mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 13:44:27 +00:00
catchup with prior work
This commit is contained in:
parent
4ee97263ed
commit
4296b27538
8 changed files with 99 additions and 52 deletions
|
@ -87,6 +87,7 @@ napoleon_attr_annotations = True
|
|||
# graphviz
|
||||
graphviz_output_format = "svg"
|
||||
|
||||
# autodoc
|
||||
autodoc_pydantic_model_show_json_error_strategy = 'coerce'
|
||||
autodoc_pydantic_model_show_json = False
|
||||
autodoc_mock_imports = []
|
||||
|
|
|
@ -35,7 +35,7 @@ from copy import deepcopy, copy
|
|||
import warnings
|
||||
import inspect
|
||||
|
||||
from nwb_linkml.maps import flat_to_npytyping
|
||||
from nwb_linkml.maps import flat_to_nptyping
|
||||
from linkml.generators import PydanticGenerator
|
||||
from linkml_runtime.linkml_model.meta import (
|
||||
Annotation,
|
||||
|
@ -160,6 +160,7 @@ class ConfiguredBaseModel(BaseModel):
|
|||
template += """{{ '\n\n' }}"""
|
||||
for cls in extra_classes:
|
||||
template += inspect.getsource(cls) + '\n\n'
|
||||
|
||||
### ENUMS ###
|
||||
template += """
|
||||
{% for e in enums.values() %}
|
||||
|
@ -445,7 +446,7 @@ class NWBPydanticGenerator(PydanticGenerator):
|
|||
|
||||
# all dimensions should be the same dtype
|
||||
try:
|
||||
dtype = flat_to_npytyping[list(attrs.values())[0].range]
|
||||
dtype = flat_to_nptyping[list(attrs.values())[0].range]
|
||||
except KeyError as e: # pragma: no cover
|
||||
warnings.warn(str(e))
|
||||
range = list(attrs.values())[0].range
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
from nwb_linkml.maps.map import Map
|
||||
from nwb_linkml.maps.postload import MAP_HDMF_DATATYPE_DEF, MAP_HDMF_DATATYPE_INC
|
||||
from nwb_linkml.maps.quantity import QUANTITY_MAP
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml, flat_to_npytyping
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml, flat_to_nptyping
|
|
@ -1,6 +1,7 @@
|
|||
import numpy as np
|
||||
from typing import Any
|
||||
from typing import Any, Type
|
||||
from datetime import datetime
|
||||
import nptyping
|
||||
|
||||
flat_to_linkml = {
|
||||
"float" : "float",
|
||||
|
@ -32,7 +33,7 @@ flat_to_linkml = {
|
|||
Map between the flat data types and the simpler linkml base types
|
||||
"""
|
||||
|
||||
flat_to_npytyping = {
|
||||
flat_to_nptyping = {
|
||||
"float": "Float",
|
||||
"float32": "Float32",
|
||||
"double": "Double",
|
||||
|
@ -54,10 +55,13 @@ flat_to_npytyping = {
|
|||
"utf": "Unicode",
|
||||
"utf8": "Unicode",
|
||||
"utf_8": "Unicode",
|
||||
"string": "Unicode",
|
||||
"str": "Unicode",
|
||||
"ascii": "String",
|
||||
"bool": "Bool",
|
||||
"isodatetime": "Datetime64",
|
||||
'AnyType': 'Any'
|
||||
'AnyType': 'Any',
|
||||
'object': 'Object'
|
||||
}
|
||||
|
||||
np_to_python = {
|
||||
|
@ -92,4 +96,18 @@ allowed_precisions = {
|
|||
Following HDMF, it turns out that specifying precision actually specifies minimum precision
|
||||
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/validate/validator.py#L22
|
||||
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/spec/spec.py#L694-L714
|
||||
"""
|
||||
"""
|
||||
|
||||
|
||||
def struct_from_dtype(dtype: np.dtype) -> Type[nptyping.Structure]:
|
||||
"""
|
||||
Create a nptyping Structure from a compound numpy dtype
|
||||
|
||||
nptyping structures have the form::
|
||||
|
||||
Structure["name: Str, age: Int"]
|
||||
|
||||
"""
|
||||
struct_pieces = [f'{k}: {flat_to_nptyping[v[0].name]}' for k, v in dtype.fields.items()]
|
||||
struct_dtype = ', '.join(struct_pieces)
|
||||
return nptyping.Structure[struct_dtype]
|
|
@ -1,17 +1,19 @@
|
|||
"""
|
||||
Mapping functions for handling HDMF classes like DynamicTables
|
||||
"""
|
||||
import pdb
|
||||
from typing import List, Type, Optional, Any
|
||||
import warnings
|
||||
|
||||
|
||||
import h5py
|
||||
import nptyping
|
||||
from pydantic import create_model, BaseModel
|
||||
import numpy as np
|
||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
||||
import dask.array as da
|
||||
|
||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
||||
from nwb_linkml.maps.dtype import flat_to_nptyping, struct_from_dtype
|
||||
|
||||
def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -> Type[BaseModel]:
|
||||
"""
|
||||
|
@ -21,10 +23,13 @@ def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -
|
|||
types = {}
|
||||
for col in colnames:
|
||||
|
||||
nptype = group[col].dtype.type
|
||||
if nptype == np.void:
|
||||
warnings.warn(f"Cant handle numpy void type for column {col} in {group.name}")
|
||||
continue
|
||||
nptype = group[col].dtype
|
||||
if nptype.type == np.void:
|
||||
#pdb.set_trace()
|
||||
nptype = struct_from_dtype(nptype)
|
||||
else:
|
||||
nptype = nptype.type
|
||||
|
||||
type_ = Optional[NDArray[Any, nptype]]
|
||||
|
||||
# FIXME: handling nested column types that appear only in some versions?
|
||||
|
|
|
@ -13,7 +13,10 @@ from typing import (
|
|||
)
|
||||
import sys
|
||||
from copy import copy
|
||||
from functools import reduce
|
||||
from operator import or_
|
||||
|
||||
import nptyping.structure
|
||||
from pydantic_core import core_schema
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -36,6 +39,46 @@ from nptyping.shape_expression import check_shape
|
|||
|
||||
from nwb_linkml.maps.dtype import np_to_python, allowed_precisions
|
||||
|
||||
def _list_of_lists_schema(shape, array_type_handler):
|
||||
"""
|
||||
Make a pydantic JSON schema for an array as a list of lists
|
||||
"""
|
||||
shape_parts = shape.__args__[0].split(',')
|
||||
split_parts = [p.split(' ')[1] if len(p.split(' ')) == 2 else None for p in shape_parts]
|
||||
|
||||
# Construct a list of list schema
|
||||
# go in reverse order - construct list schemas such that
|
||||
# the final schema is the one that checks the first dimension
|
||||
shape_labels = reversed(split_parts)
|
||||
shape_args = reversed(shape.prepared_args)
|
||||
list_schema = None
|
||||
for arg, label in zip(shape_args, shape_labels):
|
||||
# which handler to use? for the first we use the actual type
|
||||
# handler, everywhere else we use the prior list handler
|
||||
if list_schema is None:
|
||||
inner_schema = array_type_handler
|
||||
else:
|
||||
inner_schema = list_schema
|
||||
|
||||
# make a label annotation, if we have one
|
||||
if label is not None:
|
||||
metadata = {'name': label}
|
||||
else:
|
||||
metadata = None
|
||||
|
||||
# make the current level list schema, accounting for shape
|
||||
if arg == '*':
|
||||
list_schema = core_schema.list_schema(inner_schema,
|
||||
metadata=metadata)
|
||||
else:
|
||||
arg = int(arg)
|
||||
list_schema = core_schema.list_schema(
|
||||
inner_schema,
|
||||
min_length=arg,
|
||||
max_length=arg,
|
||||
metadata=metadata
|
||||
)
|
||||
return list_schema
|
||||
|
||||
class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
||||
"""
|
||||
|
@ -59,8 +102,12 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
|||
|
||||
shape, dtype = _source_type.__args__
|
||||
# get pydantic core schema for the given specified type
|
||||
array_type_handler = _handler.generate_schema(
|
||||
np_to_python[dtype])
|
||||
if isinstance(dtype, nptyping.structure.StructureMeta):
|
||||
raise NotImplementedError('Jonny finish this')
|
||||
# functools.reduce(operator.or_, [int, float, str])
|
||||
else:
|
||||
array_type_handler = _handler.generate_schema(
|
||||
np_to_python[dtype])
|
||||
|
||||
def validate_dtype(value: np.ndarray) -> np.ndarray:
|
||||
if dtype is Any:
|
||||
|
@ -82,43 +129,9 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
|||
if shape is Any:
|
||||
list_schema = core_schema.list_schema(core_schema.any_schema())
|
||||
else:
|
||||
shape_parts = shape.__args__[0].split(',')
|
||||
split_parts = [p.split(' ')[1] if len(p.split(' ')) == 2 else None for p in shape_parts]
|
||||
list_schema = _list_of_lists_schema(shape, array_type_handler)
|
||||
|
||||
|
||||
# Construct a list of list schema
|
||||
# go in reverse order - construct list schemas such that
|
||||
# the final schema is the one that checks the first dimension
|
||||
shape_labels = reversed(split_parts)
|
||||
shape_args = reversed(shape.prepared_args)
|
||||
list_schema = None
|
||||
for arg, label in zip(shape_args, shape_labels):
|
||||
# which handler to use? for the first we use the actual type
|
||||
# handler, everywhere else we use the prior list handler
|
||||
if list_schema is None:
|
||||
inner_schema = array_type_handler
|
||||
else:
|
||||
inner_schema = list_schema
|
||||
|
||||
# make a label annotation, if we have one
|
||||
if label is not None:
|
||||
metadata = {'name': label}
|
||||
else:
|
||||
metadata = None
|
||||
|
||||
# make the current level list schema, accounting for shape
|
||||
if arg == '*':
|
||||
list_schema = core_schema.list_schema(inner_schema,
|
||||
metadata=metadata)
|
||||
else:
|
||||
arg = int(arg)
|
||||
list_schema = core_schema.list_schema(
|
||||
inner_schema,
|
||||
min_length=arg,
|
||||
max_length=arg,
|
||||
metadata=metadata
|
||||
)
|
||||
|
||||
|
||||
def array_to_list(instance: np.ndarray | DaskArray) -> list|dict:
|
||||
if isinstance(instance, DaskArray):
|
||||
|
|
|
@ -11,7 +11,7 @@ from nwb_linkml.io.hdf5 import HDF5IO
|
|||
from nwb_linkml.io.hdf5 import truncate_file
|
||||
|
||||
|
||||
@pytest.mark.parametrize('dset', ['aibs.nwb'])
|
||||
@pytest.mark.parametrize('dset', ['aibs.nwb', 'aibs_ecephys.nwb'])
|
||||
def test_hdf_read(data_dir, dset):
|
||||
NWBFILE = data_dir / dset
|
||||
io = HDF5IO(path=NWBFILE)
|
||||
|
|
9
nwb_linkml/tests/test_maps/test_dtype.py
Normal file
9
nwb_linkml/tests/test_maps/test_dtype.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
import numpy as np
|
||||
import nptyping
|
||||
from nwb_linkml.maps.dtype import struct_from_dtype
|
||||
|
||||
def test_struct_from_dtype():
|
||||
# Super weak test with fixed values, will expand with parameterize if needed
|
||||
np_dtype = np.dtype([('name1', 'int32'), ('name2', 'object'), ('name3', 'str')])
|
||||
struct = struct_from_dtype(np_dtype)
|
||||
assert struct == nptyping.Structure['name1: Int32, name2: Object, name3: Unicode']
|
Loading…
Reference in a new issue