mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
fix generics with defaults, use typing_extensions
This commit is contained in:
parent
748b304426
commit
4672f54630
8 changed files with 42 additions and 45 deletions
|
@ -21,7 +21,7 @@ dependencies = [
|
||||||
"h5py>=3.9.0",
|
"h5py>=3.9.0",
|
||||||
"pydantic-settings>=2.0.3",
|
"pydantic-settings>=2.0.3",
|
||||||
"tqdm>=4.66.1",
|
"tqdm>=4.66.1",
|
||||||
'typing-extensions>=4.12.2;python_version<"3.11"',
|
'typing-extensions>=4.12.2;python_version<"3.13"',
|
||||||
"numpydantic>=1.6.0",
|
"numpydantic>=1.6.0",
|
||||||
"black>=24.4.2",
|
"black>=24.4.2",
|
||||||
"pandas>=2.2.2",
|
"pandas>=2.2.2",
|
||||||
|
|
|
@ -284,9 +284,9 @@ class AfterGenerateClass:
|
||||||
cls.cls.bases = ["AlignedDynamicTableMixin", "DynamicTable"]
|
cls.cls.bases = ["AlignedDynamicTableMixin", "DynamicTable"]
|
||||||
elif cls.cls.name == "ElementIdentifiers":
|
elif cls.cls.name == "ElementIdentifiers":
|
||||||
cls.cls.bases = ["ElementIdentifiersMixin", "Data"]
|
cls.cls.bases = ["ElementIdentifiersMixin", "Data"]
|
||||||
# make ``value`` generic on T
|
# Formerly make this generic, but that breaks json serialization
|
||||||
if "value" in cls.cls.attributes:
|
if "value" in cls.cls.attributes:
|
||||||
cls.cls.attributes["value"].range = "Optional[T]"
|
cls.cls.attributes["value"].range = "Optional[NDArray]"
|
||||||
elif cls.cls.name == "TimeSeriesReferenceVectorData":
|
elif cls.cls.name == "TimeSeriesReferenceVectorData":
|
||||||
# in core.nwb.base, so need to inject and import again
|
# in core.nwb.base, so need to inject and import again
|
||||||
cls.cls.bases = ["TimeSeriesReferenceVectorDataMixin", "VectorData"]
|
cls.cls.bases = ["TimeSeriesReferenceVectorDataMixin", "VectorData"]
|
||||||
|
|
|
@ -13,10 +13,10 @@ from typing import (
|
||||||
List,
|
List,
|
||||||
Optional,
|
Optional,
|
||||||
Tuple,
|
Tuple,
|
||||||
TypeVar,
|
|
||||||
Union,
|
Union,
|
||||||
overload,
|
overload,
|
||||||
)
|
)
|
||||||
|
from typing_extensions import TypeVar
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
@ -36,8 +36,8 @@ from pydantic import (
|
||||||
if TYPE_CHECKING: # pragma: no cover
|
if TYPE_CHECKING: # pragma: no cover
|
||||||
from nwb_models.models import VectorData, VectorIndex
|
from nwb_models.models import VectorData, VectorIndex
|
||||||
|
|
||||||
T = TypeVar("T", bound=NDArray)
|
T = TypeVar("T", default=NDArray)
|
||||||
T_INJECT = 'T = TypeVar("T", bound=NDArray)'
|
T_INJECT = 'T = TypeVar("T", default=NDArray)'
|
||||||
|
|
||||||
if "pytest" in sys.modules:
|
if "pytest" in sys.modules:
|
||||||
from nwb_models.models import ConfiguredBaseModel
|
from nwb_models.models import ConfiguredBaseModel
|
||||||
|
@ -71,7 +71,7 @@ class DynamicTableMixin(ConfiguredBaseModel):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin"]]
|
||||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||||
"id",
|
"id",
|
||||||
"name",
|
"name",
|
||||||
|
@ -899,10 +899,10 @@ DYNAMIC_TABLE_IMPORTS = Imports(
|
||||||
ObjectImport(name="Generic"),
|
ObjectImport(name="Generic"),
|
||||||
ObjectImport(name="Iterable"),
|
ObjectImport(name="Iterable"),
|
||||||
ObjectImport(name="Tuple"),
|
ObjectImport(name="Tuple"),
|
||||||
ObjectImport(name="TypeVar"),
|
|
||||||
ObjectImport(name="overload"),
|
ObjectImport(name="overload"),
|
||||||
],
|
],
|
||||||
),
|
),
|
||||||
|
Import(module="typing_extensions", objects=[ObjectImport(name="TypeVar")]),
|
||||||
Import(
|
Import(
|
||||||
module="numpydantic", objects=[ObjectImport(name="NDArray"), ObjectImport(name="Shape")]
|
module="numpydantic", objects=[ObjectImport(name="NDArray"), ObjectImport(name="Shape")]
|
||||||
),
|
),
|
||||||
|
|
|
@ -1,26 +0,0 @@
|
||||||
"""
|
|
||||||
Abstract base classes for Map types
|
|
||||||
|
|
||||||
.. todo::
|
|
||||||
Make this consistent or don't call them all maps lmao
|
|
||||||
"""
|
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from typing import Any, Mapping, Sequence
|
|
||||||
|
|
||||||
|
|
||||||
class Map(ABC):
|
|
||||||
"""
|
|
||||||
The generic top-level mapping class is just a classmethod for checking if the map applies and a
|
|
||||||
method for applying the check if it does
|
|
||||||
"""
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@abstractmethod
|
|
||||||
def check(cls, *args: Sequence, **kwargs: Mapping) -> bool:
|
|
||||||
"""Check if this map applies to the given item to read"""
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
@abstractmethod
|
|
||||||
def apply(cls, *args: Sequence, **kwargs: Mapping) -> Any:
|
|
||||||
"""Actually apply the map!"""
|
|
|
@ -3,8 +3,13 @@ import networkx as nx
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from nwb_linkml.io.hdf5 import HDF5IO, filter_dependency_graph, hdf_dependency_graph, truncate_file
|
from nwb_linkml.io.hdf5 import (
|
||||||
from nwb_linkml.maps.hdf5 import resolve_hardlink
|
HDF5IO,
|
||||||
|
filter_dependency_graph,
|
||||||
|
hdf_dependency_graph,
|
||||||
|
truncate_file,
|
||||||
|
resolve_hardlink,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip()
|
@pytest.mark.skip()
|
||||||
|
|
|
@ -66,6 +66,17 @@ def test_nwbfile_base(read_nwbfile, read_pynwb):
|
||||||
_compare_attrs(read_nwbfile, read_pynwb)
|
_compare_attrs(read_nwbfile, read_pynwb)
|
||||||
|
|
||||||
|
|
||||||
|
def test_nwbfile_dump(read_nwbfile):
|
||||||
|
electrode_id = read_nwbfile.general.extracellular_ephys.electrodes.id.model_dump_json(
|
||||||
|
round_trip=True
|
||||||
|
)
|
||||||
|
electrodes = read_nwbfile.general.extracellular_ephys.electrodes.model_dump_json(
|
||||||
|
round_trip=True
|
||||||
|
)
|
||||||
|
# data = read_nwbfile.model_dump_json(round_trip=True, serialize_as_any=True)
|
||||||
|
# pdb.set_trace()
|
||||||
|
|
||||||
|
|
||||||
def test_timeseries(read_nwbfile, read_pynwb):
|
def test_timeseries(read_nwbfile, read_pynwb):
|
||||||
py_acq = read_pynwb.get_acquisition("test_timeseries")
|
py_acq = read_pynwb.get_acquisition("test_timeseries")
|
||||||
acq = read_nwbfile.acquisition["test_timeseries"]
|
acq = read_nwbfile.acquisition["test_timeseries"]
|
||||||
|
|
|
@ -8,7 +8,8 @@ authors = [
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"pydantic>=2.3.0",
|
"pydantic>=2.3.0",
|
||||||
"numpydantic>=1.3.3",
|
"numpydantic>=1.3.3",
|
||||||
"pandas>=2.2.2"
|
"pandas>=2.2.2",
|
||||||
|
'typing-extensions>=4.12.2;python_version<"3.13"', # for default in TypeVar
|
||||||
]
|
]
|
||||||
requires-python = ">=3.10"
|
requires-python = ">=3.10"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import pdb
|
||||||
import re
|
import re
|
||||||
import sys
|
import sys
|
||||||
from datetime import date, datetime, time
|
from datetime import date, datetime, time
|
||||||
|
@ -15,10 +16,10 @@ from typing import (
|
||||||
Literal,
|
Literal,
|
||||||
Optional,
|
Optional,
|
||||||
Tuple,
|
Tuple,
|
||||||
TypeVar,
|
|
||||||
Union,
|
Union,
|
||||||
overload,
|
overload,
|
||||||
)
|
)
|
||||||
|
from typing_extensions import TypeVar
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
@ -153,7 +154,8 @@ class LinkMLMeta(RootModel):
|
||||||
|
|
||||||
NUMPYDANTIC_VERSION = "1.2.1"
|
NUMPYDANTIC_VERSION = "1.2.1"
|
||||||
|
|
||||||
T = TypeVar("T", bound=NDArray)
|
T = TypeVar("T", default=NDArray)
|
||||||
|
U = TypeVar("U", default=NDArray)
|
||||||
|
|
||||||
|
|
||||||
class VectorDataMixin(ConfiguredBaseModel, Generic[T]):
|
class VectorDataMixin(ConfiguredBaseModel, Generic[T]):
|
||||||
|
@ -364,7 +366,7 @@ class DynamicTableMixin(ConfiguredBaseModel):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
model_config = ConfigDict(extra="allow", validate_assignment=True)
|
||||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin"]]
|
||||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||||
"id",
|
"id",
|
||||||
"name",
|
"name",
|
||||||
|
@ -657,10 +659,14 @@ class DynamicTableMixin(ConfiguredBaseModel):
|
||||||
Ensure that all columns are equal length
|
Ensure that all columns are equal length
|
||||||
"""
|
"""
|
||||||
lengths = [len(v) for v in self._columns.values() if v is not None] + [len(self.id)]
|
lengths = [len(v) for v in self._columns.values() if v is not None] + [len(self.id)]
|
||||||
assert all([length == lengths[0] for length in lengths]), (
|
|
||||||
"DynamicTable columns are not of equal length! "
|
try:
|
||||||
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
assert all([length == lengths[0] for length in lengths]), (
|
||||||
)
|
"DynamicTable columns are not of equal length! "
|
||||||
|
f"Got colnames:\n{self.colnames}\nand lengths: {lengths}"
|
||||||
|
)
|
||||||
|
except AssertionError:
|
||||||
|
pdb.set_trace()
|
||||||
return self
|
return self
|
||||||
|
|
||||||
@field_validator("*", mode="wrap")
|
@field_validator("*", mode="wrap")
|
||||||
|
@ -958,7 +964,7 @@ class ElementIdentifiers(ElementIdentifiersMixin, Data):
|
||||||
name: str = Field(
|
name: str = Field(
|
||||||
"element_id", json_schema_extra={"linkml_meta": {"ifabsent": "string(element_id)"}}
|
"element_id", json_schema_extra={"linkml_meta": {"ifabsent": "string(element_id)"}}
|
||||||
)
|
)
|
||||||
value: Optional[T] = Field(
|
value: Optional[NDArray] = Field(
|
||||||
None,
|
None,
|
||||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_elements"}]}}},
|
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_elements"}]}}},
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in a new issue