
||||||
|
|
||||||
def load_nwb_core() -> Dict[str, NamespaceBundle]:
|
return adapter
|
||||||
|
|
||||||
|
def load_nwb_core() -> NamespacesAdapter:
|
||||||
# First get hdmf-common:
|
# First get hdmf-common:
|
||||||
hdmf_ns_file = HDMF_COMMON_REPO.provide_from_git()
|
hdmf_ns_file = HDMF_COMMON_REPO.provide_from_git()
|
||||||
hdmf_ns = load_namespaces(hdmf_ns_file)
|
hdmf_ns = load_namespaces(hdmf_ns_file)
|
||||||
|
@ -110,16 +109,9 @@ def load_nwb_core() -> Dict[str, NamespaceBundle]:
|
||||||
ns = load_namespaces(namespace_file)
|
ns = load_namespaces(namespace_file)
|
||||||
schema = load_namespace_schema(ns, namespace_file)
|
schema = load_namespace_schema(ns, namespace_file)
|
||||||
|
|
||||||
return {
|
schema.imported.append(hdmf_schema)
|
||||||
'hdmf-common': NamespaceBundle(
|
|
||||||
namespace=hdmf_ns,
|
return schema
|
||||||
schema=hdmf_schema
|
|
||||||
),
|
|
||||||
'nwb-core': NamespaceBundle(
|
|
||||||
namespace=ns,
|
|
||||||
schema=schema
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
76
nwb_linkml/lang_elements.py
Normal file
76
nwb_linkml/lang_elements.py
Normal file
|
@ -0,0 +1,76 @@
|
||||||
|
"""
|
||||||
|
Language elements in nwb schema language that have a fixed, alternative representation
|
||||||
|
in LinkML. These are exported as an nwb.language.yml file along with every generated namespace
|
||||||
|
"""
|
||||||
|
|
||||||
|
from nwb_schema_language.datamodel.nwb_schema_pydantic import FlatDtype as FlatDtype_source
|
||||||
|
from linkml_runtime.linkml_model import \
|
||||||
|
ClassDefinition, \
|
||||||
|
EnumDefinition, \
|
||||||
|
SchemaDefinition, \
|
||||||
|
SlotDefinition, \
|
||||||
|
TypeDefinition,\
|
||||||
|
Prefix,\
|
||||||
|
PermissibleValue
|
||||||
|
from nwb_linkml.maps.dtype import flat_to_linkml
|
||||||
|
|
||||||
|
|
||||||
|
FlatDType = EnumDefinition(
|
||||||
|
name="FlatDType",
|
||||||
|
permissible_values=[PermissibleValue(p) for p in FlatDtype_source.__members__.keys()],
|
||||||
|
)
|
||||||
|
|
||||||
|
DimNameSlot = SlotDefinition(
|
||||||
|
name="dim_name",
|
||||||
|
range="string",
|
||||||
|
description="The name of a dimension"
|
||||||
|
)
|
||||||
|
DimShapeSlot = SlotDefinition(
|
||||||
|
name="dim_shape",
|
||||||
|
range="integer",
|
||||||
|
required=False
|
||||||
|
)
|
||||||
|
DimClass = ClassDefinition(
|
||||||
|
name="Dimension",
|
||||||
|
slots=[DimNameSlot.name, DimShapeSlot.name],
|
||||||
|
description="A single dimension within a shape"
|
||||||
|
)
|
||||||
|
DimSlot = SlotDefinition(
|
||||||
|
name="dim",
|
||||||
|
range=DimClass.name,
|
||||||
|
multivalued=True,
|
||||||
|
description="Slot representing the dimensions that a Shape can have"
|
||||||
|
)
|
||||||
|
|
||||||
|
# ShapeClass = ClassDefinition(
|
||||||
|
# name="Shape",
|
||||||
|
# description="A possible shape for an array-like dataset",
|
||||||
|
# slots=[DimSlot.name]
|
||||||
|
# )
|
||||||
|
|
||||||
|
DTypeTypes = []
|
||||||
|
for nwbtype, linkmltype in flat_to_linkml.items():
|
||||||
|
amin = None
|
||||||
|
if nwbtype.startswith('uint'):
|
||||||
|
amin = 0
|
||||||
|
|
||||||
|
atype = TypeDefinition(
|
||||||
|
name=nwbtype,
|
||||||
|
minimum_value=amin,
|
||||||
|
typeof=linkmltype
|
||||||
|
)
|
||||||
|
DTypeTypes.append(atype)
|
||||||
|
|
||||||
|
|
||||||
|
NwbLangSchema = SchemaDefinition(
|
||||||
|
name="nwb.language",
|
||||||
|
id='nwb.language',
|
||||||
|
description="Adapter objects to mimic the behavior of elements in the nwb-schema-language",
|
||||||
|
enums=[FlatDType],
|
||||||
|
slots=[DimNameSlot, DimShapeSlot, DimSlot],
|
||||||
|
classes=[DimClass],
|
||||||
|
types=DTypeTypes,
|
||||||
|
imports=['linkml:types'],
|
||||||
|
prefixes={'linkml': Prefix('linkml','https://w3id.org/linkml')}
|
||||||
|
)
|
||||||
|
|
31
nwb_linkml/maps/dtype.py
Normal file
31
nwb_linkml/maps/dtype.py
Normal file
|
@ -0,0 +1,31 @@
|
||||||
|
|
||||||
|
|
||||||
|
flat_to_linkml = {
|
||||||
|
"float" : "float",
|
||||||
|
"float32" : "float",
|
||||||
|
"double" : "double",
|
||||||
|
"float64" : "double",
|
||||||
|
"long" : "integer",
|
||||||
|
"int64" : "integer",
|
||||||
|
"int" : "integer",
|
||||||
|
"int32" : "integer",
|
||||||
|
"int16" : "integer",
|
||||||
|
"short" : "integer",
|
||||||
|
"int8" : "integer",
|
||||||
|
"uint" : "integer",
|
||||||
|
"uint32" : "integer",
|
||||||
|
"uint16" : "integer",
|
||||||
|
"uint8" : "integer",
|
||||||
|
"uint64" : "integer",
|
||||||
|
"numeric" : "float",
|
||||||
|
"text" : "string",
|
||||||
|
"utf" : "string",
|
||||||
|
"utf8" : "string",
|
||||||
|
"utf_8" : "string",
|
||||||
|
"ascii" : "string",
|
||||||
|
"bool" : "boolean",
|
||||||
|
"isodatetime" : "date"
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
Map between the flat data types and the simpler linkml base types
|
||||||
|
"""
|
|
@ -3,6 +3,7 @@ from typing import Dict
|
||||||
|
|
||||||
|
|
||||||
from nwb_linkml import io
|
from nwb_linkml import io
|
||||||
|
from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -17,6 +18,7 @@ def tmp_output_dir() -> Path:
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def nwb_core_fixture() -> Dict[str, io.NamespaceBundle]:
|
def nwb_core_fixture() -> NamespacesAdapter:
|
||||||
nwb_core = io.load_nwb_core()
|
nwb_core = io.load_nwb_core()
|
||||||
|
nwb_core.populate_imports()
|
||||||
return nwb_core
|
return nwb_core
|
36
tests/test_adapter.py
Normal file
36
tests/test_adapter.py
Normal file
|
@ -0,0 +1,36 @@
|
||||||
|
import pytest
|
||||||
|
from rich import print
|
||||||
|
import pdb
|
||||||
|
|
||||||
|
from .fixtures import nwb_core_fixture
|
||||||
|
from nwb_schema_language import Attribute
|
||||||
|
|
||||||
|
def test_walk_adapter(nwb_core_fixture):
|
||||||
|
base = nwb_core_fixture.schemas[0]
|
||||||
|
assert base.path.name == "nwb.base.yaml"
|
||||||
|
# type_incs = [inc for inc in base.walk(base)]
|
||||||
|
type_incs = [inc for inc in base.walk_fields(base, 'neurodata_type_inc')]
|
||||||
|
|
||||||
|
attributes = [a for a in base.walk_types(base, Attribute)]
|
||||||
|
|
||||||
|
# pdb.set_trace()
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
['class_name','schema_file','namespace_name'],
|
||||||
|
[
|
||||||
|
('DynamicTable', 'table.yaml', 'hdmf-common'),
|
||||||
|
('Container', 'base.yaml', 'hdmf-common'),
|
||||||
|
('TimeSeries', 'nwb.base.yaml', 'core'),
|
||||||
|
('ImageSeries', 'nwb.image.yaml', 'core')
|
||||||
|
]
|
||||||
|
)
|
||||||
|
def test_find_type_source(nwb_core_fixture, class_name, schema_file, namespace_name):
|
||||||
|
defining_sch = nwb_core_fixture.find_type_source(class_name)
|
||||||
|
assert defining_sch.path.name == schema_file
|
||||||
|
assert namespace_name == defining_sch.namespace
|
||||||
|
|
||||||
|
|
||||||
|
def test_populate_imports(nwb_core_fixture):
|
||||||
|
nwb_core_fixture.populate_imports()
|
||||||
|
|
||||||
|
pdb.set_trace()
|
17
tests/test_generate.py
Normal file
17
tests/test_generate.py
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
import pytest
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
from .fixtures import nwb_core_fixture, tmp_output_dir
|
||||||
|
from linkml_runtime.dumpers import yaml_dumper
|
||||||
|
|
||||||
|
from nwb_linkml.lang_elements import NwbLangSchema
|
||||||
|
|
||||||
|
def test_generate_nwblang(tmp_output_dir):
|
||||||
|
output_file = (tmp_output_dir / NwbLangSchema.name).with_suffix('.yml')
|
||||||
|
yaml_dumper.dump(NwbLangSchema, output_file)
|
||||||
|
|
||||||
|
def test_generate_base(nwb_core_fixture, tmp_output_dir):
|
||||||
|
schema = nwb_core_fixture.schemas[0].build()
|
||||||
|
output_file = (tmp_output_dir / schema.name).with_suffix('.yml')
|
||||||
|
warnings.warn(output_file)
|
||||||
|
yaml_dumper.dump(schema, output_file)
|
Loading…
Reference in a new issue