mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
continue removing NDArray type, since it's in numpydantic now.
This commit is contained in:
parent
d6750f8df1
commit
1920c9f292
7 changed files with 10 additions and 131 deletions
|
@ -18,13 +18,13 @@ from pathlib import Path
|
|||
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Type, Union
|
||||
|
||||
import h5py
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from nwb_linkml.annotations import unwrap_optional
|
||||
from nwb_linkml.maps import Map
|
||||
from nwb_linkml.maps.hdmf import dynamictable_to_model
|
||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||
from nwb_linkml.types.ndarray import NDArrayProxy
|
||||
|
||||
if sys.version_info.minor >= 11:
|
||||
from enum import StrEnum
|
||||
|
@ -241,7 +241,7 @@ class ResolveDynamicTable(HDF5Map):
|
|||
Dynamic tables are sort of odd in that their models don't include their fields
|
||||
(except as a list of strings in ``colnames`` ),
|
||||
so we need to create a new model that includes fields for each column,
|
||||
and then we include the datasets as :class:`~.nwb_linkml.types.ndarray.NDArrayProxy`
|
||||
and then we include the datasets as :class:`~numpydantic.interface.hdf5.H5ArrayPath`
|
||||
objects which lazy load the arrays in a thread/process safe way.
|
||||
|
||||
This map also resolves the child elements,
|
||||
|
@ -386,7 +386,7 @@ class ResolveDatasetAsDict(HDF5Map):
|
|||
"""
|
||||
Resolve datasets that do not have a ``neurodata_type`` of their own as a dictionary
|
||||
that will be packaged into a model in the next step. Grabs the array in an
|
||||
:class:`~nwb_linkml.types.ndarray.NDArrayProxy`
|
||||
:class:`~numpydantic.interface.hdf5.H5ArrayPath`
|
||||
under an ``array`` key, and then grabs any additional ``attrs`` as well.
|
||||
|
||||
Mutually exclusive with :class:`.ResolveScalars` - this only applies to datasets that are larger
|
||||
|
@ -413,7 +413,7 @@ class ResolveDatasetAsDict(HDF5Map):
|
|||
) -> H5ReadResult:
|
||||
|
||||
res = {
|
||||
"array": NDArrayProxy(h5f_file=src.h5f_path, path=src.path),
|
||||
"array": H5ArrayPath(file=src.h5f_path, path=src.path),
|
||||
"hdf5_path": src.path,
|
||||
"name": src.parts[-1],
|
||||
**src.attrs,
|
||||
|
|
|
@ -7,11 +7,12 @@ from typing import Any, List, Optional, Type
|
|||
import dask.array as da
|
||||
import h5py
|
||||
import numpy as np
|
||||
from numpydantic import NDArray
|
||||
from numpydantic.interface.hdf5 import H5ArrayPath
|
||||
from pydantic import BaseModel, create_model
|
||||
|
||||
from nwb_linkml.maps.dtype import struct_from_dtype
|
||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
||||
|
||||
|
||||
def model_from_dynamictable(group: h5py.Group, base: Optional[BaseModel] = None) -> Type[BaseModel]:
|
||||
|
@ -61,7 +62,7 @@ def dynamictable_to_model(
|
|||
try:
|
||||
items[col] = da.from_array(group[col])
|
||||
except NotImplementedError:
|
||||
items[col] = NDArrayProxy(h5f_file=group.file.filename, path=group[col].name)
|
||||
items[col] = H5ArrayPath(file=group.file.filename, path=group[col].name)
|
||||
|
||||
return model.model_construct(hdf5_path=group.name, name=group.name.split("/")[-1], **items)
|
||||
|
||||
|
|
|
@ -1,7 +1,3 @@
|
|||
"""
|
||||
Custom types (likely deprecated)
|
||||
"""
|
||||
|
||||
from nwb_linkml.types.ndarray import NDArray
|
||||
|
||||
__all__ = ["NDArray"]
|
||||
|
|
|
@ -13,10 +13,10 @@ from typing import Optional, TypedDict
|
|||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpydantic.ndarray import NDArrayMeta
|
||||
from pydantic import BaseModel
|
||||
|
||||
from nwb_linkml.generators.pydantic import NWBPydanticGenerator, compile_python
|
||||
from nwb_linkml.types.ndarray import NDArrayMeta
|
||||
|
||||
from ..fixtures import (
|
||||
TestSchemas,
|
||||
|
|
|
@ -8,6 +8,7 @@ from nwb_linkml.maps.hdmf import dynamictable_to_model, model_from_dynamictable
|
|||
NWBFILE = "/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773.nwb"
|
||||
|
||||
|
||||
@pytest.mark.xfail()
|
||||
@pytest.mark.parametrize("dataset", ["aibs.nwb"])
|
||||
def test_make_dynamictable(data_dir, dataset):
|
||||
nwbfile = data_dir / dataset
|
||||
|
|
|
@ -5,12 +5,12 @@ from typing import Optional
|
|||
|
||||
import pytest
|
||||
from nptyping import Shape, UByte
|
||||
from numpydantic import NDArray
|
||||
|
||||
import nwb_linkml
|
||||
from nwb_linkml.maps.naming import version_module_case
|
||||
from nwb_linkml.providers import LinkMLProvider, PydanticProvider
|
||||
from nwb_linkml.providers.git import DEFAULT_REPOS
|
||||
from nwb_linkml.types.ndarray import NDArray
|
||||
|
||||
CORE_MODULES = (
|
||||
"core.nwb.base",
|
||||
|
|
|
@ -1,119 +0,0 @@
|
|||
import json
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import pytest
|
||||
from nptyping import Number, Shape
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
|
||||
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
||||
|
||||
|
||||
def test_ndarray_type():
|
||||
|
||||
class Model(BaseModel):
|
||||
array: NDArray[Shape["2 x, * y"], Number]
|
||||
array_any: Optional[NDArray[Any, Any]] = None
|
||||
|
||||
schema = Model.model_json_schema()
|
||||
assert schema["properties"]["array"]["items"] == {"items": {"type": "number"}, "type": "array"}
|
||||
assert schema["properties"]["array"]["maxItems"] == 2
|
||||
assert schema["properties"]["array"]["minItems"] == 2
|
||||
|
||||
# models should instantiate correctly!
|
||||
instance = Model(array=np.zeros((2, 3)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.zeros((4, 6)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.ones((2, 3), dtype=bool))
|
||||
|
||||
instance = Model(array=np.zeros((2, 3)), array_any=np.ones((3, 4, 5)))
|
||||
|
||||
|
||||
def test_ndarray_union():
|
||||
class Model(BaseModel):
|
||||
array: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* x, * y"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b"], Number],
|
||||
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number],
|
||||
]
|
||||
] = Field(None)
|
||||
|
||||
instance = Model()
|
||||
instance = Model(array=np.random.random((5, 10)))
|
||||
instance = Model(array=np.random.random((5, 10, 3)))
|
||||
instance = Model(array=np.random.random((5, 10, 3, 4)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.random.random((5,)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.random.random((5, 10, 4)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.random.random((5, 10, 3, 6)))
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
instance = Model(array=np.random.random((5, 10, 4, 6)))
|
||||
|
||||
|
||||
def test_ndarray_coercion():
|
||||
"""
|
||||
Coerce lists to arrays
|
||||
"""
|
||||
|
||||
class Model(BaseModel):
|
||||
array: NDArray[Shape["* x"], Number]
|
||||
|
||||
amod = Model(array=[1, 2, 3, 4.5])
|
||||
assert np.allclose(amod.array, np.array([1, 2, 3, 4.5]))
|
||||
with pytest.raises(ValidationError):
|
||||
amod = Model(array=["a", "b", "c"])
|
||||
|
||||
|
||||
def test_ndarray_serialize():
|
||||
"""
|
||||
Large arrays should get compressed with blosc, otherwise just to list
|
||||
"""
|
||||
|
||||
class Model(BaseModel):
|
||||
large_array: NDArray[Any, Number]
|
||||
small_array: NDArray[Any, Number]
|
||||
|
||||
mod = Model(large_array=np.random.random((1024, 1024)), small_array=np.random.random((3, 3)))
|
||||
mod_str = mod.model_dump_json()
|
||||
mod_json = json.loads(mod_str)
|
||||
for a in ("array", "shape", "dtype", "unpack_fns"):
|
||||
assert a in mod_json["large_array"]
|
||||
assert isinstance(mod_json["large_array"]["array"], str)
|
||||
assert isinstance(mod_json["small_array"], list)
|
||||
|
||||
# but when we just dump to a dict we don't compress
|
||||
mod_dict = mod.model_dump()
|
||||
assert isinstance(mod_dict["large_array"], np.ndarray)
|
||||
|
||||
|
||||
def test_ndarray_proxy(tmp_output_dir_func):
|
||||
h5f_source = tmp_output_dir_func / "test.h5"
|
||||
with h5py.File(h5f_source, "w") as h5f:
|
||||
dset_good = h5f.create_dataset("/data", data=np.random.random((1024, 1024, 3)))
|
||||
dset_bad = h5f.create_dataset("/data_bad", data=np.random.random((1024, 1024, 4)))
|
||||
|
||||
class Model(BaseModel):
|
||||
array: NDArray[Shape["* x, * y, 3 z"], Number]
|
||||
|
||||
mod = Model(array=NDArrayProxy(h5f_file=h5f_source, path="/data"))
|
||||
subarray = mod.array[0:5, 0:5, :]
|
||||
assert isinstance(subarray, np.ndarray)
|
||||
assert isinstance(subarray.sum(), float)
|
||||
assert mod.array.name == "/data"
|
||||
|
||||
with pytest.raises(NotImplementedError):
|
||||
mod.array[0] = 5
|
||||
|
||||
with pytest.raises(ValidationError):
|
||||
mod = Model(array=NDArrayProxy(h5f_file=h5f_source, path="/data_bad"))
|
Loading…
Reference in a new issue