mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
catchup with prior work
This commit is contained in:
parent
4ee97263ed
commit
4296b27538
8 changed files with 99 additions and 52 deletions
|
@ -87,6 +87,7 @@ napoleon_attr_annotations = True
|
||||||
# graphviz
|
# graphviz
|
||||||
graphviz_output_format = "svg"
|
graphviz_output_format = "svg"
|
||||||
|
|
||||||
|
# autodoc
|
||||||
autodoc_pydantic_model_show_json_error_strategy = 'coerce'
|
autodoc_pydantic_model_show_json_error_strategy = 'coerce'
|
||||||
autodoc_pydantic_model_show_json = False
|
autodoc_pydantic_model_show_json = False
|
||||||
autodoc_mock_imports = []
|
autodoc_mock_imports = []
|
||||||
|
|
|
@ -35,7 +35,7 @@ from copy import deepcopy, copy
|
||||||
import warnings
|
import warnings
|
||||||
import inspect
|
import inspect
|
||||||
|
|
||||||
from nwb_linkml.maps import flat_to_npytyping
|
from nwb_linkml.maps import flat_to_nptyping
|
||||||
from linkml.generators import PydanticGenerator
|
from linkml.generators import PydanticGenerator
|
||||||
from linkml_runtime.linkml_model.meta import (
|
from linkml_runtime.linkml_model.meta import (
|
||||||
Annotation,
|
Annotation,
|
||||||
|
@ -160,6 +160,7 @@ class ConfiguredBaseModel(BaseModel):
|
||||||
template += """{{ '\n\n' }}"""
|
template += """{{ '\n\n' }}"""
|
||||||
for cls in extra_classes:
|
for cls in extra_classes:
|
||||||
template += inspect.getsource(cls) + '\n\n'
|
template += inspect.getsource(cls) + '\n\n'
|
||||||
|
|
||||||
### ENUMS ###
|
### ENUMS ###
|
||||||
template += """
|
template += """
|
||||||
{% for e in enums.values() %}
|
{% for e in enums.values() %}
|
||||||
|
@ -445,7 +446,7 @@ class NWBPydanticGenerator(PydanticGenerator):
|
||||||
|
|
||||||
# all dimensions should be the same dtype
|
# all dimensions should be the same dtype
|
||||||
try:
|
try:
|
||||||
dtype = flat_to_npytyping[list(attrs.values())[0].range]
|
dtype = flat_to_nptyping[list(attrs.values())[0].range]
|
||||||
except KeyError as e: # pragma: no cover
|
except KeyError as e: # pragma: no cover
|
||||||
warnings.warn(str(e))
|
warnings.warn(str(e))
|
||||||
range = list(attrs.values())[0].range
|
range = list(attrs.values())[0].range
|
||||||
|
|
|
@ -2,4 +2,4 @@
|
||||||
from nwb_linkml.maps.map import Map
|
from nwb_linkml.maps.map import Map
|
||||||
from nwb_linkml.maps.postload import MAP_HDMF_DATATYPE_DEF, MAP_HDMF_DATATYPE_INC
|
from nwb_linkml.maps.postload import MAP_HDMF_DATATYPE_DEF, MAP_HDMF_DATATYPE_INC
|
||||||
from nwb_linkml.maps.quantity import QUANTITY_MAP
|
from nwb_linkml.maps.quantity import QUANTITY_MAP
|
||||||
from nwb_linkml.maps.dtype import flat_to_linkml, flat_to_npytyping
|
from nwb_linkml.maps.dtype import flat_to_linkml, flat_to_nptyping
|
|
@ -1,6 +1,7 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from typing import Any
|
from typing import Any, Type
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
import nptyping
|
||||||
|
|
||||||
flat_to_linkml = {
|
flat_to_linkml = {
|
||||||
"float" : "float",
|
"float" : "float",
|
||||||
|
@ -32,7 +33,7 @@ flat_to_linkml = {
|
||||||
Map between the flat data types and the simpler linkml base types
|
Map between the flat data types and the simpler linkml base types
|
||||||
"""
|
"""
|
||||||
|
|
||||||
flat_to_npytyping = {
|
flat_to_nptyping = {
|
||||||
"float": "Float",
|
"float": "Float",
|
||||||
"float32": "Float32",
|
"float32": "Float32",
|
||||||
"double": "Double",
|
"double": "Double",
|
||||||
|
@ -54,10 +55,13 @@ flat_to_npytyping = {
|
||||||
"utf": "Unicode",
|
"utf": "Unicode",
|
||||||
"utf8": "Unicode",
|
"utf8": "Unicode",
|
||||||
"utf_8": "Unicode",
|
"utf_8": "Unicode",
|
||||||
|
"string": "Unicode",
|
||||||
|
"str": "Unicode",
|
||||||
"ascii": "String",
|
"ascii": "String",
|
||||||
"bool": "Bool",
|
"bool": "Bool",
|
||||||
"isodatetime": "Datetime64",
|
"isodatetime": "Datetime64",
|
||||||
'AnyType': 'Any'
|
'AnyType': 'Any',
|
||||||
|
'object': 'Object'
|
||||||
}
|
}
|
||||||
|
|
||||||
np_to_python = {
|
np_to_python = {
|
||||||
|
@ -93,3 +97,17 @@ Following HDMF, it turns out that specifying precision actually specifies minimu
|
||||||
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/validate/validator.py#L22
|
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/validate/validator.py#L22
|
||||||
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/spec/spec.py#L694-L714
|
https://github.com/hdmf-dev/hdmf/blob/ddc842b5c81d96e0b957b96e88533b16c137e206/src/hdmf/spec/spec.py#L694-L714
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def struct_from_dtype(dtype: np.dtype) -> Type[nptyping.Structure]:
|
||||||
|
"""
|
||||||
|
Create a nptyping Structure from a compound numpy dtype
|
||||||
|
|
||||||
|
nptyping structures have the form::
|
||||||
|
|
||||||
|
Structure["name: Str, age: Int"]
|
||||||
|
|
||||||
|
"""
|
||||||
|
struct_pieces = [f'{k}: {flat_to_nptyping[v[0].name]}' for k, v in dtype.fields.items()]
|
||||||
|
struct_dtype = ', '.join(struct_pieces)
|
||||||
|
return nptyping.Structure[struct_dtype]
|
|
@ -1,17 +1,19 @@
|
||||||
"""
|
"""
|
||||||
Mapping functions for handling HDMF classes like DynamicTables
|
Mapping functions for handling HDMF classes like DynamicTables
|
||||||
"""
|
"""
|
||||||
|
import pdb
|
||||||
from typing import List, Type, Optional, Any
|
from typing import List, Type, Optional, Any
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
import h5py
|
import h5py
|
||||||
|
import nptyping
|
||||||
from pydantic import create_model, BaseModel
|
from pydantic import create_model, BaseModel
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
|
||||||
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
|
||||||
import dask.array as da
|
import dask.array as da
|
||||||
|
|
||||||
|
from nwb_linkml.types.hdf5 import HDF5_Path
|
||||||
|
from nwb_linkml.types.ndarray import NDArray, NDArrayProxy
|
||||||
|
from nwb_linkml.maps.dtype import flat_to_nptyping, struct_from_dtype
|
||||||
|
|
||||||
def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -> Type[BaseModel]:
|
def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -> Type[BaseModel]:
|
||||||
"""
|
"""
|
||||||
|
@ -21,10 +23,13 @@ def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -
|
||||||
types = {}
|
types = {}
|
||||||
for col in colnames:
|
for col in colnames:
|
||||||
|
|
||||||
nptype = group[col].dtype.type
|
nptype = group[col].dtype
|
||||||
if nptype == np.void:
|
if nptype.type == np.void:
|
||||||
warnings.warn(f"Cant handle numpy void type for column {col} in {group.name}")
|
#pdb.set_trace()
|
||||||
continue
|
nptype = struct_from_dtype(nptype)
|
||||||
|
else:
|
||||||
|
nptype = nptype.type
|
||||||
|
|
||||||
type_ = Optional[NDArray[Any, nptype]]
|
type_ = Optional[NDArray[Any, nptype]]
|
||||||
|
|
||||||
# FIXME: handling nested column types that appear only in some versions?
|
# FIXME: handling nested column types that appear only in some versions?
|
||||||
|
|
|
@ -13,7 +13,10 @@ from typing import (
|
||||||
)
|
)
|
||||||
import sys
|
import sys
|
||||||
from copy import copy
|
from copy import copy
|
||||||
|
from functools import reduce
|
||||||
|
from operator import or_
|
||||||
|
|
||||||
|
import nptyping.structure
|
||||||
from pydantic_core import core_schema
|
from pydantic_core import core_schema
|
||||||
from pydantic import (
|
from pydantic import (
|
||||||
BaseModel,
|
BaseModel,
|
||||||
|
@ -36,56 +39,13 @@ from nptyping.shape_expression import check_shape
|
||||||
|
|
||||||
from nwb_linkml.maps.dtype import np_to_python, allowed_precisions
|
from nwb_linkml.maps.dtype import np_to_python, allowed_precisions
|
||||||
|
|
||||||
|
def _list_of_lists_schema(shape, array_type_handler):
|
||||||
class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
|
||||||
"""
|
"""
|
||||||
Kept here to allow for hooking into metaclass, which has
|
Make a pydantic JSON schema for an array as a list of lists
|
||||||
been necessary on and off as we work this class into a stable
|
|
||||||
state"""
|
|
||||||
|
|
||||||
class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
|
||||||
"""
|
"""
|
||||||
Following the example here: https://docs.pydantic.dev/latest/usage/types/custom/#handling-third-party-types
|
|
||||||
"""
|
|
||||||
__args__ = (Any, Any)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def __get_pydantic_core_schema__(
|
|
||||||
cls,
|
|
||||||
_source_type: 'NDArray',
|
|
||||||
_handler: Callable[[Any], core_schema.CoreSchema],
|
|
||||||
|
|
||||||
) -> core_schema.CoreSchema:
|
|
||||||
|
|
||||||
shape, dtype = _source_type.__args__
|
|
||||||
# get pydantic core schema for the given specified type
|
|
||||||
array_type_handler = _handler.generate_schema(
|
|
||||||
np_to_python[dtype])
|
|
||||||
|
|
||||||
def validate_dtype(value: np.ndarray) -> np.ndarray:
|
|
||||||
if dtype is Any:
|
|
||||||
return value
|
|
||||||
|
|
||||||
assert value.dtype == dtype or value.dtype.name in allowed_precisions[dtype.__name__], f"Invalid dtype! expected {dtype}, got {value.dtype}"
|
|
||||||
return value
|
|
||||||
|
|
||||||
def validate_shape(value: Any) -> np.ndarray:
|
|
||||||
assert shape is Any or check_shape(value.shape, shape), f'Invalid shape! expected shape {shape.prepared_args}, got shape {value.shape}'
|
|
||||||
return value
|
|
||||||
|
|
||||||
def coerce_list(value: Any) -> np.ndarray:
|
|
||||||
if isinstance(value, list):
|
|
||||||
value = np.array(value)
|
|
||||||
return value
|
|
||||||
|
|
||||||
# get the names of the shape constraints, if any
|
|
||||||
if shape is Any:
|
|
||||||
list_schema = core_schema.list_schema(core_schema.any_schema())
|
|
||||||
else:
|
|
||||||
shape_parts = shape.__args__[0].split(',')
|
shape_parts = shape.__args__[0].split(',')
|
||||||
split_parts = [p.split(' ')[1] if len(p.split(' ')) == 2 else None for p in shape_parts]
|
split_parts = [p.split(' ')[1] if len(p.split(' ')) == 2 else None for p in shape_parts]
|
||||||
|
|
||||||
|
|
||||||
# Construct a list of list schema
|
# Construct a list of list schema
|
||||||
# go in reverse order - construct list schemas such that
|
# go in reverse order - construct list schemas such that
|
||||||
# the final schema is the one that checks the first dimension
|
# the final schema is the one that checks the first dimension
|
||||||
|
@ -118,6 +78,59 @@ class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
||||||
max_length=arg,
|
max_length=arg,
|
||||||
metadata=metadata
|
metadata=metadata
|
||||||
)
|
)
|
||||||
|
return list_schema
|
||||||
|
|
||||||
|
class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
||||||
|
"""
|
||||||
|
Kept here to allow for hooking into metaclass, which has
|
||||||
|
been necessary on and off as we work this class into a stable
|
||||||
|
state"""
|
||||||
|
|
||||||
|
class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
||||||
|
"""
|
||||||
|
Following the example here: https://docs.pydantic.dev/latest/usage/types/custom/#handling-third-party-types
|
||||||
|
"""
|
||||||
|
__args__ = (Any, Any)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def __get_pydantic_core_schema__(
|
||||||
|
cls,
|
||||||
|
_source_type: 'NDArray',
|
||||||
|
_handler: Callable[[Any], core_schema.CoreSchema],
|
||||||
|
|
||||||
|
) -> core_schema.CoreSchema:
|
||||||
|
|
||||||
|
shape, dtype = _source_type.__args__
|
||||||
|
# get pydantic core schema for the given specified type
|
||||||
|
if isinstance(dtype, nptyping.structure.StructureMeta):
|
||||||
|
raise NotImplementedError('Jonny finish this')
|
||||||
|
# functools.reduce(operator.or_, [int, float, str])
|
||||||
|
else:
|
||||||
|
array_type_handler = _handler.generate_schema(
|
||||||
|
np_to_python[dtype])
|
||||||
|
|
||||||
|
def validate_dtype(value: np.ndarray) -> np.ndarray:
|
||||||
|
if dtype is Any:
|
||||||
|
return value
|
||||||
|
|
||||||
|
assert value.dtype == dtype or value.dtype.name in allowed_precisions[dtype.__name__], f"Invalid dtype! expected {dtype}, got {value.dtype}"
|
||||||
|
return value
|
||||||
|
|
||||||
|
def validate_shape(value: Any) -> np.ndarray:
|
||||||
|
assert shape is Any or check_shape(value.shape, shape), f'Invalid shape! expected shape {shape.prepared_args}, got shape {value.shape}'
|
||||||
|
return value
|
||||||
|
|
||||||
|
def coerce_list(value: Any) -> np.ndarray:
|
||||||
|
if isinstance(value, list):
|
||||||
|
value = np.array(value)
|
||||||
|
return value
|
||||||
|
|
||||||
|
# get the names of the shape constraints, if any
|
||||||
|
if shape is Any:
|
||||||
|
list_schema = core_schema.list_schema(core_schema.any_schema())
|
||||||
|
else:
|
||||||
|
list_schema = _list_of_lists_schema(shape, array_type_handler)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def array_to_list(instance: np.ndarray | DaskArray) -> list|dict:
|
def array_to_list(instance: np.ndarray | DaskArray) -> list|dict:
|
||||||
|
|
|
@ -11,7 +11,7 @@ from nwb_linkml.io.hdf5 import HDF5IO
|
||||||
from nwb_linkml.io.hdf5 import truncate_file
|
from nwb_linkml.io.hdf5 import truncate_file
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize('dset', ['aibs.nwb'])
|
@pytest.mark.parametrize('dset', ['aibs.nwb', 'aibs_ecephys.nwb'])
|
||||||
def test_hdf_read(data_dir, dset):
|
def test_hdf_read(data_dir, dset):
|
||||||
NWBFILE = data_dir / dset
|
NWBFILE = data_dir / dset
|
||||||
io = HDF5IO(path=NWBFILE)
|
io = HDF5IO(path=NWBFILE)
|
||||||
|
|
9
nwb_linkml/tests/test_maps/test_dtype.py
Normal file
9
nwb_linkml/tests/test_maps/test_dtype.py
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
import numpy as np
|
||||||
|
import nptyping
|
||||||
|
from nwb_linkml.maps.dtype import struct_from_dtype
|
||||||
|
|
||||||
|
def test_struct_from_dtype():
|
||||||
|
# Super weak test with fixed values, will expand with parameterize if needed
|
||||||
|
np_dtype = np.dtype([('name1', 'int32'), ('name2', 'object'), ('name3', 'str')])
|
||||||
|
struct = struct_from_dtype(np_dtype)
|
||||||
|
assert struct == nptyping.Structure['name1: Int32, name2: Object, name3: Unicode']
|
Loading…
Reference in a new issue