- Able to complete build all the way through to importing generated classes

This commit is contained in:
sneakers-the-rat 2023-09-04 21:46:17 -07:00
parent 8f4f99cffd
commit 78d2ec59d7
79 changed files with 4418 additions and 4704 deletions

5
docs/notes/todo.md Normal file
View file

@ -0,0 +1,5 @@
# TODO
Stuff to keep track of that might have been manually overrided that needs to be fixed pre-release
- Coerce all listlike things into lists if they are passed as single elements!

3
hdf5_linkml/README.md Normal file
View file

@ -0,0 +1,3 @@
# hdf5_linkml
HDF5 adapter to linkml models

View file

@ -19,7 +19,7 @@ class H5File:
""" """
pass pass
def translate_schema(self, dict) -> SchemaDefinition: def translate_schema(self, schema: List[dict]) -> List[SchemaDefinition]:
""" """
Optionally translate schema from source language into LinkML Optionally translate schema from source language into LinkML

View file

@ -130,13 +130,13 @@ class ClassAdapter(Adapter):
# return self._get_full_name() # return self._get_full_name()
name = None name = None
if self.cls.neurodata_type_def: if self.cls.neurodata_type_def:
#name = camel_to_snake(self.cls.neurodata_type_def) # name = camel_to_snake(self.cls.neurodata_type_def)
name = self.cls.neurodata_type_def name = self.cls.neurodata_type_def
elif self.cls.name is not None: elif self.cls.name is not None:
# we do have a unique name # we do have a unique name
name = self.cls.name name = self.cls.name
elif self.cls.neurodata_type_inc: elif self.cls.neurodata_type_inc:
#name = camel_to_snake(self.cls.neurodata_type_inc) # name = camel_to_snake(self.cls.neurodata_type_inc)
name = self.cls.neurodata_type_inc name = self.cls.neurodata_type_inc
if name is None: if name is None:
@ -144,6 +144,29 @@ class ClassAdapter(Adapter):
return name return name
def _get_slot_name(self) -> str:
"""
Get the name to use as the name when this is a subclass used as a slot,
used to dodge name overlaps by snake-casing!
again distinct from the actual name of the instantiated object
"""
# return self._get_full_name()
name = None
if self.cls.neurodata_type_def:
name = camel_to_snake(self.cls.neurodata_type_def)
# name = self.cls.neurodata_type_def
elif self.cls.name is not None:
# we do have a unique name
name = self.cls.name
elif self.cls.neurodata_type_inc:
name = camel_to_snake(self.cls.neurodata_type_inc)
# name = self.cls.neurodata_type_inc
if name is None:
raise ValueError(f'Class has no name!: {self.cls}')
return name
def handle_dtype(self, dtype: DTypeType | None) -> str: def handle_dtype(self, dtype: DTypeType | None) -> str:
if isinstance(dtype, ReferenceDtype): if isinstance(dtype, ReferenceDtype):
return dtype.target_type return dtype.target_type
@ -198,7 +221,7 @@ class ClassAdapter(Adapter):
If we are a child class, we make a slot so our parent can refer to us If we are a child class, we make a slot so our parent can refer to us
""" """
return SlotDefinition( return SlotDefinition(
name=self._get_attr_name(), name=self._get_slot_name(),
description=self.cls.doc, description=self.cls.doc,
range=self._get_full_name(), range=self._get_full_name(),
**QUANTITY_MAP[self.cls.quantity] **QUANTITY_MAP[self.cls.quantity]

View file

@ -1,13 +1,15 @@
""" """
Adapter for NWB datasets to linkml Classes Adapter for NWB datasets to linkml Classes
""" """
import pdb
from typing import Optional, List from typing import Optional, List
import warnings
from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition
from pydantic import PrivateAttr from pydantic import PrivateAttr
from nwb_schema_language import Dataset, ReferenceDtype, CompoundDtype, DTypeType from nwb_schema_language import Dataset, ReferenceDtype, CompoundDtype, DTypeType
from nwb_linkml.adapters.classes import ClassAdapter from nwb_linkml.adapters.classes import ClassAdapter, camel_to_snake
from nwb_linkml.adapters.adapter import BuildResult from nwb_linkml.adapters.adapter import BuildResult
from nwb_linkml.maps import QUANTITY_MAP from nwb_linkml.maps import QUANTITY_MAP
@ -21,11 +23,13 @@ class DatasetAdapter(ClassAdapter):
def build(self) -> BuildResult: def build(self) -> BuildResult:
res = self.build_base() res = self.build_base()
res = self.drop_dynamic_table(res)
res = self.handle_arraylike(res, self.cls, self._get_full_name()) res = self.handle_arraylike(res, self.cls, self._get_full_name())
res = self.handle_1d_vector(res) res = self.handle_1d_vector(res)
res = self.handle_listlike(res) res = self.handle_listlike(res)
res = self.handle_scalar(res) res = self.handle_scalar(res)
if len(self._handlers) > 1: if len(self._handlers) > 1:
raise RuntimeError(f"Only one handler should have been triggered, instead triggered {self._handlers}") raise RuntimeError(f"Only one handler should have been triggered, instead triggered {self._handlers}")
@ -171,7 +175,8 @@ class DatasetAdapter(ClassAdapter):
return res return res
elif not all((dataset.dims, dataset.shape)): elif not all((dataset.dims, dataset.shape)):
# need to have both if one is present! # need to have both if one is present!
raise ValueError(f"A dataset needs both dims and shape to define an arraylike object") warnings.warn(f"A dataset needs both dims and shape to define an arraylike object. This is allowed for compatibility with some badly formatted NWB files, but should in general be avoided. Treating like we dont have an array")
return res
# Special cases # Special cases
if dataset.neurodata_type_inc == 'VectorData': if dataset.neurodata_type_inc == 'VectorData':
@ -193,6 +198,9 @@ class DatasetAdapter(ClassAdapter):
if isinstance(inner_dim, list): if isinstance(inner_dim, list):
# list of lists # list of lists
dims_shape.extend([(dim, shape) for dim, shape in zip(inner_dim, inner_shape)]) dims_shape.extend([(dim, shape) for dim, shape in zip(inner_dim, inner_shape)])
elif isinstance(inner_shape, list):
# Some badly formatted schema will have the shape be a LoL but the dims won't be...
dims_shape.extend([(inner_dim, shape) for shape in inner_shape])
else: else:
# single-layer list # single-layer list
dims_shape.append((inner_dim, inner_shape)) dims_shape.append((inner_dim, inner_shape))
@ -239,7 +247,7 @@ class DatasetAdapter(ClassAdapter):
range=dtype range=dtype
)) ))
# and then the class is just a subclass of `Arraylike` (which is imported by default from `nwb.language.yaml`) # and then the class is just a subclass of `Arraylist` (which is imported by default from `nwb.language.yaml`)
if name: if name:
pass pass
elif dataset.neurodata_type_def: elif dataset.neurodata_type_def:
@ -268,3 +276,46 @@ class DatasetAdapter(ClassAdapter):
self._handlers.append('arraylike') self._handlers.append('arraylike')
return res return res
def drop_dynamic_table(self, res:BuildResult) -> BuildResult:
"""
DynamicTables in hdmf are so special-cased that we have to just special-case them ourselves.
Typically they include a '*' quantitied, unnamed VectorData object to contain arbitrary columns,
this would normally get converted to its own container class, but since they're unnamed they conflict with
names in the containing scope.
We just convert them into multivalued slots and don't use them
"""
if self.cls.name is None and \
self.cls.neurodata_type_def is None and \
self.cls.neurodata_type_inc in ('VectorIndex', 'VectorData') and \
self.cls.quantity == '*':
self._handlers.append('dynamic_table')
this_slot = SlotDefinition(
name=camel_to_snake(self.cls.neurodata_type_inc),
description=self.cls.doc,
range=self.cls.neurodata_type_inc,
required=False,
multivalued=True
)
# No need to make a class for us, so we replace the existing build results
res = BuildResult(slots=[this_slot])
return res
elif self.cls.name is None and \
self.cls.neurodata_type_def is None and \
self.cls.neurodata_type_inc and \
self.cls.quantity in ('*', '+'):
self._handlers.append('generic_container')
this_slot = SlotDefinition(
name=camel_to_snake(self.cls.neurodata_type_inc),
description=self.cls.doc,
range=self.cls.neurodata_type_inc,
**QUANTITY_MAP[self.cls.quantity]
)
# No need to make a class for us, so we replace the existing build results
res = BuildResult(slots=[this_slot])
return res
else:
return res

View file

@ -15,7 +15,8 @@ class GroupAdapter(ClassAdapter):
cls: Group cls: Group
def build(self) -> BuildResult: def build(self) -> BuildResult:
if self.cls.neurodata_type_def == "Subject":
pdb.set_trace()
# Handle container groups with only * quantity unnamed groups # Handle container groups with only * quantity unnamed groups
if len(self.cls.groups) > 0 and \ if len(self.cls.groups) > 0 and \
all([self._check_if_container(g) for g in self.cls.groups]) and \ all([self._check_if_container(g) for g in self.cls.groups]) and \
@ -24,6 +25,7 @@ class GroupAdapter(ClassAdapter):
# handle if we are a terminal container group without making a new class # handle if we are a terminal container group without making a new class
if len(self.cls.groups) == 0 and \ if len(self.cls.groups) == 0 and \
len(self.cls.datasets) == 0 and \
self.cls.neurodata_type_inc is not None and \ self.cls.neurodata_type_inc is not None and \
self.parent is not None: self.parent is not None:
return self.handle_container_slot(self.cls) return self.handle_container_slot(self.cls)
@ -160,7 +162,7 @@ class GroupAdapter(ClassAdapter):
quantity: '*' quantity: '*'
""" """
if not group.name and \ if not group.name and \
group.quantity == '*' and \ group.quantity in ('*','+') and \
group.neurodata_type_inc: group.neurodata_type_inc:
return True return True
else: else:

View file

@ -6,9 +6,12 @@ for extracting information and generating translated schema
""" """
import pdb import pdb
from typing import List, Optional from typing import List, Optional
from pathlib import Path
from pydantic import BaseModel, Field, validator, PrivateAttr from pydantic import BaseModel, Field, validator, PrivateAttr
from pprint import pformat from pprint import pformat
from linkml_runtime.linkml_model import SchemaDefinition from linkml_runtime.linkml_model import SchemaDefinition
from linkml_runtime.dumpers import yaml_dumper
from nwb_schema_language import Namespaces from nwb_schema_language import Namespaces
@ -47,13 +50,15 @@ class NamespacesAdapter(Adapter):
# now generate the top-level namespaces that import everything # now generate the top-level namespaces that import everything
for ns in self.namespaces.namespaces: for ns in self.namespaces.namespaces:
ns_schemas = [sch for sch in self.schemas if sch.namespace == ns.name] ns_schemas = [sch.name for sch in self.schemas if sch.namespace == ns.name]
# also add imports bc, well, we need them
ns_schemas.extend([ns.name for imported in self.imported for ns in imported.namespaces.namespaces])
ns_schema = SchemaDefinition( ns_schema = SchemaDefinition(
name = ns.name, name = ns.name,
id = ns.name, id = ns.name,
description = ns.doc, description = ns.doc,
version = ns.version, version = ns.version,
imports=[sch.name for sch in ns_schemas], imports=ns_schemas,
annotations=[{'tag': 'namespace', 'value': True}] annotations=[{'tag': 'namespace', 'value': True}]
) )
sch_result.schemas.append(ns_schema) sch_result.schemas.append(ns_schema)
@ -91,7 +96,7 @@ class NamespacesAdapter(Adapter):
# find which namespace imports this schema file # find which namespace imports this schema file
for ns in self.namespaces.namespaces: for ns in self.namespaces.namespaces:
sources = [sch.source for sch in ns.schema_] sources = [sch.source for sch in ns.schema_]
if sch_name in sources: if sch_name in sources or sch.path.stem in sources:
sch.namespace = ns.name sch.namespace = ns.name
break break
@ -148,4 +153,14 @@ class NamespacesAdapter(Adapter):
self._imports_populated = True self._imports_populated = True
def to_yaml(self, base_dir:Path):
schemas = self.build().schemas
base_dir = Path(base_dir)
base_dir.mkdir(exist_ok=True)
for schema in schemas:
output_file = base_dir / (schema.name + '.yaml')
yaml_dumper.dump(schema, output_file)

View file

@ -37,7 +37,7 @@ class SchemaAdapter(Adapter):
split: bool = Field( split: bool = Field(
False, False,
description="Split anonymous subclasses into a separate schema file" description="Split anonymous subclasses into a separate schema file"
) )
_created_classes: List[Type[Group | Dataset]] = PrivateAttr(default_factory=list) _created_classes: List[Type[Group | Dataset]] = PrivateAttr(default_factory=list)
@property @property

View file

@ -17,7 +17,11 @@ The `serialize` method
""" """
import pdb import pdb
from dataclasses import dataclass
from pathlib import Path
from typing import List, Dict, Set, Tuple, Optional from typing import List, Dict, Set, Tuple, Optional
import os, sys
from types import ModuleType
from copy import deepcopy from copy import deepcopy
import warnings import warnings
@ -34,6 +38,7 @@ ElementName
) )
from linkml_runtime.utils.formatutils import camelcase, underscore from linkml_runtime.utils.formatutils import camelcase, underscore
from linkml_runtime.utils.schemaview import SchemaView from linkml_runtime.utils.schemaview import SchemaView
from linkml_runtime.utils.compile_python import file_text
from jinja2 import Template from jinja2 import Template
@ -128,12 +133,13 @@ class {{ c.name }}
\"\"\" \"\"\"
{%- endif %} {%- endif %}
{% for attr in c.attributes.values() if c.attributes -%} {% for attr in c.attributes.values() if c.attributes -%}
{{attr.name}}: {{ attr.annotations['python_range'].value }} = Field( {{attr.name}}: {%- if attr.equals_string -%}
Literal[{{ predefined_slot_values[c.name][attr.name] }}]
{%- else -%}
{{ attr.annotations['python_range'].value }}
{%- endif -%} = Field(
{%- if predefined_slot_values[c.name][attr.name] -%} {%- if predefined_slot_values[c.name][attr.name] -%}
{{ predefined_slot_values[c.name][attr.name] }} {{ predefined_slot_values[c.name][attr.name] }}
{%- if attr.equals_string -%}
, const=True
{%- endif -%}
{%- elif attr.required -%} {%- elif attr.required -%}
... ...
{%- else -%} {%- else -%}
@ -169,10 +175,15 @@ class {{ c.name }}
return template return template
@dataclass
class NWBPydanticGenerator(PydanticGenerator): class NWBPydanticGenerator(PydanticGenerator):
SKIP_ENUM=('FlatDType',) SKIP_ENUM=('FlatDType',)
# SKIP_SLOTS=('VectorData',)
SKIP_SLOTS=('',)
SKIP_CLASSES=('',)
# SKIP_CLASSES=('VectorData','VectorIndex')
split:bool=True
def _locate_imports( def _locate_imports(
self, self,
@ -229,6 +240,8 @@ class NWBPydanticGenerator(PydanticGenerator):
needed_classes.append(cls.is_a) needed_classes.append(cls.is_a)
# get needed classes used as ranges in class attributes # get needed classes used as ranges in class attributes
for slot_name in sv.class_slots(cls.name): for slot_name in sv.class_slots(cls.name):
if slot_name in self.SKIP_SLOTS:
continue
slot = deepcopy(sv.induced_slot(slot_name, cls.name)) slot = deepcopy(sv.induced_slot(slot_name, cls.name))
if slot.range in all_classes: if slot.range in all_classes:
needed_classes.append(slot.range) needed_classes.append(slot.range)
@ -316,7 +329,7 @@ class NWBPydanticGenerator(PydanticGenerator):
else: else:
shape_part = "*" shape_part = "*"
# do this cheaply instead of using regex because i want to see if this works at all first... # do this cheaply instead of using regex because i want to see if this works at all first...
name_part = attr.name.replace(',', '_').replace(' ', '_').replace('__', '_') name_part = attr.name.replace(',', '_').replace(' ', '_').replace('__', '_').replace('|','_')
dim_pieces.append(' '.join([shape_part, name_part])) dim_pieces.append(' '.join([shape_part, name_part]))
@ -371,6 +384,7 @@ class NWBPydanticGenerator(PydanticGenerator):
Modified from original to allow for imported classes Modified from original to allow for imported classes
""" """
clist = list(clist) clist = list(clist)
clist = [c for c in clist if c.name not in self.SKIP_CLASSES]
slist = [] # sorted slist = [] # sorted
while len(clist) > 0: while len(clist) > 0:
can_add = False can_add = False
@ -454,13 +468,24 @@ class NWBPydanticGenerator(PydanticGenerator):
# filter skipped enums # filter skipped enums
enums = {k:v for k,v in enums.items() if k not in self.SKIP_ENUM} enums = {k:v for k,v in enums.items() if k not in self.SKIP_ENUM}
# import from local references, rather than serializing every class in every file if self.split:
if 'namespace' in schema.annotations.keys() and schema.annotations['namespace']['value'] == 'True': # import from local references, rather than serializing every class in every file
imports = self._get_namespace_imports(sv) if 'namespace' in schema.annotations.keys() and schema.annotations['namespace']['value'] == 'True':
else: imports = self._get_namespace_imports(sv)
imports = self._get_imports(sv) else:
imports = self._get_imports(sv)
sorted_classes = self._get_classes(sv, imports)
else:
sorted_classes = self.sort_classes(list(sv.all_classes().values()), [])
imports = {}
# Don't want to generate classes when class_uri is linkml:Any, will
# just swap in typing.Any instead down below
sorted_classes = [c for c in sorted_classes if c.class_uri != "linkml:Any"]
self.sorted_class_names = [camelcase(c.name) for c in sorted_classes]
sorted_classes = self._get_classes(sv, imports)
for class_original in sorted_classes: for class_original in sorted_classes:
# Generate class definition # Generate class definition
@ -479,6 +504,8 @@ class NWBPydanticGenerator(PydanticGenerator):
class_name = class_original.name class_name = class_original.name
for sn in sv.class_slots(class_name): for sn in sv.class_slots(class_name):
if sn in self.SKIP_SLOTS:
continue
# TODO: fix runtime, copy should not be necessary # TODO: fix runtime, copy should not be necessary
s = deepcopy(sv.induced_slot(sn, class_name)) s = deepcopy(sv.induced_slot(sn, class_name))
# logging.error(f'Induced slot {class_name}.{sn} == {s.name} {s.range}') # logging.error(f'Induced slot {class_name}.{sn} == {s.name} {s.range}')
@ -537,3 +564,53 @@ class NWBPydanticGenerator(PydanticGenerator):
class_isa_plus_mixins=self.get_class_isa_plus_mixins(sorted_classes), class_isa_plus_mixins=self.get_class_isa_plus_mixins(sorted_classes),
) )
return code return code
def compile_module(self, module_path:Path=None, **kwargs) -> ModuleType:
"""
Compiles generated python code to a module
:return:
"""
pycode = self.serialize(**kwargs)
if module_path is not None:
module_path = Path(module_path)
init_file = module_path / '__init__.py'
with open(init_file, 'w') as ifile:
ifile.write(' ')
try:
return compile_python(pycode, module_path)
except NameError as e:
raise e
def compile_python(text_or_fn: str, package_path: Path = None) -> ModuleType:
"""
Compile the text or file and return the resulting module
@param text_or_fn: Python text or file name that references python file
@param package_path: Root package path. If omitted and we've got a python file, the package is the containing
directory
@return: Compiled module
"""
python_txt = file_text(text_or_fn)
if package_path is None and python_txt != text_or_fn:
package_path = Path(text_or_fn)
spec = compile(python_txt, '<string>', 'exec')
module = ModuleType('test')
# if package_path:
# if package_path.is_absolute():
# module.__package__ = str(package_path)
# else:
# package_path_abs = os.path.join(os.getcwd(), package_path)
# # We have to calculate the path to expected path relative to the current working directory
# for path in sys.path:
# if package_path.startswith(path):
# path_from_tests_parent = os.path.relpath(package_path, path)
# break
# if package_path_abs.startswith(path):
# path_from_tests_parent = os.path.relpath(package_path_abs, path)
# break
# else:
# path_from_tests_parent = os.path.relpath(package_path, os.path.join(os.getcwd(), '..'))
# module.__package__ = os.path.dirname(os.path.relpath(path_from_tests_parent, os.getcwd())).replace(os.path.sep, '.')
# sys.modules[module.__name__] = module
exec(spec, module.__dict__)
return module

View file

@ -1,8 +1,9 @@
""" """
Loading/saving NWB Schema yaml files Loading/saving NWB Schema yaml files
""" """
import pdb
from pathlib import Path from pathlib import Path
from typing import TypedDict, List, Dict from typing import TypedDict, List, Dict, Optional
from pprint import pprint from pprint import pprint
import warnings import warnings
@ -39,8 +40,11 @@ def load_namespaces(path:Path|NamespaceRepo) -> Namespaces:
def load_schema_file(path:Path) -> SchemaAdapter: def load_schema_file(path:Path, yaml:Optional[dict] = None) -> SchemaAdapter:
source = load_yaml(path) if yaml is not None:
source = yaml
else:
source = load_yaml(path)
datasets = [] datasets = []
@ -125,3 +129,4 @@ def load_nwb_core() -> NamespacesAdapter:

View file

@ -65,3 +65,9 @@ class KeyMap(Map):
return out return out
def apply_preload(ns_dict) -> dict:
from nwb_linkml.maps import preload
maps = [m for m in Map.instances if m.phase == PHASES.postload]
for amap in maps:
ns_dict = amap.apply(ns_dict)
return ns_dict

View file

@ -11,6 +11,132 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .core_nwb_retinotopy import (
ImagingRetinotopy
)
from .core_nwb_base import (
NWBData,
TimeSeriesReferenceVectorData,
Image,
ImageReferences,
NWBContainer,
NWBDataInterface,
TimeSeries,
ProcessingModule,
Images
)
from .hdmf_common_table import (
VectorData,
VectorIndex,
ElementIdentifiers,
DynamicTableRegion,
DynamicTable,
AlignedDynamicTable
)
from .hdmf_common_base import (
Data,
Container,
SimpleMultiContainer
)
from .core_nwb_ophys import (
OnePhotonSeries,
TwoPhotonSeries,
RoiResponseSeries,
DfOverF,
Fluorescence,
ImageSegmentation,
PlaneSegmentation,
ImagingPlane,
OpticalChannel,
MotionCorrection,
CorrectedImageStack
)
from .core_nwb_device import (
Device
)
from .core_nwb_image import (
GrayscaleImage,
RGBImage,
RGBAImage,
ImageSeries,
ImageMaskSeries,
OpticalSeries,
IndexSeries
)
from .core_nwb_ogen import (
OptogeneticSeries,
OptogeneticStimulusSite
)
from .core_nwb_icephys import (
PatchClampSeries,
CurrentClampSeries,
IZeroClampSeries,
CurrentClampStimulusSeries,
VoltageClampSeries,
VoltageClampStimulusSeries,
IntracellularElectrode,
SweepTable,
IntracellularElectrodesTable,
IntracellularStimuliTable,
IntracellularResponsesTable,
IntracellularRecordingsTable,
SimultaneousRecordingsTable,
SequentialRecordingsTable,
RepetitionsTable,
ExperimentalConditionsTable
)
from .core_nwb_ecephys import (
ElectricalSeries,
SpikeEventSeries,
FeatureExtraction,
EventDetection,
EventWaveform,
FilteredEphys,
LFP,
ElectrodeGroup,
ClusterWaveforms,
Clustering
)
from .core_nwb_behavior import (
SpatialSeries,
BehavioralEpochs,
BehavioralEvents,
BehavioralTimeSeries,
PupilTracking,
EyeTracking,
CompassDirection,
Position
)
from .core_nwb_misc import (
AbstractFeatureSeries,
AnnotationSeries,
IntervalSeries,
DecompositionSeries,
Units
)
from .core_nwb_file import (
ScratchData,
NWBFile,
LabMetaData,
Subject
)
from .core_nwb_epoch import (
TimeIntervals
)
metamodel_version = "None" metamodel_version = "None"
version = "2.6.0-alpha" version = "2.6.0-alpha"

View file

@ -11,23 +11,14 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTable,
VectorData
)
from .hdmf_common_base import ( from .hdmf_common_base import (
Data, Data,
Container Container
) )
from .core_nwb_base_include import ( from .hdmf_common_table import (
TimeSeriesStartingTime, DynamicTable,
ImageArray, VectorData
ImageReferencesArray,
TimeSeriesSync,
ImagesOrderOfImages,
TimeSeriesData
) )
@ -47,92 +38,135 @@ class NWBData(Data):
""" """
An abstract data type for a dataset. An abstract data type for a dataset.
""" """
name: str = Field(...) name:str= Field(...)
class TimeSeriesReferenceVectorData(VectorData): class TimeSeriesReferenceVectorData(VectorData):
""" """
Column storing references to a TimeSeries (rows). For each TimeSeries this VectorData column stores the start_index and count to indicate the range in time to be selected as well as an object reference to the TimeSeries. Column storing references to a TimeSeries (rows). For each TimeSeries this VectorData column stores the start_index and count to indicate the range in time to be selected as well as an object reference to the TimeSeries.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""") description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* dim0"], Any], NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any], NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any], NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any] NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None) ]]= Field(None)
class Image(NWBData): class Image(NWBData):
""" """
An abstract data type for an image. Shape can be 2-D (x, y), or 3-D where the third dimension can have three or four elements, e.g. (x, y, (r, g, b)) or (x, y, (r, g, b, a)). An abstract data type for an image. Shape can be 2-D (x, y), or 3-D where the third dimension can have three or four elements, e.g. (x, y, (r, g, b)) or (x, y, (r, g, b, a)).
""" """
name: str = Field(...) name:str= Field(...)
resolution: Optional[float] = Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""") resolution:Optional[float]= Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""")
description: Optional[str] = Field(None, description="""Description of the image.""") description:Optional[str]= Field(None, description="""Description of the image.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* x, * y"], Number], NDArray[Shape["* x, * y"], Number],
NDArray[Shape["* x, * y, 3 r_g_b"], Number], NDArray[Shape["* x, * y, 3 r_g_b"], Number],
NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number] NDArray[Shape["* x, * y, 3 r_g_b, 4 r_g_b_a"], Number]
]] = Field(None) ]]= Field(None)
class ImageReferences(NWBData): class ImageReferences(NWBData):
""" """
Ordered dataset of references to Image objects. Ordered dataset of references to Image objects.
""" """
name: str = Field(...) name:str= Field(...)
array: Optional[List[Image] | Image] = Field(None) array:Optional[List[Image] | Image]= Field(None)
class NWBContainer(Container): class NWBContainer(Container):
""" """
An abstract data type for a generic container storing collections of data and metadata. Base type for all data and metadata containers. An abstract data type for a generic container storing collections of data and metadata. Base type for all data and metadata containers.
""" """
name: str = Field(...) name:str= Field(...)
class NWBDataInterface(NWBContainer): class NWBDataInterface(NWBContainer):
""" """
An abstract data type for a generic container storing collections of data, as opposed to metadata. An abstract data type for a generic container storing collections of data, as opposed to metadata.
""" """
name: str = Field(...) name:str= Field(...)
class TimeSeries(NWBDataInterface): class TimeSeries(NWBDataInterface):
""" """
General purpose time series. General purpose time series.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
data: TimeSeriesData = Field(..., description="""Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.""") data:TimeSeriesData= Field(..., description="""Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class TimeSeriesData(ConfiguredBaseModel):
"""
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
"""
name:Literal["data"]= Field("data")
conversion:Optional[float]= Field(None, description="""Scalar to multiply each element in data to convert it to the specified 'unit'. If the data are stored in acquisition system units or other units that require a conversion to be interpretable, multiply the data by 'conversion' to convert the data to the specified 'unit'. e.g. if the data acquisition system stores values in this object as signed 16-bit integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion' multiplier to get from raw data acquisition values to recorded volts is 2.5/32768/8000 = 9.5367e-9.""")
offset:Optional[float]= Field(None, description="""Scalar to add to the data after scaling by 'conversion' to finalize its coercion to the specified 'unit'. Two common examples of this include (a) data stored in an unsigned type that requires a shift after scaling to re-center the data, and (b) specialized recording devices that naturally cause a scalar offset with respect to the true units.""")
resolution:Optional[float]= Field(None, description="""Smallest meaningful difference between values in data, stored in the specified by unit, e.g., the change in value of the least significant bit, or a larger number if signal noise is known to be present. If unknown, use -1.0.""")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
continuity:Optional[str]= Field(None, description="""Optionally describe the continuity of the data. Can be \"continuous\", \"instantaneous\", or \"step\". For example, a voltage trace would be \"continuous\", because samples are recorded from a continuous process. An array of lick times would be \"instantaneous\", because the data represents distinct moments in time. Times of image presentations would be \"step\" because the picture remains the same until the next timepoint. This field is optional, but is useful in providing information about the underlying data. It may inform the way this data is interpreted, the way it is visualized, and what analysis methods are applicable.""")
array:Optional[Union[
NDArray[Shape["* num_times"], Any],
NDArray[Shape["* num_times, * num_DIM2"], Any],
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3"], Any],
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3, * num_DIM4"], Any]
]]= Field(None)
class TimeSeriesStartingTime(ConfiguredBaseModel):
"""
Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.
"""
name:Literal["starting_time"]= Field("starting_time")
rate:Optional[float]= Field(None, description="""Sampling rate, in Hz.""")
unit:Optional[str]= Field(None, description="""Unit of measurement for time, which is fixed to 'seconds'.""")
value:float= Field(...)
class TimeSeriesSync(ConfiguredBaseModel):
"""
Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.
"""
name:Literal["sync"]= Field("sync")
class ProcessingModule(NWBContainer): class ProcessingModule(NWBContainer):
""" """
A collection of processed data. A collection of processed data.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of this collection of processed data.""") description:Optional[str]= Field(None, description="""Description of this collection of processed data.""")
nwb_data_interface: Optional[List[NWBDataInterface]] = Field(default_factory=list, description="""Data objects stored in this collection.""") nwb_data_interface:Optional[List[NWBDataInterface]]= Field(default_factory=list, description="""Data objects stored in this collection.""")
dynamic_table: Optional[List[DynamicTable]] = Field(default_factory=list, description="""Tables stored in this collection.""") dynamic_table:Optional[List[DynamicTable]]= Field(default_factory=list, description="""Tables stored in this collection.""")
class Images(NWBDataInterface): class Images(NWBDataInterface):
""" """
A collection of images with an optional way to specify the order of the images using the \"order_of_images\" dataset. An order must be specified if the images are referenced by index, e.g., from an IndexSeries. A collection of images with an optional way to specify the order of the images using the \"order_of_images\" dataset. An order must be specified if the images are referenced by index, e.g., from an IndexSeries.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of this collection of images.""") description:Optional[str]= Field(None, description="""Description of this collection of images.""")
Image: List[Image] = Field(default_factory=list, description="""Images stored in this collection.""") image:List[Image]= Field(default_factory=list, description="""Images stored in this collection.""")
order_of_images: Optional[ImagesOrderOfImages] = Field(None, description="""Ordered dataset of references to Image objects stored in the parent group. Each Image object in the Images group should be stored once and only once, so the dataset should have the same length as the number of images.""") order_of_images:Optional[ImagesOrderOfImages]= Field(None, description="""Ordered dataset of references to Image objects stored in the parent group. Each Image object in the Images group should be stored once and only once, so the dataset should have the same length as the number of images.""")
class ImagesOrderOfImages(ImageReferences):
"""
Ordered dataset of references to Image objects stored in the parent group. Each Image object in the Images group should be stored once and only once, so the dataset should have the same length as the number of images.
"""
name:Literal["order_of_images"]= Field("order_of_images")
array:Optional[List[Image] | Image]= Field(None)
@ -145,6 +179,10 @@ ImageReferences.model_rebuild()
NWBContainer.model_rebuild() NWBContainer.model_rebuild()
NWBDataInterface.model_rebuild() NWBDataInterface.model_rebuild()
TimeSeries.model_rebuild() TimeSeries.model_rebuild()
TimeSeriesData.model_rebuild()
TimeSeriesStartingTime.model_rebuild()
TimeSeriesSync.model_rebuild()
ProcessingModule.model_rebuild() ProcessingModule.model_rebuild()
Images.model_rebuild() Images.model_rebuild()
ImagesOrderOfImages.model_rebuild()

View file

@ -1,109 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .nwb_language import (
Arraylike
)
from .core_nwb_base import (
ImageReferences,
Image
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class ImageArray(Arraylike):
x: float = Field(...)
y: float = Field(...)
r_g_b: Optional[float] = Field(None)
r_g_b_a: Optional[float] = Field(None)
class ImageReferencesArray(Arraylike):
num_images: Image = Field(...)
class TimeSeriesData(ConfiguredBaseModel):
"""
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
"""
name: str = Field("data", const=True)
conversion: Optional[float] = Field(None, description="""Scalar to multiply each element in data to convert it to the specified 'unit'. If the data are stored in acquisition system units or other units that require a conversion to be interpretable, multiply the data by 'conversion' to convert the data to the specified 'unit'. e.g. if the data acquisition system stores values in this object as signed 16-bit integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion' multiplier to get from raw data acquisition values to recorded volts is 2.5/32768/8000 = 9.5367e-9.""")
offset: Optional[float] = Field(None, description="""Scalar to add to the data after scaling by 'conversion' to finalize its coercion to the specified 'unit'. Two common examples of this include (a) data stored in an unsigned type that requires a shift after scaling to re-center the data, and (b) specialized recording devices that naturally cause a scalar offset with respect to the true units.""")
resolution: Optional[float] = Field(None, description="""Smallest meaningful difference between values in data, stored in the specified by unit, e.g., the change in value of the least significant bit, or a larger number if signal noise is known to be present. If unknown, use -1.0.""")
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
continuity: Optional[str] = Field(None, description="""Optionally describe the continuity of the data. Can be \"continuous\", \"instantaneous\", or \"step\". For example, a voltage trace would be \"continuous\", because samples are recorded from a continuous process. An array of lick times would be \"instantaneous\", because the data represents distinct moments in time. Times of image presentations would be \"step\" because the picture remains the same until the next timepoint. This field is optional, but is useful in providing information about the underlying data. It may inform the way this data is interpreted, the way it is visualized, and what analysis methods are applicable.""")
array: Optional[Union[
NDArray[Shape["* num_times"], Any],
NDArray[Shape["* num_times, * num_DIM2"], Any],
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3"], Any],
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3, * num_DIM4"], Any]
]] = Field(None)
class TimeSeriesDataArray(Arraylike):
num_times: Any = Field(...)
num_DIM2: Optional[Any] = Field(None)
num_DIM3: Optional[Any] = Field(None)
num_DIM4: Optional[Any] = Field(None)
class TimeSeriesStartingTime(ConfiguredBaseModel):
"""
Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.
"""
name: str = Field("starting_time", const=True)
rate: Optional[float] = Field(None, description="""Sampling rate, in Hz.""")
unit: Optional[str] = Field(None, description="""Unit of measurement for time, which is fixed to 'seconds'.""")
class TimeSeriesSync(ConfiguredBaseModel):
"""
Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.
"""
name: str = Field("sync", const=True)
class ImagesOrderOfImages(ImageReferences):
"""
Ordered dataset of references to Image objects stored in the parent group. Each Image object in the Images group should be stored once and only once, so the dataset should have the same length as the number of images.
"""
name: str = Field("order_of_images", const=True)
array: Optional[List[Image] | Image] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ImageArray.model_rebuild()
ImageReferencesArray.model_rebuild()
TimeSeriesData.model_rebuild()
TimeSeriesDataArray.model_rebuild()
TimeSeriesStartingTime.model_rebuild()
TimeSeriesSync.model_rebuild()
ImagesOrderOfImages.model_rebuild()

View file

@ -12,14 +12,12 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeriesStartingTime,
TimeSeries, TimeSeries,
TimeSeriesSync,
NWBDataInterface NWBDataInterface
) )
from .core_nwb_behavior_include import (
SpatialSeriesData
)
from .core_nwb_misc import ( from .core_nwb_misc import (
IntervalSeries IntervalSeries
) )
@ -41,78 +39,93 @@ class SpatialSeries(TimeSeries):
""" """
Direction, e.g., of gaze or travel, or position. The TimeSeries::data field is a 2D array storing position or direction relative to some reference frame. Array structure: [num measurements] [num dimensions]. Each SpatialSeries has a text dataset reference_frame that indicates the zero-position, or the zero-axes for direction. For example, if representing gaze direction, 'straight-ahead' might be a specific pixel on the monitor, or some other point in space. For position data, the 0,0 point might be the top-left corner of an enclosure, as viewed from the tracking camera. The unit of data will indicate how to interpret SpatialSeries values. Direction, e.g., of gaze or travel, or position. The TimeSeries::data field is a 2D array storing position or direction relative to some reference frame. Array structure: [num measurements] [num dimensions]. Each SpatialSeries has a text dataset reference_frame that indicates the zero-position, or the zero-axes for direction. For example, if representing gaze direction, 'straight-ahead' might be a specific pixel on the monitor, or some other point in space. For position data, the 0,0 point might be the top-left corner of an enclosure, as viewed from the tracking camera. The unit of data will indicate how to interpret SpatialSeries values.
""" """
name: str = Field(...) name:str= Field(...)
data: SpatialSeriesData = Field(..., description="""1-D or 2-D array storing position or direction relative to some reference frame.""") data:SpatialSeriesData= Field(..., description="""1-D or 2-D array storing position or direction relative to some reference frame.""")
reference_frame: Optional[str] = Field(None, description="""Description defining what exactly 'straight-ahead' means.""") reference_frame:Optional[str]= Field(None, description="""Description defining what exactly 'straight-ahead' means.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class SpatialSeriesData(ConfiguredBaseModel):
"""
1-D or 2-D array storing position or direction relative to some reference frame.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. The default value is 'meters'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
array:Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, 1 x"], Number],
NDArray[Shape["* num_times, 1 x, 2 x_y"], Number],
NDArray[Shape["* num_times, 1 x, 2 x_y, 3 x_y_z"], Number]
]]= Field(None)
class BehavioralEpochs(NWBDataInterface): class BehavioralEpochs(NWBDataInterface):
""" """
TimeSeries for storing behavioral epochs. The objective of this and the other two Behavioral interfaces (e.g. BehavioralEvents and BehavioralTimeSeries) is to provide generic hooks for software tools/scripts. This allows a tool/script to take the output one specific interface (e.g., UnitTimes) and plot that data relative to another data modality (e.g., behavioral events) without having to define all possible modalities in advance. Declaring one of these interfaces means that one or more TimeSeries of the specified type is published. These TimeSeries should reside in a group having the same name as the interface. For example, if a BehavioralTimeSeries interface is declared, the module will have one or more TimeSeries defined in the module sub-group 'BehavioralTimeSeries'. BehavioralEpochs should use IntervalSeries. BehavioralEvents is used for irregular events. BehavioralTimeSeries is for continuous data. TimeSeries for storing behavioral epochs. The objective of this and the other two Behavioral interfaces (e.g. BehavioralEvents and BehavioralTimeSeries) is to provide generic hooks for software tools/scripts. This allows a tool/script to take the output one specific interface (e.g., UnitTimes) and plot that data relative to another data modality (e.g., behavioral events) without having to define all possible modalities in advance. Declaring one of these interfaces means that one or more TimeSeries of the specified type is published. These TimeSeries should reside in a group having the same name as the interface. For example, if a BehavioralTimeSeries interface is declared, the module will have one or more TimeSeries defined in the module sub-group 'BehavioralTimeSeries'. BehavioralEpochs should use IntervalSeries. BehavioralEvents is used for irregular events. BehavioralTimeSeries is for continuous data.
""" """
name: str = Field(...) name:str= Field(...)
interval_series: Optional[List[IntervalSeries]] = Field(default_factory=list, description="""IntervalSeries object containing start and stop times of epochs.""") interval_series:Optional[List[IntervalSeries]]= Field(default_factory=list, description="""IntervalSeries object containing start and stop times of epochs.""")
class BehavioralEvents(NWBDataInterface): class BehavioralEvents(NWBDataInterface):
""" """
TimeSeries for storing behavioral events. See description of <a href=\"#BehavioralEpochs\">BehavioralEpochs</a> for more details. TimeSeries for storing behavioral events. See description of <a href=\"#BehavioralEpochs\">BehavioralEpochs</a> for more details.
""" """
name: str = Field(...) name:str= Field(...)
time_series: Optional[List[TimeSeries]] = Field(default_factory=list, description="""TimeSeries object containing behavioral events.""") time_series:Optional[List[TimeSeries]]= Field(default_factory=list, description="""TimeSeries object containing behavioral events.""")
class BehavioralTimeSeries(NWBDataInterface): class BehavioralTimeSeries(NWBDataInterface):
""" """
TimeSeries for storing Behavoioral time series data. See description of <a href=\"#BehavioralEpochs\">BehavioralEpochs</a> for more details. TimeSeries for storing Behavoioral time series data. See description of <a href=\"#BehavioralEpochs\">BehavioralEpochs</a> for more details.
""" """
name: str = Field(...) name:str= Field(...)
time_series: Optional[List[TimeSeries]] = Field(default_factory=list, description="""TimeSeries object containing continuous behavioral data.""") time_series:Optional[List[TimeSeries]]= Field(default_factory=list, description="""TimeSeries object containing continuous behavioral data.""")
class PupilTracking(NWBDataInterface): class PupilTracking(NWBDataInterface):
""" """
Eye-tracking data, representing pupil size. Eye-tracking data, representing pupil size.
""" """
name: str = Field(...) name:str= Field(...)
time_series: List[TimeSeries] = Field(default_factory=list, description="""TimeSeries object containing time series data on pupil size.""") time_series:List[TimeSeries]= Field(default_factory=list, description="""TimeSeries object containing time series data on pupil size.""")
class EyeTracking(NWBDataInterface): class EyeTracking(NWBDataInterface):
""" """
Eye-tracking data, representing direction of gaze. Eye-tracking data, representing direction of gaze.
""" """
name: str = Field(...) name:str= Field(...)
spatial_series: Optional[List[SpatialSeries]] = Field(default_factory=list, description="""SpatialSeries object containing data measuring direction of gaze.""") spatial_series:Optional[List[SpatialSeries]]= Field(default_factory=list, description="""SpatialSeries object containing data measuring direction of gaze.""")
class CompassDirection(NWBDataInterface): class CompassDirection(NWBDataInterface):
""" """
With a CompassDirection interface, a module publishes a SpatialSeries object representing a floating point value for theta. The SpatialSeries::reference_frame field should indicate what direction corresponds to 0 and which is the direction of rotation (this should be clockwise). The si_unit for the SpatialSeries should be radians or degrees. With a CompassDirection interface, a module publishes a SpatialSeries object representing a floating point value for theta. The SpatialSeries::reference_frame field should indicate what direction corresponds to 0 and which is the direction of rotation (this should be clockwise). The si_unit for the SpatialSeries should be radians or degrees.
""" """
name: str = Field(...) name:str= Field(...)
spatial_series: Optional[List[SpatialSeries]] = Field(default_factory=list, description="""SpatialSeries object containing direction of gaze travel.""") spatial_series:Optional[List[SpatialSeries]]= Field(default_factory=list, description="""SpatialSeries object containing direction of gaze travel.""")
class Position(NWBDataInterface): class Position(NWBDataInterface):
""" """
Position data, whether along the x, x/y or x/y/z axis. Position data, whether along the x, x/y or x/y/z axis.
""" """
name: str = Field(...) name:str= Field(...)
spatial_series: List[SpatialSeries] = Field(default_factory=list, description="""SpatialSeries object containing position data.""") spatial_series:List[SpatialSeries]= Field(default_factory=list, description="""SpatialSeries object containing position data.""")
# Model rebuild # Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
SpatialSeries.model_rebuild() SpatialSeries.model_rebuild()
SpatialSeriesData.model_rebuild()
BehavioralEpochs.model_rebuild() BehavioralEpochs.model_rebuild()
BehavioralEvents.model_rebuild() BehavioralEvents.model_rebuild()
BehavioralTimeSeries.model_rebuild() BehavioralTimeSeries.model_rebuild()

View file

@ -1,58 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class SpatialSeriesData(ConfiguredBaseModel):
"""
1-D or 2-D array storing position or direction relative to some reference frame.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. The default value is 'meters'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
array: Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, 1 x"], Number],
NDArray[Shape["* num_times, 1 x, 2 x_y"], Number],
NDArray[Shape["* num_times, 1 x, 2 x_y, 3 x_y_z"], Number]
]] = Field(None)
class SpatialSeriesDataArray(Arraylike):
num_times: float = Field(...)
x: Optional[float] = Field(None)
xy: Optional[float] = Field(None)
xyz: Optional[float] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
SpatialSeriesData.model_rebuild()
SpatialSeriesDataArray.model_rebuild()

View file

@ -32,9 +32,9 @@ class Device(NWBContainer):
""" """
Metadata about a data acquisition device, e.g., recording system, electrode, microscope. Metadata about a data acquisition device, e.g., recording system, electrode, microscope.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of the device (e.g., model, firmware version, processing software version, etc.) as free-form text.""") description:Optional[str]= Field(None, description="""Description of the device (e.g., model, firmware version, processing software version, etc.) as free-form text.""")
manufacturer: Optional[str] = Field(None, description="""The name of the manufacturer of the device.""") manufacturer:Optional[str]= Field(None, description="""The name of the manufacturer of the device.""")

View file

@ -12,19 +12,16 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeries, TimeSeriesStartingTime,
NWBContainer, NWBContainer,
TimeSeriesSync,
TimeSeries,
NWBDataInterface NWBDataInterface
) )
from .core_nwb_ecephys_include import ( from .hdmf_common_table import (
FeatureExtractionElectrodes, DynamicTable,
ClusterWaveformsWaveformSd, DynamicTableRegion
ClusterWaveformsWaveformMean,
SpikeEventSeriesData,
ElectricalSeriesElectrodes,
ElectricalSeriesData,
FeatureExtractionFeatures
) )
@ -44,125 +41,211 @@ class ElectricalSeries(TimeSeries):
""" """
A time series of acquired voltage data from extracellular recordings. The data field is an int or float array storing data in volts. The first dimension should always represent time. The second dimension, if present, should represent channels. A time series of acquired voltage data from extracellular recordings. The data field is an int or float array storing data in volts. The first dimension should always represent time. The second dimension, if present, should represent channels.
""" """
name: str = Field(...) name:str= Field(...)
filtering: Optional[str] = Field(None, description="""Filtering applied to all channels of the data. For example, if this ElectricalSeries represents high-pass-filtered data (also known as AP Band), then this value could be \"High-pass 4-pole Bessel filter at 500 Hz\". If this ElectricalSeries represents low-pass-filtered LFP data and the type of filter is unknown, then this value could be \"Low-pass filter at 300 Hz\". If a non-standard filter type is used, provide as much detail about the filter properties as possible.""") filtering:Optional[str]= Field(None, description="""Filtering applied to all channels of the data. For example, if this ElectricalSeries represents high-pass-filtered data (also known as AP Band), then this value could be \"High-pass 4-pole Bessel filter at 500 Hz\". If this ElectricalSeries represents low-pass-filtered LFP data and the type of filter is unknown, then this value could be \"Low-pass filter at 300 Hz\". If a non-standard filter type is used, provide as much detail about the filter properties as possible.""")
data: ElectricalSeriesData = Field(..., description="""Recorded voltage data.""") data:ElectricalSeriesData= Field(..., description="""Recorded voltage data.""")
electrodes: ElectricalSeriesElectrodes = Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""") electrodes:ElectricalSeriesElectrodes= Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""")
channel_conversion: Optional[List[float]] = Field(default_factory=list, description="""Channel-specific conversion factor. Multiply the data in the 'data' dataset by these values along the channel axis (as indicated by axis attribute) AND by the global conversion factor in the 'conversion' attribute of 'data' to get the data values in Volts, i.e, data in Volts = data * data.conversion * channel_conversion. This approach allows for both global and per-channel data conversion factors needed to support the storage of electrical recordings as native values generated by data acquisition systems. If this dataset is not present, then there is no channel-specific conversion factor, i.e. it is 1 for all channels.""") channel_conversion:Optional[List[float]]= Field(default_factory=list, description="""Channel-specific conversion factor. Multiply the data in the 'data' dataset by these values along the channel axis (as indicated by axis attribute) AND by the global conversion factor in the 'conversion' attribute of 'data' to get the data values in Volts, i.e, data in Volts = data * data.conversion * channel_conversion. This approach allows for both global and per-channel data conversion factors needed to support the storage of electrical recordings as native values generated by data acquisition systems. If this dataset is not present, then there is no channel-specific conversion factor, i.e. it is 1 for all channels.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class ElectricalSeriesData(ConfiguredBaseModel):
"""
Recorded voltage data.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. This value is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion', followed by 'channel_conversion' (if present), and then add 'offset'.""")
array:Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_channels"], Number],
NDArray[Shape["* num_times, * num_channels, * num_samples"], Number]
]]= Field(None)
class ElectricalSeriesElectrodes(DynamicTableRegion):
"""
DynamicTableRegion pointer to the electrodes that this time series was generated from.
"""
name:Literal["electrodes"]= Field("electrodes")
table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class SpikeEventSeries(ElectricalSeries): class SpikeEventSeries(ElectricalSeries):
""" """
Stores snapshots/snippets of recorded spike events (i.e., threshold crossings). This may also be raw data, as reported by ephys hardware. If so, the TimeSeries::description field should describe how events were detected. All SpikeEventSeries should reside in a module (under EventWaveform interface) even if the spikes were reported and stored by hardware. All events span the same recording channels and store snapshots of equal duration. TimeSeries::data array structure: [num events] [num channels] [num samples] (or [num events] [num samples] for single electrode). Stores snapshots/snippets of recorded spike events (i.e., threshold crossings). This may also be raw data, as reported by ephys hardware. If so, the TimeSeries::description field should describe how events were detected. All SpikeEventSeries should reside in a module (under EventWaveform interface) even if the spikes were reported and stored by hardware. All events span the same recording channels and store snapshots of equal duration. TimeSeries::data array structure: [num events] [num channels] [num samples] (or [num events] [num samples] for single electrode).
""" """
name: str = Field(...) name:str= Field(...)
data: SpikeEventSeriesData = Field(..., description="""Spike waveforms.""") data:SpikeEventSeriesData= Field(..., description="""Spike waveforms.""")
timestamps: List[float] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time. Timestamps are required for the events. Unlike for TimeSeries, timestamps are required for SpikeEventSeries and are thus re-specified here.""") timestamps:List[float]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time. Timestamps are required for the events. Unlike for TimeSeries, timestamps are required for SpikeEventSeries and are thus re-specified here.""")
filtering: Optional[str] = Field(None, description="""Filtering applied to all channels of the data. For example, if this ElectricalSeries represents high-pass-filtered data (also known as AP Band), then this value could be \"High-pass 4-pole Bessel filter at 500 Hz\". If this ElectricalSeries represents low-pass-filtered LFP data and the type of filter is unknown, then this value could be \"Low-pass filter at 300 Hz\". If a non-standard filter type is used, provide as much detail about the filter properties as possible.""") filtering:Optional[str]= Field(None, description="""Filtering applied to all channels of the data. For example, if this ElectricalSeries represents high-pass-filtered data (also known as AP Band), then this value could be \"High-pass 4-pole Bessel filter at 500 Hz\". If this ElectricalSeries represents low-pass-filtered LFP data and the type of filter is unknown, then this value could be \"Low-pass filter at 300 Hz\". If a non-standard filter type is used, provide as much detail about the filter properties as possible.""")
electrodes: ElectricalSeriesElectrodes = Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""") electrodes:ElectricalSeriesElectrodes= Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""")
channel_conversion: Optional[List[float]] = Field(default_factory=list, description="""Channel-specific conversion factor. Multiply the data in the 'data' dataset by these values along the channel axis (as indicated by axis attribute) AND by the global conversion factor in the 'conversion' attribute of 'data' to get the data values in Volts, i.e, data in Volts = data * data.conversion * channel_conversion. This approach allows for both global and per-channel data conversion factors needed to support the storage of electrical recordings as native values generated by data acquisition systems. If this dataset is not present, then there is no channel-specific conversion factor, i.e. it is 1 for all channels.""") channel_conversion:Optional[List[float]]= Field(default_factory=list, description="""Channel-specific conversion factor. Multiply the data in the 'data' dataset by these values along the channel axis (as indicated by axis attribute) AND by the global conversion factor in the 'conversion' attribute of 'data' to get the data values in Volts, i.e, data in Volts = data * data.conversion * channel_conversion. This approach allows for both global and per-channel data conversion factors needed to support the storage of electrical recordings as native values generated by data acquisition systems. If this dataset is not present, then there is no channel-specific conversion factor, i.e. it is 1 for all channels.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class SpikeEventSeriesData(ConfiguredBaseModel):
"""
Spike waveforms.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Unit of measurement for waveforms, which is fixed to 'volts'.""")
array:Optional[Union[
NDArray[Shape["* num_events, * num_samples"], Number],
NDArray[Shape["* num_events, * num_samples, * num_channels"], Number]
]]= Field(None)
class FeatureExtraction(NWBDataInterface): class FeatureExtraction(NWBDataInterface):
""" """
Features, such as PC1 and PC2, that are extracted from signals stored in a SpikeEventSeries or other source. Features, such as PC1 and PC2, that are extracted from signals stored in a SpikeEventSeries or other source.
""" """
name: str = Field(...) name:str= Field(...)
description: List[str] = Field(default_factory=list, description="""Description of features (eg, ''PC1'') for each of the extracted features.""") description:List[str]= Field(default_factory=list, description="""Description of features (eg, ''PC1'') for each of the extracted features.""")
features: FeatureExtractionFeatures = Field(..., description="""Multi-dimensional array of features extracted from each event.""") features:FeatureExtractionFeatures= Field(..., description="""Multi-dimensional array of features extracted from each event.""")
times: List[float] = Field(default_factory=list, description="""Times of events that features correspond to (can be a link).""") times:List[float]= Field(default_factory=list, description="""Times of events that features correspond to (can be a link).""")
electrodes: FeatureExtractionElectrodes = Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""") electrodes:FeatureExtractionElectrodes= Field(..., description="""DynamicTableRegion pointer to the electrodes that this time series was generated from.""")
class FeatureExtractionFeatures(ConfiguredBaseModel):
"""
Multi-dimensional array of features extracted from each event.
"""
name:Literal["features"]= Field("features")
array:Optional[NDArray[Shape["* num_events, * num_channels, * num_features"], Float32]]= Field(None)
class FeatureExtractionElectrodes(DynamicTableRegion):
"""
DynamicTableRegion pointer to the electrodes that this time series was generated from.
"""
name:Literal["electrodes"]= Field("electrodes")
table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class EventDetection(NWBDataInterface): class EventDetection(NWBDataInterface):
""" """
Detected spike events from voltage trace(s). Detected spike events from voltage trace(s).
""" """
name: str = Field(...) name:str= Field(...)
detection_method: str = Field(..., description="""Description of how events were detected, such as voltage threshold, or dV/dT threshold, as well as relevant values.""") detection_method:str= Field(..., description="""Description of how events were detected, such as voltage threshold, or dV/dT threshold, as well as relevant values.""")
source_idx: List[int] = Field(default_factory=list, description="""Indices (zero-based) into source ElectricalSeries::data array corresponding to time of event. ''description'' should define what is meant by time of event (e.g., .25 ms before action potential peak, zero-crossing time, etc). The index points to each event from the raw data.""") source_idx:List[int]= Field(default_factory=list, description="""Indices (zero-based) into source ElectricalSeries::data array corresponding to time of event. ''description'' should define what is meant by time of event (e.g., .25 ms before action potential peak, zero-crossing time, etc). The index points to each event from the raw data.""")
times: List[float] = Field(default_factory=list, description="""Timestamps of events, in seconds.""") times:List[float]= Field(default_factory=list, description="""Timestamps of events, in seconds.""")
class EventWaveform(NWBDataInterface): class EventWaveform(NWBDataInterface):
""" """
Represents either the waveforms of detected events, as extracted from a raw data trace in /acquisition, or the event waveforms that were stored during experiment acquisition. Represents either the waveforms of detected events, as extracted from a raw data trace in /acquisition, or the event waveforms that were stored during experiment acquisition.
""" """
name: str = Field(...) name:str= Field(...)
spike_event_series: Optional[List[SpikeEventSeries]] = Field(default_factory=list, description="""SpikeEventSeries object(s) containing detected spike event waveforms.""") spike_event_series:Optional[List[SpikeEventSeries]]= Field(default_factory=list, description="""SpikeEventSeries object(s) containing detected spike event waveforms.""")
class FilteredEphys(NWBDataInterface): class FilteredEphys(NWBDataInterface):
""" """
Electrophysiology data from one or more channels that has been subjected to filtering. Examples of filtered data include Theta and Gamma (LFP has its own interface). FilteredEphys modules publish an ElectricalSeries for each filtered channel or set of channels. The name of each ElectricalSeries is arbitrary but should be informative. The source of the filtered data, whether this is from analysis of another time series or as acquired by hardware, should be noted in each's TimeSeries::description field. There is no assumed 1::1 correspondence between filtered ephys signals and electrodes, as a single signal can apply to many nearby electrodes, and one electrode may have different filtered (e.g., theta and/or gamma) signals represented. Filter properties should be noted in the ElectricalSeries 'filtering' attribute. Electrophysiology data from one or more channels that has been subjected to filtering. Examples of filtered data include Theta and Gamma (LFP has its own interface). FilteredEphys modules publish an ElectricalSeries for each filtered channel or set of channels. The name of each ElectricalSeries is arbitrary but should be informative. The source of the filtered data, whether this is from analysis of another time series or as acquired by hardware, should be noted in each's TimeSeries::description field. There is no assumed 1::1 correspondence between filtered ephys signals and electrodes, as a single signal can apply to many nearby electrodes, and one electrode may have different filtered (e.g., theta and/or gamma) signals represented. Filter properties should be noted in the ElectricalSeries 'filtering' attribute.
""" """
name: str = Field(...) name:str= Field(...)
electrical_series: List[ElectricalSeries] = Field(default_factory=list, description="""ElectricalSeries object(s) containing filtered electrophysiology data.""") electrical_series:List[ElectricalSeries]= Field(default_factory=list, description="""ElectricalSeries object(s) containing filtered electrophysiology data.""")
class LFP(NWBDataInterface): class LFP(NWBDataInterface):
""" """
LFP data from one or more channels. The electrode map in each published ElectricalSeries will identify which channels are providing LFP data. Filter properties should be noted in the ElectricalSeries 'filtering' attribute. LFP data from one or more channels. The electrode map in each published ElectricalSeries will identify which channels are providing LFP data. Filter properties should be noted in the ElectricalSeries 'filtering' attribute.
""" """
name: str = Field(...) name:str= Field(...)
electrical_series: List[ElectricalSeries] = Field(default_factory=list, description="""ElectricalSeries object(s) containing LFP data for one or more channels.""") electrical_series:List[ElectricalSeries]= Field(default_factory=list, description="""ElectricalSeries object(s) containing LFP data for one or more channels.""")
class ElectrodeGroup(NWBContainer): class ElectrodeGroup(NWBContainer):
""" """
A physical grouping of electrodes, e.g. a shank of an array. A physical grouping of electrodes, e.g. a shank of an array.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of this electrode group.""") description:Optional[str]= Field(None, description="""Description of this electrode group.""")
location: Optional[str] = Field(None, description="""Location of electrode group. Specify the area, layer, comments on estimation of area/layer, etc. Use standard atlas names for anatomical regions when possible.""") location:Optional[str]= Field(None, description="""Location of electrode group. Specify the area, layer, comments on estimation of area/layer, etc. Use standard atlas names for anatomical regions when possible.""")
position: Optional[Any] = Field(None, description="""stereotaxic or common framework coordinates""") position:Optional[Any]= Field(None, description="""stereotaxic or common framework coordinates""")
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):
""" """
DEPRECATED The mean waveform shape, including standard deviation, of the different clusters. Ideally, the waveform analysis should be performed on data that is only high-pass filtered. This is a separate module because it is expected to require updating. For example, IMEC probes may require different storage requirements to store/display mean waveforms, requiring a new interface or an extension of this one. DEPRECATED The mean waveform shape, including standard deviation, of the different clusters. Ideally, the waveform analysis should be performed on data that is only high-pass filtered. This is a separate module because it is expected to require updating. For example, IMEC probes may require different storage requirements to store/display mean waveforms, requiring a new interface or an extension of this one.
""" """
name: str = Field(...) name:str= Field(...)
waveform_filtering: str = Field(..., description="""Filtering applied to data before generating mean/sd""") waveform_filtering:str= Field(..., description="""Filtering applied to data before generating mean/sd""")
waveform_mean: ClusterWaveformsWaveformMean = Field(..., description="""The mean waveform for each cluster, using the same indices for each wave as cluster numbers in the associated Clustering module (i.e, cluster 3 is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should be empty (e.g., zero- filled)""") waveform_mean:ClusterWaveformsWaveformMean= Field(..., description="""The mean waveform for each cluster, using the same indices for each wave as cluster numbers in the associated Clustering module (i.e, cluster 3 is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should be empty (e.g., zero- filled)""")
waveform_sd: ClusterWaveformsWaveformSd = Field(..., description="""Stdev of waveforms for each cluster, using the same indices as in mean""") waveform_sd:ClusterWaveformsWaveformSd= Field(..., description="""Stdev of waveforms for each cluster, using the same indices as in mean""")
class ClusterWaveformsWaveformMean(ConfiguredBaseModel):
"""
The mean waveform for each cluster, using the same indices for each wave as cluster numbers in the associated Clustering module (i.e, cluster 3 is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should be empty (e.g., zero- filled)
"""
name:Literal["waveform_mean"]= Field("waveform_mean")
array:Optional[NDArray[Shape["* num_clusters, * num_samples"], Float32]]= Field(None)
class ClusterWaveformsWaveformSd(ConfiguredBaseModel):
"""
Stdev of waveforms for each cluster, using the same indices as in mean
"""
name:Literal["waveform_sd"]= Field("waveform_sd")
array:Optional[NDArray[Shape["* num_clusters, * num_samples"], Float32]]= Field(None)
class Clustering(NWBDataInterface): class Clustering(NWBDataInterface):
""" """
DEPRECATED Clustered spike data, whether from automatic clustering tools (e.g., klustakwik) or as a result of manual sorting. DEPRECATED Clustered spike data, whether from automatic clustering tools (e.g., klustakwik) or as a result of manual sorting.
""" """
name: str = Field(...) name:str= Field(...)
description: str = Field(..., description="""Description of clusters or clustering, (e.g. cluster 0 is noise, clusters curated using Klusters, etc)""") description:str= Field(..., description="""Description of clusters or clustering, (e.g. cluster 0 is noise, clusters curated using Klusters, etc)""")
num: List[int] = Field(default_factory=list, description="""Cluster number of each event""") num:List[int]= Field(default_factory=list, description="""Cluster number of each event""")
peak_over_rms: List[float] = Field(default_factory=list, description="""Maximum ratio of waveform peak to RMS on any channel in the cluster (provides a basic clustering metric).""") peak_over_rms:List[float]= Field(default_factory=list, description="""Maximum ratio of waveform peak to RMS on any channel in the cluster (provides a basic clustering metric).""")
times: List[float] = Field(default_factory=list, description="""Times of clustered events, in seconds. This may be a link to times field in associated FeatureExtraction module.""") times:List[float]= Field(default_factory=list, description="""Times of clustered events, in seconds. This may be a link to times field in associated FeatureExtraction module.""")
# Model rebuild # Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ElectricalSeries.model_rebuild() ElectricalSeries.model_rebuild()
ElectricalSeriesData.model_rebuild()
ElectricalSeriesElectrodes.model_rebuild()
SpikeEventSeries.model_rebuild() SpikeEventSeries.model_rebuild()
SpikeEventSeriesData.model_rebuild()
FeatureExtraction.model_rebuild() FeatureExtraction.model_rebuild()
FeatureExtractionFeatures.model_rebuild()
FeatureExtractionElectrodes.model_rebuild()
EventDetection.model_rebuild() EventDetection.model_rebuild()
EventWaveform.model_rebuild() EventWaveform.model_rebuild()
FilteredEphys.model_rebuild() FilteredEphys.model_rebuild()
LFP.model_rebuild() LFP.model_rebuild()
ElectrodeGroup.model_rebuild() ElectrodeGroup.model_rebuild()
ClusterWaveforms.model_rebuild() ClusterWaveforms.model_rebuild()
ClusterWaveformsWaveformMean.model_rebuild()
ClusterWaveformsWaveformSd.model_rebuild()
Clustering.model_rebuild() Clustering.model_rebuild()

View file

@ -1,162 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTableRegion
)
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class ElectricalSeriesData(ConfiguredBaseModel):
"""
Recorded voltage data.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. This value is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion', followed by 'channel_conversion' (if present), and then add 'offset'.""")
array: Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_channels"], Number],
NDArray[Shape["* num_times, * num_channels, * num_samples"], Number]
]] = Field(None)
class ElectricalSeriesDataArray(Arraylike):
num_times: float = Field(...)
num_channels: Optional[float] = Field(None)
num_samples: Optional[float] = Field(None)
class ElectricalSeriesElectrodes(DynamicTableRegion):
"""
DynamicTableRegion pointer to the electrodes that this time series was generated from.
"""
name: str = Field("electrodes", const=True)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class SpikeEventSeriesData(ConfiguredBaseModel):
"""
Spike waveforms.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for waveforms, which is fixed to 'volts'.""")
array: Optional[Union[
NDArray[Shape["* num_events, * num_samples"], Number],
NDArray[Shape["* num_events, * num_samples, * num_channels"], Number]
]] = Field(None)
class SpikeEventSeriesDataArray(Arraylike):
num_events: float = Field(...)
num_samples: float = Field(...)
num_channels: Optional[float] = Field(None)
class FeatureExtractionFeatures(ConfiguredBaseModel):
"""
Multi-dimensional array of features extracted from each event.
"""
name: str = Field("features", const=True)
array: Optional[NDArray[Shape["* num_events, * num_channels, * num_features"], Float32]] = Field(None)
class FeatureExtractionFeaturesArray(Arraylike):
num_events: float = Field(...)
num_channels: float = Field(...)
num_features: float = Field(...)
class FeatureExtractionElectrodes(DynamicTableRegion):
"""
DynamicTableRegion pointer to the electrodes that this time series was generated from.
"""
name: str = Field("electrodes", const=True)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class ClusterWaveformsWaveformMean(ConfiguredBaseModel):
"""
The mean waveform for each cluster, using the same indices for each wave as cluster numbers in the associated Clustering module (i.e, cluster 3 is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should be empty (e.g., zero- filled)
"""
name: str = Field("waveform_mean", const=True)
array: Optional[NDArray[Shape["* num_clusters, * num_samples"], Float32]] = Field(None)
class ClusterWaveformsWaveformMeanArray(Arraylike):
num_clusters: float = Field(...)
num_samples: float = Field(...)
class ClusterWaveformsWaveformSd(ConfiguredBaseModel):
"""
Stdev of waveforms for each cluster, using the same indices as in mean
"""
name: str = Field("waveform_sd", const=True)
array: Optional[NDArray[Shape["* num_clusters, * num_samples"], Float32]] = Field(None)
class ClusterWaveformsWaveformSdArray(Arraylike):
num_clusters: float = Field(...)
num_samples: float = Field(...)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ElectricalSeriesData.model_rebuild()
ElectricalSeriesDataArray.model_rebuild()
ElectricalSeriesElectrodes.model_rebuild()
SpikeEventSeriesData.model_rebuild()
SpikeEventSeriesDataArray.model_rebuild()
FeatureExtractionFeatures.model_rebuild()
FeatureExtractionFeaturesArray.model_rebuild()
FeatureExtractionElectrodes.model_rebuild()
ClusterWaveformsWaveformMean.model_rebuild()
ClusterWaveformsWaveformMeanArray.model_rebuild()
ClusterWaveformsWaveformSd.model_rebuild()
ClusterWaveformsWaveformSdArray.model_rebuild()

View file

@ -12,13 +12,13 @@ else:
from .hdmf_common_table import ( from .hdmf_common_table import (
VectorIndex,
VectorData,
DynamicTable DynamicTable
) )
from .core_nwb_epoch_include import ( from .core_nwb_base import (
TimeIntervalsTimeseriesIndex, TimeSeriesReferenceVectorData
TimeIntervalsTimeseries,
TimeIntervalsTagsIndex
) )
@ -38,21 +38,68 @@ class TimeIntervals(DynamicTable):
""" """
A container for aggregating epoch data and the TimeSeries that each epoch applies to. A container for aggregating epoch data and the TimeSeries that each epoch applies to.
""" """
name: str = Field(...) name:str= Field(...)
start_time: Optional[List[float]] = Field(default_factory=list, description="""Start time of epoch, in seconds.""") start_time:Optional[List[float]]= Field(default_factory=list, description="""Start time of epoch, in seconds.""")
stop_time: Optional[List[float]] = Field(default_factory=list, description="""Stop time of epoch, in seconds.""") stop_time:Optional[List[float]]= Field(default_factory=list, description="""Stop time of epoch, in seconds.""")
tags: Optional[List[str]] = Field(default_factory=list, description="""User-defined tags that identify or categorize events.""") tags:Optional[List[str]]= Field(default_factory=list, description="""User-defined tags that identify or categorize events.""")
tags_index: Optional[TimeIntervalsTagsIndex] = Field(None, description="""Index for tags.""") tags_index:Optional[TimeIntervalsTagsIndex]= Field(None, description="""Index for tags.""")
timeseries: Optional[TimeIntervalsTimeseries] = Field(None, description="""An index into a TimeSeries object.""") timeseries:Optional[TimeIntervalsTimeseries]= Field(None, description="""An index into a TimeSeries object.""")
timeseries_index: Optional[TimeIntervalsTimeseriesIndex] = Field(None, description="""Index for timeseries.""") timeseries_index:Optional[TimeIntervalsTimeseriesIndex]= Field(None, description="""Index for timeseries.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class TimeIntervalsTagsIndex(VectorIndex):
"""
Index for tags.
"""
name:Literal["tags_index"]= Field("tags_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class TimeIntervalsTimeseries(TimeSeriesReferenceVectorData):
"""
An index into a TimeSeries object.
"""
name:Literal["timeseries"]= Field("timeseries")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class TimeIntervalsTimeseriesIndex(VectorIndex):
"""
Index for timeseries.
"""
name:Literal["timeseries_index"]= Field("timeseries_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
# Model rebuild # Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
TimeIntervals.model_rebuild() TimeIntervals.model_rebuild()
TimeIntervalsTagsIndex.model_rebuild()
TimeIntervalsTimeseries.model_rebuild()
TimeIntervalsTimeseriesIndex.model_rebuild()

View file

@ -1,85 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .hdmf_common_table import (
VectorIndex
)
from .core_nwb_base import (
TimeSeriesReferenceVectorData
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class TimeIntervalsTagsIndex(VectorIndex):
"""
Index for tags.
"""
name: str = Field("tags_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class TimeIntervalsTimeseries(TimeSeriesReferenceVectorData):
"""
An index into a TimeSeries object.
"""
name: str = Field("timeseries", const=True)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class TimeIntervalsTimeseriesIndex(VectorIndex):
"""
Index for timeseries.
"""
name: str = Field("timeseries_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
TimeIntervalsTagsIndex.model_rebuild()
TimeIntervalsTimeseries.model_rebuild()
TimeIntervalsTimeseriesIndex.model_rebuild()

View file

@ -11,24 +11,49 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .core_nwb_base import (
NWBContainer,
Images,
TimeSeries,
NWBDataInterface,
ProcessingModule,
NWBData
)
from .core_nwb_ecephys import (
ElectrodeGroup
)
from .core_nwb_ogen import (
OptogeneticStimulusSite
)
from .core_nwb_device import (
Device
)
from .core_nwb_ophys import (
ImagingPlane
)
from .core_nwb_epoch import (
TimeIntervals
)
from .core_nwb_icephys import (
IntracellularElectrode,
IntracellularRecordingsTable,
RepetitionsTable,
SimultaneousRecordingsTable,
ExperimentalConditionsTable,
SweepTable,
SequentialRecordingsTable
)
from .hdmf_common_table import ( from .hdmf_common_table import (
DynamicTable DynamicTable
) )
from .core_nwb_base import (
NWBData,
ProcessingModule,
NWBDataInterface,
NWBContainer
)
from .core_nwb_file_include import (
NWBFileGeneral,
SubjectAge,
NWBFileIntervals,
NWBFileStimulus
)
from .core_nwb_misc import ( from .core_nwb_misc import (
Units Units
) )
@ -50,52 +75,144 @@ class ScratchData(NWBData):
""" """
Any one-off datasets Any one-off datasets
""" """
name: str = Field(...) name:str= Field(...)
notes: Optional[str] = Field(None, description="""Any notes the user has about the dataset being stored""") notes:Optional[str]= Field(None, description="""Any notes the user has about the dataset being stored""")
class NWBFile(NWBContainer): class NWBFile(NWBContainer):
""" """
An NWB file storing cellular-based neurophysiology data from a single experimental session. An NWB file storing cellular-based neurophysiology data from a single experimental session.
""" """
name: str = Field("root", const=True) name:Literal["root"]= Field("root")
nwb_version: Optional[str] = Field(None, description="""File version string. Use semantic versioning, e.g. 1.2.1. This will be the name of the format with trailing major, minor and patch numbers.""") nwb_version:Optional[str]= Field(None, description="""File version string. Use semantic versioning, e.g. 1.2.1. This will be the name of the format with trailing major, minor and patch numbers.""")
file_create_date: List[datetime ] = Field(default_factory=list, description="""A record of the date the file was created and of subsequent modifications. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted strings: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds. The file can be created after the experiment was run, so this may differ from the experiment start time. Each modification to the nwb file adds a new entry to the array.""") file_create_date:List[datetime ]= Field(default_factory=list, description="""A record of the date the file was created and of subsequent modifications. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted strings: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds. The file can be created after the experiment was run, so this may differ from the experiment start time. Each modification to the nwb file adds a new entry to the array.""")
identifier: str = Field(..., description="""A unique text identifier for the file. For example, concatenated lab name, file creation date/time and experimentalist, or a hash of these and/or other values. The goal is that the string should be unique to all other files.""") identifier:str= Field(..., description="""A unique text identifier for the file. For example, concatenated lab name, file creation date/time and experimentalist, or a hash of these and/or other values. The goal is that the string should be unique to all other files.""")
session_description: str = Field(..., description="""A description of the experimental session and data in the file.""") session_description:str= Field(..., description="""A description of the experimental session and data in the file.""")
session_start_time: datetime = Field(..., description="""Date and time of the experiment/session start. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted string: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds.""") session_start_time:datetime = Field(..., description="""Date and time of the experiment/session start. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted string: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds.""")
timestamps_reference_time: datetime = Field(..., description="""Date and time corresponding to time zero of all timestamps. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted string: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds. All times stored in the file use this time as reference (i.e., time zero).""") timestamps_reference_time:datetime = Field(..., description="""Date and time corresponding to time zero of all timestamps. The date is stored in UTC with local timezone offset as ISO 8601 extended formatted string: 2018-09-28T14:43:54.123+02:00. Dates stored in UTC end in \"Z\" with no timezone offset. Date accuracy is up to milliseconds. All times stored in the file use this time as reference (i.e., time zero).""")
acquisition: Optional[List[Union[DynamicTable, NWBDataInterface]]] = Field(default_factory=list, description="""Data streams recorded from the system, including ephys, ophys, tracking, etc. This group should be read-only after the experiment is completed and timestamps are corrected to a common timebase. The data stored here may be links to raw data stored in external NWB files. This will allow keeping bulky raw data out of the file while preserving the option of keeping some/all in the file. Acquired data includes tracking and experimental data streams (i.e., everything measured from the system). If bulky data is stored in the /acquisition group, the data can exist in a separate NWB file that is linked to by the file being used for processing and analysis.""") acquisition:Optional[List[Union[DynamicTable, NWBDataInterface]]]= Field(default_factory=list, description="""Data streams recorded from the system, including ephys, ophys, tracking, etc. This group should be read-only after the experiment is completed and timestamps are corrected to a common timebase. The data stored here may be links to raw data stored in external NWB files. This will allow keeping bulky raw data out of the file while preserving the option of keeping some/all in the file. Acquired data includes tracking and experimental data streams (i.e., everything measured from the system). If bulky data is stored in the /acquisition group, the data can exist in a separate NWB file that is linked to by the file being used for processing and analysis.""")
analysis: Optional[List[Union[DynamicTable, NWBContainer]]] = Field(default_factory=list, description="""Lab-specific and custom scientific analysis of data. There is no defined format for the content of this group - the format is up to the individual user/lab. To facilitate sharing analysis data between labs, the contents here should be stored in standard types (e.g., neurodata_types) and appropriately documented. The file can store lab-specific and custom data analysis without restriction on its form or schema, reducing data formatting restrictions on end users. Such data should be placed in the analysis group. The analysis data should be documented so that it could be shared with other labs.""") analysis:Optional[List[Union[DynamicTable, NWBContainer]]]= Field(default_factory=list, description="""Lab-specific and custom scientific analysis of data. There is no defined format for the content of this group - the format is up to the individual user/lab. To facilitate sharing analysis data between labs, the contents here should be stored in standard types (e.g., neurodata_types) and appropriately documented. The file can store lab-specific and custom data analysis without restriction on its form or schema, reducing data formatting restrictions on end users. Such data should be placed in the analysis group. The analysis data should be documented so that it could be shared with other labs.""")
scratch: Optional[List[Union[DynamicTable, NWBContainer]]] = Field(default_factory=list, description="""A place to store one-off analysis results. Data placed here is not intended for sharing. By placing data here, users acknowledge that there is no guarantee that their data meets any standard.""") scratch:Optional[List[Union[DynamicTable, NWBContainer]]]= Field(default_factory=list, description="""A place to store one-off analysis results. Data placed here is not intended for sharing. By placing data here, users acknowledge that there is no guarantee that their data meets any standard.""")
processing: Optional[List[ProcessingModule]] = Field(default_factory=list, description="""The home for ProcessingModules. These modules perform intermediate analysis of data that is necessary to perform before scientific analysis. Examples include spike clustering, extracting position from tracking data, stitching together image slices. ProcessingModules can be large and express many data sets from relatively complex analysis (e.g., spike detection and clustering) or small, representing extraction of position information from tracking video, or even binary lick/no-lick decisions. Common software tools (e.g., klustakwik, MClust) are expected to read/write data here. 'Processing' refers to intermediate analysis of the acquired data to make it more amenable to scientific analysis.""") processing:Optional[List[ProcessingModule]]= Field(default_factory=list, description="""The home for ProcessingModules. These modules perform intermediate analysis of data that is necessary to perform before scientific analysis. Examples include spike clustering, extracting position from tracking data, stitching together image slices. ProcessingModules can be large and express many data sets from relatively complex analysis (e.g., spike detection and clustering) or small, representing extraction of position information from tracking video, or even binary lick/no-lick decisions. Common software tools (e.g., klustakwik, MClust) are expected to read/write data here. 'Processing' refers to intermediate analysis of the acquired data to make it more amenable to scientific analysis.""")
stimulus: NWBFileStimulus = Field(..., description="""Data pushed into the system (eg, video stimulus, sound, voltage, etc) and secondary representations of that data (eg, measurements of something used as a stimulus). This group should be made read-only after experiment complete and timestamps are corrected to common timebase. Stores both presented stimuli and stimulus templates, the latter in case the same stimulus is presented multiple times, or is pulled from an external stimulus library. Stimuli are here defined as any signal that is pushed into the system as part of the experiment (eg, sound, video, voltage, etc). Many different experiments can use the same stimuli, and stimuli can be re-used during an experiment. The stimulus group is organized so that one version of template stimuli can be stored and these be used multiple times. These templates can exist in the present file or can be linked to a remote library file.""") stimulus:NWBFileStimulus= Field(..., description="""Data pushed into the system (eg, video stimulus, sound, voltage, etc) and secondary representations of that data (eg, measurements of something used as a stimulus). This group should be made read-only after experiment complete and timestamps are corrected to common timebase. Stores both presented stimuli and stimulus templates, the latter in case the same stimulus is presented multiple times, or is pulled from an external stimulus library. Stimuli are here defined as any signal that is pushed into the system as part of the experiment (eg, sound, video, voltage, etc). Many different experiments can use the same stimuli, and stimuli can be re-used during an experiment. The stimulus group is organized so that one version of template stimuli can be stored and these be used multiple times. These templates can exist in the present file or can be linked to a remote library file.""")
general: NWBFileGeneral = Field(..., description="""Experimental metadata, including protocol, notes and description of hardware device(s). The metadata stored in this section should be used to describe the experiment. Metadata necessary for interpreting the data is stored with the data. General experimental metadata, including animal strain, experimental protocols, experimenter, devices, etc, are stored under 'general'. Core metadata (e.g., that required to interpret data fields) is stored with the data itself, and implicitly defined by the file specification (e.g., time is in seconds). The strategy used here for storing non-core metadata is to use free-form text fields, such as would appear in sentences or paragraphs from a Methods section. Metadata fields are text to enable them to be more general, for example to represent ranges instead of numerical values. Machine-readable metadata is stored as attributes to these free-form datasets. All entries in the below table are to be included when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology experiment) should not be created unless there is data to store within them.""") general:NWBFileGeneral= Field(..., description="""Experimental metadata, including protocol, notes and description of hardware device(s). The metadata stored in this section should be used to describe the experiment. Metadata necessary for interpreting the data is stored with the data. General experimental metadata, including animal strain, experimental protocols, experimenter, devices, etc, are stored under 'general'. Core metadata (e.g., that required to interpret data fields) is stored with the data itself, and implicitly defined by the file specification (e.g., time is in seconds). The strategy used here for storing non-core metadata is to use free-form text fields, such as would appear in sentences or paragraphs from a Methods section. Metadata fields are text to enable them to be more general, for example to represent ranges instead of numerical values. Machine-readable metadata is stored as attributes to these free-form datasets. All entries in the below table are to be included when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology experiment) should not be created unless there is data to store within them.""")
intervals: Optional[NWBFileIntervals] = Field(None, description="""Experimental intervals, whether that be logically distinct sub-experiments having a particular scientific goal, trials (see trials subgroup) during an experiment, or epochs (see epochs subgroup) deriving from analysis of data.""") intervals:Optional[NWBFileIntervals]= Field(None, description="""Experimental intervals, whether that be logically distinct sub-experiments having a particular scientific goal, trials (see trials subgroup) during an experiment, or epochs (see epochs subgroup) deriving from analysis of data.""")
units: Optional[Units] = Field(None, description="""Data about sorted spike units.""") units:Optional[Units]= Field(None, description="""Data about sorted spike units.""")
class NWBFileStimulus(ConfiguredBaseModel):
"""
Data pushed into the system (eg, video stimulus, sound, voltage, etc) and secondary representations of that data (eg, measurements of something used as a stimulus). This group should be made read-only after experiment complete and timestamps are corrected to common timebase. Stores both presented stimuli and stimulus templates, the latter in case the same stimulus is presented multiple times, or is pulled from an external stimulus library. Stimuli are here defined as any signal that is pushed into the system as part of the experiment (eg, sound, video, voltage, etc). Many different experiments can use the same stimuli, and stimuli can be re-used during an experiment. The stimulus group is organized so that one version of template stimuli can be stored and these be used multiple times. These templates can exist in the present file or can be linked to a remote library file.
"""
name:Literal["stimulus"]= Field("stimulus")
presentation:Optional[List[TimeSeries]]= Field(default_factory=list, description="""Stimuli presented during the experiment.""")
templates:Optional[List[Union[Images, TimeSeries]]]= Field(default_factory=list, description="""Template stimuli. Timestamps in templates are based on stimulus design and are relative to the beginning of the stimulus. When templates are used, the stimulus instances must convert presentation times to the experiment`s time reference frame.""")
class NWBFileGeneral(ConfiguredBaseModel):
"""
Experimental metadata, including protocol, notes and description of hardware device(s). The metadata stored in this section should be used to describe the experiment. Metadata necessary for interpreting the data is stored with the data. General experimental metadata, including animal strain, experimental protocols, experimenter, devices, etc, are stored under 'general'. Core metadata (e.g., that required to interpret data fields) is stored with the data itself, and implicitly defined by the file specification (e.g., time is in seconds). The strategy used here for storing non-core metadata is to use free-form text fields, such as would appear in sentences or paragraphs from a Methods section. Metadata fields are text to enable them to be more general, for example to represent ranges instead of numerical values. Machine-readable metadata is stored as attributes to these free-form datasets. All entries in the below table are to be included when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology experiment) should not be created unless there is data to store within them.
"""
name:Literal["general"]= Field("general")
data_collection:Optional[str]= Field(None, description="""Notes about data collection and analysis.""")
experiment_description:Optional[str]= Field(None, description="""General description of the experiment.""")
experimenter:Optional[List[str]]= Field(default_factory=list, description="""Name of person(s) who performed the experiment. Can also specify roles of different people involved.""")
institution:Optional[str]= Field(None, description="""Institution(s) where experiment was performed.""")
keywords:Optional[List[str]]= Field(default_factory=list, description="""Terms to search over.""")
lab:Optional[str]= Field(None, description="""Laboratory where experiment was performed.""")
notes:Optional[str]= Field(None, description="""Notes about the experiment.""")
pharmacology:Optional[str]= Field(None, description="""Description of drugs used, including how and when they were administered. Anesthesia(s), painkiller(s), etc., plus dosage, concentration, etc.""")
protocol:Optional[str]= Field(None, description="""Experimental protocol, if applicable. e.g., include IACUC protocol number.""")
related_publications:Optional[List[str]]= Field(default_factory=list, description="""Publication information. PMID, DOI, URL, etc.""")
session_id:Optional[str]= Field(None, description="""Lab-specific ID for the session.""")
slices:Optional[str]= Field(None, description="""Description of slices, including information about preparation thickness, orientation, temperature, and bath solution.""")
source_script:Optional[NWBFileGeneralSourceScript]= Field(None, description="""Script file or link to public source code used to create this NWB file.""")
stimulus:Optional[str]= Field(None, description="""Notes about stimuli, such as how and where they were presented.""")
surgery:Optional[str]= Field(None, description="""Narrative description about surgery/surgeries, including date(s) and who performed surgery.""")
virus:Optional[str]= Field(None, description="""Information about virus(es) used in experiments, including virus ID, source, date made, injection location, volume, etc.""")
lab_meta_data:Optional[List[LabMetaData]]= Field(default_factory=list, description="""Place-holder than can be extended so that lab-specific meta-data can be placed in /general.""")
devices:Optional[List[Device]]= Field(default_factory=list, description="""Description of hardware devices used during experiment, e.g., monitors, ADC boards, microscopes, etc.""")
subject:Optional[Subject]= Field(None, description="""Information about the animal or person from which the data was measured.""")
extracellular_ephys:Optional[NWBFileGeneralExtracellularEphys]= Field(None, description="""Metadata related to extracellular electrophysiology.""")
intracellular_ephys:Optional[NWBFileGeneralIntracellularEphys]= Field(None, description="""Metadata related to intracellular electrophysiology.""")
optogenetics:Optional[List[OptogeneticStimulusSite]]= Field(default_factory=list, description="""Metadata describing optogenetic stimuluation.""")
optophysiology:Optional[List[ImagingPlane]]= Field(default_factory=list, description="""Metadata related to optophysiology.""")
class NWBFileGeneralSourceScript(ConfiguredBaseModel):
"""
Script file or link to public source code used to create this NWB file.
"""
name:Literal["source_script"]= Field("source_script")
file_name:Optional[str]= Field(None, description="""Name of script file.""")
value:str= Field(...)
class NWBFileGeneralExtracellularEphys(ConfiguredBaseModel):
"""
Metadata related to extracellular electrophysiology.
"""
name:Literal["extracellular_ephys"]= Field("extracellular_ephys")
electrode_group:Optional[List[ElectrodeGroup]]= Field(default_factory=list, description="""Physical group of electrodes.""")
electrodes:Optional[DynamicTable]= Field(None, description="""A table of all electrodes (i.e. channels) used for recording.""")
class NWBFileGeneralIntracellularEphys(ConfiguredBaseModel):
"""
Metadata related to intracellular electrophysiology.
"""
name:Literal["intracellular_ephys"]= Field("intracellular_ephys")
filtering:Optional[str]= Field(None, description="""[DEPRECATED] Use IntracellularElectrode.filtering instead. Description of filtering used. Includes filtering type and parameters, frequency fall-off, etc. If this changes between TimeSeries, filter description should be stored as a text attribute for each TimeSeries.""")
intracellular_electrode:Optional[List[IntracellularElectrode]]= Field(default_factory=list, description="""An intracellular electrode.""")
sweep_table:Optional[SweepTable]= Field(None, description="""[DEPRECATED] Table used to group different PatchClampSeries. SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable tables. Additional SequentialRecordingsTable, RepetitionsTable and ExperimentalConditions tables provide enhanced support for experiment metadata.""")
intracellular_recordings:Optional[IntracellularRecordingsTable]= Field(None, description="""A table to group together a stimulus and response from a single electrode and a single simultaneous recording. Each row in the table represents a single recording consisting typically of a stimulus and a corresponding response. In some cases, however, only a stimulus or a response are recorded as as part of an experiment. In this case both, the stimulus and response will point to the same TimeSeries while the idx_start and count of the invalid column will be set to -1, thus, indicating that no values have been recorded for the stimulus or response, respectively. Note, a recording MUST contain at least a stimulus or a response. Typically the stimulus and response are PatchClampSeries. However, the use of AD/DA channels that are not associated to an electrode is also common in intracellular electrophysiology, in which case other TimeSeries may be used.""")
simultaneous_recordings:Optional[SimultaneousRecordingsTable]= Field(None, description="""A table for grouping different intracellular recordings from the IntracellularRecordingsTable table together that were recorded simultaneously from different electrodes""")
sequential_recordings:Optional[SequentialRecordingsTable]= Field(None, description="""A table for grouping different sequential recordings from the SimultaneousRecordingsTable table together. This is typically used to group together sequential recordings where the a sequence of stimuli of the same type with varying parameters have been presented in a sequence.""")
repetitions:Optional[RepetitionsTable]= Field(None, description="""A table for grouping different sequential intracellular recordings together. With each SequentialRecording typically representing a particular type of stimulus, the RepetitionsTable table is typically used to group sets of stimuli applied in sequence.""")
experimental_conditions:Optional[ExperimentalConditionsTable]= Field(None, description="""A table for grouping different intracellular recording repetitions together that belong to the same experimental experimental_conditions.""")
class NWBFileIntervals(ConfiguredBaseModel):
"""
Experimental intervals, whether that be logically distinct sub-experiments having a particular scientific goal, trials (see trials subgroup) during an experiment, or epochs (see epochs subgroup) deriving from analysis of data.
"""
name:Literal["intervals"]= Field("intervals")
epochs:Optional[TimeIntervals]= Field(None, description="""Divisions in time marking experimental stages or sub-divisions of a single recording session.""")
trials:Optional[TimeIntervals]= Field(None, description="""Repeated experimental events that have a logical grouping.""")
invalid_times:Optional[TimeIntervals]= Field(None, description="""Time intervals that should be removed from analysis.""")
time_intervals:Optional[List[TimeIntervals]]= Field(default_factory=list, description="""Optional additional table(s) for describing other experimental time intervals.""")
class LabMetaData(NWBContainer): class LabMetaData(NWBContainer):
""" """
Lab-specific meta-data. Lab-specific meta-data.
""" """
name: str = Field(...) name:str= Field(...)
class Subject(NWBContainer): class Subject(NWBContainer):
""" """
Information about the animal or person from which the data was measured. Information about the animal or person from which the data was measured.
""" """
name: str = Field(...) name:str= Field(...)
age: Optional[SubjectAge] = Field(None, description="""Age of subject. Can be supplied instead of 'date_of_birth'.""") age:Optional[SubjectAge]= Field(None, description="""Age of subject. Can be supplied instead of 'date_of_birth'.""")
date_of_birth: Optional[datetime ] = Field(None, description="""Date of birth of subject. Can be supplied instead of 'age'.""") date_of_birth:Optional[datetime ]= Field(None, description="""Date of birth of subject. Can be supplied instead of 'age'.""")
description: Optional[str] = Field(None, description="""Description of subject and where subject came from (e.g., breeder, if animal).""") description:Optional[str]= Field(None, description="""Description of subject and where subject came from (e.g., breeder, if animal).""")
genotype: Optional[str] = Field(None, description="""Genetic strain. If absent, assume Wild Type (WT).""") genotype:Optional[str]= Field(None, description="""Genetic strain. If absent, assume Wild Type (WT).""")
sex: Optional[str] = Field(None, description="""Gender of subject.""") sex:Optional[str]= Field(None, description="""Gender of subject.""")
species: Optional[str] = Field(None, description="""Species of subject.""") species:Optional[str]= Field(None, description="""Species of subject.""")
strain: Optional[str] = Field(None, description="""Strain of subject.""") strain:Optional[str]= Field(None, description="""Strain of subject.""")
subject_id: Optional[str] = Field(None, description="""ID of animal/person used/participating in experiment (lab convention).""") subject_id:Optional[str]= Field(None, description="""ID of animal/person used/participating in experiment (lab convention).""")
weight: Optional[str] = Field(None, description="""Weight at time of experiment, at time of surgery and at other important times.""") weight:Optional[str]= Field(None, description="""Weight at time of experiment, at time of surgery and at other important times.""")
class SubjectAge(ConfiguredBaseModel):
"""
Age of subject. Can be supplied instead of 'date_of_birth'.
"""
name:Literal["age"]= Field("age")
reference:Optional[str]= Field(None, description="""Age is with reference to this event. Can be 'birth' or 'gestational'. If reference is omitted, 'birth' is implied.""")
value:str= Field(...)
@ -103,6 +220,13 @@ class Subject(NWBContainer):
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ScratchData.model_rebuild() ScratchData.model_rebuild()
NWBFile.model_rebuild() NWBFile.model_rebuild()
NWBFileStimulus.model_rebuild()
NWBFileGeneral.model_rebuild()
NWBFileGeneralSourceScript.model_rebuild()
NWBFileGeneralExtracellularEphys.model_rebuild()
NWBFileGeneralIntracellularEphys.model_rebuild()
NWBFileIntervals.model_rebuild()
LabMetaData.model_rebuild() LabMetaData.model_rebuild()
Subject.model_rebuild() Subject.model_rebuild()
SubjectAge.model_rebuild()

View file

@ -1,171 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .core_nwb_base import (
TimeSeries,
Images
)
from .core_nwb_icephys import (
ExperimentalConditionsTable,
SweepTable,
IntracellularElectrode,
SequentialRecordingsTable,
RepetitionsTable,
SimultaneousRecordingsTable,
IntracellularRecordingsTable
)
from .core_nwb_ogen import (
OptogeneticStimulusSite
)
from .core_nwb_epoch import (
TimeIntervals
)
from .core_nwb_file import (
LabMetaData,
Subject
)
from .hdmf_common_table import (
DynamicTable
)
from .core_nwb_device import (
Device
)
from .core_nwb_ecephys import (
ElectrodeGroup
)
from .core_nwb_ophys import (
ImagingPlane
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class NWBFileStimulus(ConfiguredBaseModel):
"""
Data pushed into the system (eg, video stimulus, sound, voltage, etc) and secondary representations of that data (eg, measurements of something used as a stimulus). This group should be made read-only after experiment complete and timestamps are corrected to common timebase. Stores both presented stimuli and stimulus templates, the latter in case the same stimulus is presented multiple times, or is pulled from an external stimulus library. Stimuli are here defined as any signal that is pushed into the system as part of the experiment (eg, sound, video, voltage, etc). Many different experiments can use the same stimuli, and stimuli can be re-used during an experiment. The stimulus group is organized so that one version of template stimuli can be stored and these be used multiple times. These templates can exist in the present file or can be linked to a remote library file.
"""
name: str = Field("stimulus", const=True)
presentation: Optional[List[TimeSeries]] = Field(default_factory=list, description="""Stimuli presented during the experiment.""")
templates: Optional[List[Union[Images, TimeSeries]]] = Field(default_factory=list, description="""Template stimuli. Timestamps in templates are based on stimulus design and are relative to the beginning of the stimulus. When templates are used, the stimulus instances must convert presentation times to the experiment`s time reference frame.""")
class NWBFileGeneral(ConfiguredBaseModel):
"""
Experimental metadata, including protocol, notes and description of hardware device(s). The metadata stored in this section should be used to describe the experiment. Metadata necessary for interpreting the data is stored with the data. General experimental metadata, including animal strain, experimental protocols, experimenter, devices, etc, are stored under 'general'. Core metadata (e.g., that required to interpret data fields) is stored with the data itself, and implicitly defined by the file specification (e.g., time is in seconds). The strategy used here for storing non-core metadata is to use free-form text fields, such as would appear in sentences or paragraphs from a Methods section. Metadata fields are text to enable them to be more general, for example to represent ranges instead of numerical values. Machine-readable metadata is stored as attributes to these free-form datasets. All entries in the below table are to be included when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology experiment) should not be created unless there is data to store within them.
"""
name: str = Field("general", const=True)
data_collection: Optional[str] = Field(None, description="""Notes about data collection and analysis.""")
experiment_description: Optional[str] = Field(None, description="""General description of the experiment.""")
experimenter: Optional[List[str]] = Field(default_factory=list, description="""Name of person(s) who performed the experiment. Can also specify roles of different people involved.""")
institution: Optional[str] = Field(None, description="""Institution(s) where experiment was performed.""")
keywords: Optional[List[str]] = Field(default_factory=list, description="""Terms to search over.""")
lab: Optional[str] = Field(None, description="""Laboratory where experiment was performed.""")
notes: Optional[str] = Field(None, description="""Notes about the experiment.""")
pharmacology: Optional[str] = Field(None, description="""Description of drugs used, including how and when they were administered. Anesthesia(s), painkiller(s), etc., plus dosage, concentration, etc.""")
protocol: Optional[str] = Field(None, description="""Experimental protocol, if applicable. e.g., include IACUC protocol number.""")
related_publications: Optional[List[str]] = Field(default_factory=list, description="""Publication information. PMID, DOI, URL, etc.""")
session_id: Optional[str] = Field(None, description="""Lab-specific ID for the session.""")
slices: Optional[str] = Field(None, description="""Description of slices, including information about preparation thickness, orientation, temperature, and bath solution.""")
source_script: Optional[NWBFileGeneralSourceScript] = Field(None, description="""Script file or link to public source code used to create this NWB file.""")
stimulus: Optional[str] = Field(None, description="""Notes about stimuli, such as how and where they were presented.""")
surgery: Optional[str] = Field(None, description="""Narrative description about surgery/surgeries, including date(s) and who performed surgery.""")
virus: Optional[str] = Field(None, description="""Information about virus(es) used in experiments, including virus ID, source, date made, injection location, volume, etc.""")
lab_meta_data: Optional[List[LabMetaData]] = Field(default_factory=list, description="""Place-holder than can be extended so that lab-specific meta-data can be placed in /general.""")
devices: Optional[List[Device]] = Field(default_factory=list, description="""Description of hardware devices used during experiment, e.g., monitors, ADC boards, microscopes, etc.""")
subject: Optional[Subject] = Field(None, description="""Information about the animal or person from which the data was measured.""")
extracellular_ephys: Optional[NWBFileGeneralExtracellularEphys] = Field(None, description="""Metadata related to extracellular electrophysiology.""")
intracellular_ephys: Optional[NWBFileGeneralIntracellularEphys] = Field(None, description="""Metadata related to intracellular electrophysiology.""")
optogenetics: Optional[List[OptogeneticStimulusSite]] = Field(default_factory=list, description="""Metadata describing optogenetic stimuluation.""")
optophysiology: Optional[List[ImagingPlane]] = Field(default_factory=list, description="""Metadata related to optophysiology.""")
class NWBFileGeneralSourceScript(ConfiguredBaseModel):
"""
Script file or link to public source code used to create this NWB file.
"""
name: str = Field("source_script", const=True)
file_name: Optional[str] = Field(None, description="""Name of script file.""")
class NWBFileGeneralExtracellularEphys(ConfiguredBaseModel):
"""
Metadata related to extracellular electrophysiology.
"""
name: str = Field("extracellular_ephys", const=True)
electrode_group: Optional[List[ElectrodeGroup]] = Field(default_factory=list, description="""Physical group of electrodes.""")
electrodes: Optional[DynamicTable] = Field(None, description="""A table of all electrodes (i.e. channels) used for recording.""")
class NWBFileGeneralIntracellularEphys(ConfiguredBaseModel):
"""
Metadata related to intracellular electrophysiology.
"""
name: str = Field("intracellular_ephys", const=True)
filtering: Optional[str] = Field(None, description="""[DEPRECATED] Use IntracellularElectrode.filtering instead. Description of filtering used. Includes filtering type and parameters, frequency fall-off, etc. If this changes between TimeSeries, filter description should be stored as a text attribute for each TimeSeries.""")
intracellular_electrode: Optional[List[IntracellularElectrode]] = Field(default_factory=list, description="""An intracellular electrode.""")
sweep_table: Optional[SweepTable] = Field(None, description="""[DEPRECATED] Table used to group different PatchClampSeries. SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable tables. Additional SequentialRecordingsTable, RepetitionsTable and ExperimentalConditions tables provide enhanced support for experiment metadata.""")
intracellular_recordings: Optional[IntracellularRecordingsTable] = Field(None, description="""A table to group together a stimulus and response from a single electrode and a single simultaneous recording. Each row in the table represents a single recording consisting typically of a stimulus and a corresponding response. In some cases, however, only a stimulus or a response are recorded as as part of an experiment. In this case both, the stimulus and response will point to the same TimeSeries while the idx_start and count of the invalid column will be set to -1, thus, indicating that no values have been recorded for the stimulus or response, respectively. Note, a recording MUST contain at least a stimulus or a response. Typically the stimulus and response are PatchClampSeries. However, the use of AD/DA channels that are not associated to an electrode is also common in intracellular electrophysiology, in which case other TimeSeries may be used.""")
simultaneous_recordings: Optional[SimultaneousRecordingsTable] = Field(None, description="""A table for grouping different intracellular recordings from the IntracellularRecordingsTable table together that were recorded simultaneously from different electrodes""")
sequential_recordings: Optional[SequentialRecordingsTable] = Field(None, description="""A table for grouping different sequential recordings from the SimultaneousRecordingsTable table together. This is typically used to group together sequential recordings where the a sequence of stimuli of the same type with varying parameters have been presented in a sequence.""")
repetitions: Optional[RepetitionsTable] = Field(None, description="""A table for grouping different sequential intracellular recordings together. With each SequentialRecording typically representing a particular type of stimulus, the RepetitionsTable table is typically used to group sets of stimuli applied in sequence.""")
experimental_conditions: Optional[ExperimentalConditionsTable] = Field(None, description="""A table for grouping different intracellular recording repetitions together that belong to the same experimental experimental_conditions.""")
class NWBFileIntervals(ConfiguredBaseModel):
"""
Experimental intervals, whether that be logically distinct sub-experiments having a particular scientific goal, trials (see trials subgroup) during an experiment, or epochs (see epochs subgroup) deriving from analysis of data.
"""
name: str = Field("intervals", const=True)
epochs: Optional[TimeIntervals] = Field(None, description="""Divisions in time marking experimental stages or sub-divisions of a single recording session.""")
trials: Optional[TimeIntervals] = Field(None, description="""Repeated experimental events that have a logical grouping.""")
invalid_times: Optional[TimeIntervals] = Field(None, description="""Time intervals that should be removed from analysis.""")
time_intervals: Optional[List[TimeIntervals]] = Field(default_factory=list, description="""Optional additional table(s) for describing other experimental time intervals.""")
class SubjectAge(ConfiguredBaseModel):
"""
Age of subject. Can be supplied instead of 'date_of_birth'.
"""
name: str = Field("age", const=True)
reference: Optional[str] = Field(None, description="""Age is with reference to this event. Can be 'birth' or 'gestational'. If reference is omitted, 'birth' is implied.""")
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
NWBFileStimulus.model_rebuild()
NWBFileGeneral.model_rebuild()
NWBFileGeneralSourceScript.model_rebuild()
NWBFileGeneralExtracellularEphys.model_rebuild()
NWBFileGeneralIntracellularEphys.model_rebuild()
NWBFileIntervals.model_rebuild()
SubjectAge.model_rebuild()

View file

@ -12,38 +12,19 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeries, TimeSeriesStartingTime,
NWBContainer NWBContainer,
) TimeSeriesReferenceVectorData,
TimeSeriesSync,
from .core_nwb_icephys_include import ( TimeSeries
VoltageClampSeriesCapacitanceSlow,
ExperimentalConditionsTableRepetitions,
VoltageClampStimulusSeriesData,
ExperimentalConditionsTableRepetitionsIndex,
VoltageClampSeriesResistanceCompPrediction,
VoltageClampSeriesWholeCellSeriesResistanceComp,
SequentialRecordingsTableSimultaneousRecordings,
VoltageClampSeriesCapacitanceFast,
RepetitionsTableSequentialRecordingsIndex,
IntracellularStimuliTableStimulus,
VoltageClampSeriesResistanceCompCorrection,
SequentialRecordingsTableSimultaneousRecordingsIndex,
SimultaneousRecordingsTableRecordings,
IntracellularResponsesTableResponse,
VoltageClampSeriesResistanceCompBandwidth,
CurrentClampSeriesData,
SimultaneousRecordingsTableRecordingsIndex,
VoltageClampSeriesData,
RepetitionsTableSequentialRecordings,
VoltageClampSeriesWholeCellCapacitanceComp,
CurrentClampStimulusSeriesData,
SweepTableSeriesIndex
) )
from .hdmf_common_table import ( from .hdmf_common_table import (
AlignedDynamicTable,
VectorIndex,
DynamicTable, DynamicTable,
AlignedDynamicTable VectorData,
DynamicTableRegion
) )
@ -63,255 +44,517 @@ class PatchClampSeries(TimeSeries):
""" """
An abstract base class for patch-clamp data - stimulus or response, current or voltage. An abstract base class for patch-clamp data - stimulus or response, current or voltage.
""" """
name: str = Field(...) name:str= Field(...)
stimulus_description: Optional[str] = Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""") stimulus_description:Optional[str]= Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
data: List[float] = Field(default_factory=list, description="""Recorded voltage or current.""") data:List[float]= Field(default_factory=list, description="""Recorded voltage or current.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class CurrentClampSeries(PatchClampSeries): class CurrentClampSeries(PatchClampSeries):
""" """
Voltage data from an intracellular current-clamp recording. A corresponding CurrentClampStimulusSeries (stored separately as a stimulus) is used to store the current injected. Voltage data from an intracellular current-clamp recording. A corresponding CurrentClampStimulusSeries (stored separately as a stimulus) is used to store the current injected.
""" """
name: str = Field(...) name:str= Field(...)
data: CurrentClampSeriesData = Field(..., description="""Recorded voltage.""") data:CurrentClampSeriesData= Field(..., description="""Recorded voltage.""")
bias_current: Optional[float] = Field(None, description="""Bias current, in amps.""") bias_current:Optional[float]= Field(None, description="""Bias current, in amps.""")
bridge_balance: Optional[float] = Field(None, description="""Bridge balance, in ohms.""") bridge_balance:Optional[float]= Field(None, description="""Bridge balance, in ohms.""")
capacitance_compensation: Optional[float] = Field(None, description="""Capacitance compensation, in farads.""") capacitance_compensation:Optional[float]= Field(None, description="""Capacitance compensation, in farads.""")
stimulus_description: Optional[str] = Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""") stimulus_description:Optional[str]= Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class CurrentClampSeriesData(ConfiguredBaseModel):
"""
Recorded voltage.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
value:Any= Field(...)
class IZeroClampSeries(CurrentClampSeries): class IZeroClampSeries(CurrentClampSeries):
""" """
Voltage data from an intracellular recording when all current and amplifier settings are off (i.e., CurrentClampSeries fields will be zero). There is no CurrentClampStimulusSeries associated with an IZero series because the amplifier is disconnected and no stimulus can reach the cell. Voltage data from an intracellular recording when all current and amplifier settings are off (i.e., CurrentClampSeries fields will be zero). There is no CurrentClampStimulusSeries associated with an IZero series because the amplifier is disconnected and no stimulus can reach the cell.
""" """
name: str = Field(...) name:str= Field(...)
stimulus_description: Optional[str] = Field(None, description="""An IZeroClampSeries has no stimulus, so this attribute is automatically set to \"N/A\"""") stimulus_description:Optional[str]= Field(None, description="""An IZeroClampSeries has no stimulus, so this attribute is automatically set to \"N/A\"""")
bias_current: float = Field(..., description="""Bias current, in amps, fixed to 0.0.""") bias_current:float= Field(..., description="""Bias current, in amps, fixed to 0.0.""")
bridge_balance: float = Field(..., description="""Bridge balance, in ohms, fixed to 0.0.""") bridge_balance:float= Field(..., description="""Bridge balance, in ohms, fixed to 0.0.""")
capacitance_compensation: float = Field(..., description="""Capacitance compensation, in farads, fixed to 0.0.""") capacitance_compensation:float= Field(..., description="""Capacitance compensation, in farads, fixed to 0.0.""")
data: CurrentClampSeriesData = Field(..., description="""Recorded voltage.""") data:CurrentClampSeriesData= Field(..., description="""Recorded voltage.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class CurrentClampStimulusSeries(PatchClampSeries): class CurrentClampStimulusSeries(PatchClampSeries):
""" """
Stimulus current applied during current clamp recording. Stimulus current applied during current clamp recording.
""" """
name: str = Field(...) name:str= Field(...)
data: CurrentClampStimulusSeriesData = Field(..., description="""Stimulus current applied.""") data:CurrentClampStimulusSeriesData= Field(..., description="""Stimulus current applied.""")
stimulus_description: Optional[str] = Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""") stimulus_description:Optional[str]= Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class CurrentClampStimulusSeriesData(ConfiguredBaseModel):
"""
Stimulus current applied.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'amperes'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
value:Any= Field(...)
class VoltageClampSeries(PatchClampSeries): class VoltageClampSeries(PatchClampSeries):
""" """
Current data from an intracellular voltage-clamp recording. A corresponding VoltageClampStimulusSeries (stored separately as a stimulus) is used to store the voltage injected. Current data from an intracellular voltage-clamp recording. A corresponding VoltageClampStimulusSeries (stored separately as a stimulus) is used to store the voltage injected.
""" """
name: str = Field(...) name:str= Field(...)
data: VoltageClampSeriesData = Field(..., description="""Recorded current.""") data:VoltageClampSeriesData= Field(..., description="""Recorded current.""")
capacitance_fast: Optional[VoltageClampSeriesCapacitanceFast] = Field(None, description="""Fast capacitance, in farads.""") capacitance_fast:Optional[VoltageClampSeriesCapacitanceFast]= Field(None, description="""Fast capacitance, in farads.""")
capacitance_slow: Optional[VoltageClampSeriesCapacitanceSlow] = Field(None, description="""Slow capacitance, in farads.""") capacitance_slow:Optional[VoltageClampSeriesCapacitanceSlow]= Field(None, description="""Slow capacitance, in farads.""")
resistance_comp_bandwidth: Optional[VoltageClampSeriesResistanceCompBandwidth] = Field(None, description="""Resistance compensation bandwidth, in hertz.""") resistance_comp_bandwidth:Optional[VoltageClampSeriesResistanceCompBandwidth]= Field(None, description="""Resistance compensation bandwidth, in hertz.""")
resistance_comp_correction: Optional[VoltageClampSeriesResistanceCompCorrection] = Field(None, description="""Resistance compensation correction, in percent.""") resistance_comp_correction:Optional[VoltageClampSeriesResistanceCompCorrection]= Field(None, description="""Resistance compensation correction, in percent.""")
resistance_comp_prediction: Optional[VoltageClampSeriesResistanceCompPrediction] = Field(None, description="""Resistance compensation prediction, in percent.""") resistance_comp_prediction:Optional[VoltageClampSeriesResistanceCompPrediction]= Field(None, description="""Resistance compensation prediction, in percent.""")
whole_cell_capacitance_comp: Optional[VoltageClampSeriesWholeCellCapacitanceComp] = Field(None, description="""Whole cell capacitance compensation, in farads.""") whole_cell_capacitance_comp:Optional[VoltageClampSeriesWholeCellCapacitanceComp]= Field(None, description="""Whole cell capacitance compensation, in farads.""")
whole_cell_series_resistance_comp: Optional[VoltageClampSeriesWholeCellSeriesResistanceComp] = Field(None, description="""Whole cell series resistance compensation, in ohms.""") whole_cell_series_resistance_comp:Optional[VoltageClampSeriesWholeCellSeriesResistanceComp]= Field(None, description="""Whole cell series resistance compensation, in ohms.""")
stimulus_description: Optional[str] = Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""") stimulus_description:Optional[str]= Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class VoltageClampSeriesData(ConfiguredBaseModel):
"""
Recorded current.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'amperes'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
value:Any= Field(...)
class VoltageClampSeriesCapacitanceFast(ConfiguredBaseModel):
"""
Fast capacitance, in farads.
"""
name:Literal["capacitance_fast"]= Field("capacitance_fast")
unit:Optional[str]= Field(None, description="""Unit of measurement for capacitance_fast, which is fixed to 'farads'.""")
value:float= Field(...)
class VoltageClampSeriesCapacitanceSlow(ConfiguredBaseModel):
"""
Slow capacitance, in farads.
"""
name:Literal["capacitance_slow"]= Field("capacitance_slow")
unit:Optional[str]= Field(None, description="""Unit of measurement for capacitance_fast, which is fixed to 'farads'.""")
value:float= Field(...)
class VoltageClampSeriesResistanceCompBandwidth(ConfiguredBaseModel):
"""
Resistance compensation bandwidth, in hertz.
"""
name:Literal["resistance_comp_bandwidth"]= Field("resistance_comp_bandwidth")
unit:Optional[str]= Field(None, description="""Unit of measurement for resistance_comp_bandwidth, which is fixed to 'hertz'.""")
value:float= Field(...)
class VoltageClampSeriesResistanceCompCorrection(ConfiguredBaseModel):
"""
Resistance compensation correction, in percent.
"""
name:Literal["resistance_comp_correction"]= Field("resistance_comp_correction")
unit:Optional[str]= Field(None, description="""Unit of measurement for resistance_comp_correction, which is fixed to 'percent'.""")
value:float= Field(...)
class VoltageClampSeriesResistanceCompPrediction(ConfiguredBaseModel):
"""
Resistance compensation prediction, in percent.
"""
name:Literal["resistance_comp_prediction"]= Field("resistance_comp_prediction")
unit:Optional[str]= Field(None, description="""Unit of measurement for resistance_comp_prediction, which is fixed to 'percent'.""")
value:float= Field(...)
class VoltageClampSeriesWholeCellCapacitanceComp(ConfiguredBaseModel):
"""
Whole cell capacitance compensation, in farads.
"""
name:Literal["whole_cell_capacitance_comp"]= Field("whole_cell_capacitance_comp")
unit:Optional[str]= Field(None, description="""Unit of measurement for whole_cell_capacitance_comp, which is fixed to 'farads'.""")
value:float= Field(...)
class VoltageClampSeriesWholeCellSeriesResistanceComp(ConfiguredBaseModel):
"""
Whole cell series resistance compensation, in ohms.
"""
name:Literal["whole_cell_series_resistance_comp"]= Field("whole_cell_series_resistance_comp")
unit:Optional[str]= Field(None, description="""Unit of measurement for whole_cell_series_resistance_comp, which is fixed to 'ohms'.""")
value:float= Field(...)
class VoltageClampStimulusSeries(PatchClampSeries): class VoltageClampStimulusSeries(PatchClampSeries):
""" """
Stimulus voltage applied during a voltage clamp recording. Stimulus voltage applied during a voltage clamp recording.
""" """
name: str = Field(...) name:str= Field(...)
data: VoltageClampStimulusSeriesData = Field(..., description="""Stimulus voltage applied.""") data:VoltageClampStimulusSeriesData= Field(..., description="""Stimulus voltage applied.""")
stimulus_description: Optional[str] = Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""") stimulus_description:Optional[str]= Field(None, description="""Protocol/stimulus name for this patch-clamp dataset.""")
sweep_number: Optional[int] = Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""") sweep_number:Optional[int]= Field(None, description="""Sweep number, allows to group different PatchClampSeries together.""")
gain: Optional[float] = Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""") gain:Optional[float]= Field(None, description="""Gain of the recording, in units Volt/Amp (v-clamp) or Volt/Volt (c-clamp).""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class VoltageClampStimulusSeriesData(ConfiguredBaseModel):
"""
Stimulus voltage applied.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
value:Any= Field(...)
class IntracellularElectrode(NWBContainer): class IntracellularElectrode(NWBContainer):
""" """
An intracellular electrode and its metadata. An intracellular electrode and its metadata.
""" """
name: str = Field(...) name:str= Field(...)
cell_id: Optional[str] = Field(None, description="""unique ID of the cell""") cell_id:Optional[str]= Field(None, description="""unique ID of the cell""")
description: str = Field(..., description="""Description of electrode (e.g., whole-cell, sharp, etc.).""") description:str= Field(..., description="""Description of electrode (e.g., whole-cell, sharp, etc.).""")
filtering: Optional[str] = Field(None, description="""Electrode specific filtering.""") filtering:Optional[str]= Field(None, description="""Electrode specific filtering.""")
initial_access_resistance: Optional[str] = Field(None, description="""Initial access resistance.""") initial_access_resistance:Optional[str]= Field(None, description="""Initial access resistance.""")
location: Optional[str] = Field(None, description="""Location of the electrode. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""") location:Optional[str]= Field(None, description="""Location of the electrode. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""")
resistance: Optional[str] = Field(None, description="""Electrode resistance, in ohms.""") resistance:Optional[str]= Field(None, description="""Electrode resistance, in ohms.""")
seal: Optional[str] = Field(None, description="""Information about seal used for recording.""") seal:Optional[str]= Field(None, description="""Information about seal used for recording.""")
slice: Optional[str] = Field(None, description="""Information about slice used for recording.""") slice:Optional[str]= Field(None, description="""Information about slice used for recording.""")
class SweepTable(DynamicTable): class SweepTable(DynamicTable):
""" """
[DEPRECATED] Table used to group different PatchClampSeries. SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable tables. Additional SequentialRecordingsTable, RepetitionsTable, and ExperimentalConditions tables provide enhanced support for experiment metadata. [DEPRECATED] Table used to group different PatchClampSeries. SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable tables. Additional SequentialRecordingsTable, RepetitionsTable, and ExperimentalConditions tables provide enhanced support for experiment metadata.
""" """
name: str = Field(...) name:str= Field(...)
sweep_number: Optional[List[int]] = Field(default_factory=list, description="""Sweep number of the PatchClampSeries in that row.""") sweep_number:Optional[List[int]]= Field(default_factory=list, description="""Sweep number of the PatchClampSeries in that row.""")
series: Optional[List[PatchClampSeries]] = Field(default_factory=list, description="""The PatchClampSeries with the sweep number in that row.""") series:Optional[List[PatchClampSeries]]= Field(default_factory=list, description="""The PatchClampSeries with the sweep number in that row.""")
series_index: SweepTableSeriesIndex = Field(..., description="""Index for series.""") series_index:SweepTableSeriesIndex= Field(..., description="""Index for series.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class SweepTableSeriesIndex(VectorIndex):
"""
Index for series.
"""
name:Literal["series_index"]= Field("series_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class IntracellularElectrodesTable(DynamicTable): class IntracellularElectrodesTable(DynamicTable):
""" """
Table for storing intracellular electrode related metadata. Table for storing intracellular electrode related metadata.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
electrode: Optional[List[IntracellularElectrode]] = Field(default_factory=list, description="""Column for storing the reference to the intracellular electrode.""") electrode:Optional[List[IntracellularElectrode]]= Field(default_factory=list, description="""Column for storing the reference to the intracellular electrode.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class IntracellularStimuliTable(DynamicTable): class IntracellularStimuliTable(DynamicTable):
""" """
Table for storing intracellular stimulus related metadata. Table for storing intracellular stimulus related metadata.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
stimulus: IntracellularStimuliTableStimulus = Field(..., description="""Column storing the reference to the recorded stimulus for the recording (rows).""") stimulus:IntracellularStimuliTableStimulus= Field(..., description="""Column storing the reference to the recorded stimulus for the recording (rows).""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class IntracellularStimuliTableStimulus(TimeSeriesReferenceVectorData):
"""
Column storing the reference to the recorded stimulus for the recording (rows).
"""
name:Literal["stimulus"]= Field("stimulus")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class IntracellularResponsesTable(DynamicTable): class IntracellularResponsesTable(DynamicTable):
""" """
Table for storing intracellular response related metadata. Table for storing intracellular response related metadata.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
response: IntracellularResponsesTableResponse = Field(..., description="""Column storing the reference to the recorded response for the recording (rows)""") response:IntracellularResponsesTableResponse= Field(..., description="""Column storing the reference to the recorded response for the recording (rows)""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class IntracellularResponsesTableResponse(TimeSeriesReferenceVectorData):
"""
Column storing the reference to the recorded response for the recording (rows)
"""
name:Literal["response"]= Field("response")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class IntracellularRecordingsTable(AlignedDynamicTable): class IntracellularRecordingsTable(AlignedDynamicTable):
""" """
A table to group together a stimulus and response from a single electrode and a single simultaneous recording. Each row in the table represents a single recording consisting typically of a stimulus and a corresponding response. In some cases, however, only a stimulus or a response is recorded as part of an experiment. In this case, both the stimulus and response will point to the same TimeSeries while the idx_start and count of the invalid column will be set to -1, thus, indicating that no values have been recorded for the stimulus or response, respectively. Note, a recording MUST contain at least a stimulus or a response. Typically the stimulus and response are PatchClampSeries. However, the use of AD/DA channels that are not associated to an electrode is also common in intracellular electrophysiology, in which case other TimeSeries may be used. A table to group together a stimulus and response from a single electrode and a single simultaneous recording. Each row in the table represents a single recording consisting typically of a stimulus and a corresponding response. In some cases, however, only a stimulus or a response is recorded as part of an experiment. In this case, both the stimulus and response will point to the same TimeSeries while the idx_start and count of the invalid column will be set to -1, thus, indicating that no values have been recorded for the stimulus or response, respectively. Note, a recording MUST contain at least a stimulus or a response. Typically the stimulus and response are PatchClampSeries. However, the use of AD/DA channels that are not associated to an electrode is also common in intracellular electrophysiology, in which case other TimeSeries may be used.
""" """
name: str = Field("intracellular_recordings", const=True) name:Literal["intracellular_recordings"]= Field("intracellular_recordings")
description: Optional[str] = Field(None, description="""Description of the contents of this table. Inherited from AlignedDynamicTable and overwritten here to fix the value of the attribute.""") description:Optional[str]= Field(None, description="""Description of the contents of this table. Inherited from AlignedDynamicTable and overwritten here to fix the value of the attribute.""")
electrodes: IntracellularElectrodesTable = Field(..., description="""Table for storing intracellular electrode related metadata.""") electrodes:IntracellularElectrodesTable= Field(..., description="""Table for storing intracellular electrode related metadata.""")
stimuli: IntracellularStimuliTable = Field(..., description="""Table for storing intracellular stimulus related metadata.""") stimuli:IntracellularStimuliTable= Field(..., description="""Table for storing intracellular stimulus related metadata.""")
responses: IntracellularResponsesTable = Field(..., description="""Table for storing intracellular response related metadata.""") responses:IntracellularResponsesTable= Field(..., description="""Table for storing intracellular response related metadata.""")
categories: Optional[str] = Field(None, description="""The names of the categories in this AlignedDynamicTable. Each category is represented by one DynamicTable stored in the parent group. This attribute should be used to specify an order of categories and the category names must match the names of the corresponding DynamicTable in the group.""") categories:Optional[str]= Field(None, description="""The names of the categories in this AlignedDynamicTable. Each category is represented by one DynamicTable stored in the parent group. This attribute should be used to specify an order of categories and the category names must match the names of the corresponding DynamicTable in the group.""")
dynamic_table: Optional[List[DynamicTable]] = Field(default_factory=list, description="""A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.""") dynamic_table:Optional[List[DynamicTable]]= Field(default_factory=list, description="""A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class SimultaneousRecordingsTable(DynamicTable): class SimultaneousRecordingsTable(DynamicTable):
""" """
A table for grouping different intracellular recordings from the IntracellularRecordingsTable table together that were recorded simultaneously from different electrodes. A table for grouping different intracellular recordings from the IntracellularRecordingsTable table together that were recorded simultaneously from different electrodes.
""" """
name: str = Field("simultaneous_recordings", const=True) name:Literal["simultaneous_recordings"]= Field("simultaneous_recordings")
recordings: SimultaneousRecordingsTableRecordings = Field(..., description="""A reference to one or more rows in the IntracellularRecordingsTable table.""") recordings:SimultaneousRecordingsTableRecordings= Field(..., description="""A reference to one or more rows in the IntracellularRecordingsTable table.""")
recordings_index: SimultaneousRecordingsTableRecordingsIndex = Field(..., description="""Index dataset for the recordings column.""") recordings_index:SimultaneousRecordingsTableRecordingsIndex= Field(..., description="""Index dataset for the recordings column.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class SimultaneousRecordingsTableRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the IntracellularRecordingsTable table.
"""
name:Literal["recordings"]= Field("recordings")
table:Optional[IntracellularRecordingsTable]= Field(None, description="""Reference to the IntracellularRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class SimultaneousRecordingsTableRecordingsIndex(VectorIndex):
"""
Index dataset for the recordings column.
"""
name:Literal["recordings_index"]= Field("recordings_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class SequentialRecordingsTable(DynamicTable): class SequentialRecordingsTable(DynamicTable):
""" """
A table for grouping different sequential recordings from the SimultaneousRecordingsTable table together. This is typically used to group together sequential recordings where a sequence of stimuli of the same type with varying parameters have been presented in a sequence. A table for grouping different sequential recordings from the SimultaneousRecordingsTable table together. This is typically used to group together sequential recordings where a sequence of stimuli of the same type with varying parameters have been presented in a sequence.
""" """
name: str = Field("sequential_recordings", const=True) name:Literal["sequential_recordings"]= Field("sequential_recordings")
simultaneous_recordings: SequentialRecordingsTableSimultaneousRecordings = Field(..., description="""A reference to one or more rows in the SimultaneousRecordingsTable table.""") simultaneous_recordings:SequentialRecordingsTableSimultaneousRecordings= Field(..., description="""A reference to one or more rows in the SimultaneousRecordingsTable table.""")
simultaneous_recordings_index: SequentialRecordingsTableSimultaneousRecordingsIndex = Field(..., description="""Index dataset for the simultaneous_recordings column.""") simultaneous_recordings_index:SequentialRecordingsTableSimultaneousRecordingsIndex= Field(..., description="""Index dataset for the simultaneous_recordings column.""")
stimulus_type: Optional[List[str]] = Field(default_factory=list, description="""The type of stimulus used for the sequential recording.""") stimulus_type:Optional[List[str]]= Field(default_factory=list, description="""The type of stimulus used for the sequential recording.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class SequentialRecordingsTableSimultaneousRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the SimultaneousRecordingsTable table.
"""
name:Literal["simultaneous_recordings"]= Field("simultaneous_recordings")
table:Optional[SimultaneousRecordingsTable]= Field(None, description="""Reference to the SimultaneousRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class SequentialRecordingsTableSimultaneousRecordingsIndex(VectorIndex):
"""
Index dataset for the simultaneous_recordings column.
"""
name:Literal["simultaneous_recordings_index"]= Field("simultaneous_recordings_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class RepetitionsTable(DynamicTable): class RepetitionsTable(DynamicTable):
""" """
A table for grouping different sequential intracellular recordings together. With each SequentialRecording typically representing a particular type of stimulus, the RepetitionsTable table is typically used to group sets of stimuli applied in sequence. A table for grouping different sequential intracellular recordings together. With each SequentialRecording typically representing a particular type of stimulus, the RepetitionsTable table is typically used to group sets of stimuli applied in sequence.
""" """
name: str = Field("repetitions", const=True) name:Literal["repetitions"]= Field("repetitions")
sequential_recordings: RepetitionsTableSequentialRecordings = Field(..., description="""A reference to one or more rows in the SequentialRecordingsTable table.""") sequential_recordings:RepetitionsTableSequentialRecordings= Field(..., description="""A reference to one or more rows in the SequentialRecordingsTable table.""")
sequential_recordings_index: RepetitionsTableSequentialRecordingsIndex = Field(..., description="""Index dataset for the sequential_recordings column.""") sequential_recordings_index:RepetitionsTableSequentialRecordingsIndex= Field(..., description="""Index dataset for the sequential_recordings column.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class RepetitionsTableSequentialRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the SequentialRecordingsTable table.
"""
name:Literal["sequential_recordings"]= Field("sequential_recordings")
table:Optional[SequentialRecordingsTable]= Field(None, description="""Reference to the SequentialRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class RepetitionsTableSequentialRecordingsIndex(VectorIndex):
"""
Index dataset for the sequential_recordings column.
"""
name:Literal["sequential_recordings_index"]= Field("sequential_recordings_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class ExperimentalConditionsTable(DynamicTable): class ExperimentalConditionsTable(DynamicTable):
""" """
A table for grouping different intracellular recording repetitions together that belong to the same experimental condition. A table for grouping different intracellular recording repetitions together that belong to the same experimental condition.
""" """
name: str = Field("experimental_conditions", const=True) name:Literal["experimental_conditions"]= Field("experimental_conditions")
repetitions: ExperimentalConditionsTableRepetitions = Field(..., description="""A reference to one or more rows in the RepetitionsTable table.""") repetitions:ExperimentalConditionsTableRepetitions= Field(..., description="""A reference to one or more rows in the RepetitionsTable table.""")
repetitions_index: ExperimentalConditionsTableRepetitionsIndex = Field(..., description="""Index dataset for the repetitions column.""") repetitions_index:ExperimentalConditionsTableRepetitionsIndex= Field(..., description="""Index dataset for the repetitions column.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class ExperimentalConditionsTableRepetitions(DynamicTableRegion):
"""
A reference to one or more rows in the RepetitionsTable table.
"""
name:Literal["repetitions"]= Field("repetitions")
table:Optional[RepetitionsTable]= Field(None, description="""Reference to the RepetitionsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class ExperimentalConditionsTableRepetitionsIndex(VectorIndex):
"""
Index dataset for the repetitions column.
"""
name:Literal["repetitions_index"]= Field("repetitions_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
@ -319,18 +562,40 @@ class ExperimentalConditionsTable(DynamicTable):
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
PatchClampSeries.model_rebuild() PatchClampSeries.model_rebuild()
CurrentClampSeries.model_rebuild() CurrentClampSeries.model_rebuild()
CurrentClampSeriesData.model_rebuild()
IZeroClampSeries.model_rebuild() IZeroClampSeries.model_rebuild()
CurrentClampStimulusSeries.model_rebuild() CurrentClampStimulusSeries.model_rebuild()
CurrentClampStimulusSeriesData.model_rebuild()
VoltageClampSeries.model_rebuild() VoltageClampSeries.model_rebuild()
VoltageClampSeriesData.model_rebuild()
VoltageClampSeriesCapacitanceFast.model_rebuild()
VoltageClampSeriesCapacitanceSlow.model_rebuild()
VoltageClampSeriesResistanceCompBandwidth.model_rebuild()
VoltageClampSeriesResistanceCompCorrection.model_rebuild()
VoltageClampSeriesResistanceCompPrediction.model_rebuild()
VoltageClampSeriesWholeCellCapacitanceComp.model_rebuild()
VoltageClampSeriesWholeCellSeriesResistanceComp.model_rebuild()
VoltageClampStimulusSeries.model_rebuild() VoltageClampStimulusSeries.model_rebuild()
VoltageClampStimulusSeriesData.model_rebuild()
IntracellularElectrode.model_rebuild() IntracellularElectrode.model_rebuild()
SweepTable.model_rebuild() SweepTable.model_rebuild()
SweepTableSeriesIndex.model_rebuild()
IntracellularElectrodesTable.model_rebuild() IntracellularElectrodesTable.model_rebuild()
IntracellularStimuliTable.model_rebuild() IntracellularStimuliTable.model_rebuild()
IntracellularStimuliTableStimulus.model_rebuild()
IntracellularResponsesTable.model_rebuild() IntracellularResponsesTable.model_rebuild()
IntracellularResponsesTableResponse.model_rebuild()
IntracellularRecordingsTable.model_rebuild() IntracellularRecordingsTable.model_rebuild()
SimultaneousRecordingsTable.model_rebuild() SimultaneousRecordingsTable.model_rebuild()
SimultaneousRecordingsTableRecordings.model_rebuild()
SimultaneousRecordingsTableRecordingsIndex.model_rebuild()
SequentialRecordingsTable.model_rebuild() SequentialRecordingsTable.model_rebuild()
SequentialRecordingsTableSimultaneousRecordings.model_rebuild()
SequentialRecordingsTableSimultaneousRecordingsIndex.model_rebuild()
RepetitionsTable.model_rebuild() RepetitionsTable.model_rebuild()
RepetitionsTableSequentialRecordings.model_rebuild()
RepetitionsTableSequentialRecordingsIndex.model_rebuild()
ExperimentalConditionsTable.model_rebuild() ExperimentalConditionsTable.model_rebuild()
ExperimentalConditionsTableRepetitions.model_rebuild()
ExperimentalConditionsTableRepetitionsIndex.model_rebuild()

View file

@ -1,319 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTableRegion,
VectorIndex
)
from .core_nwb_icephys import (
SequentialRecordingsTable,
RepetitionsTable,
SimultaneousRecordingsTable,
IntracellularRecordingsTable
)
from .core_nwb_base import (
TimeSeriesReferenceVectorData
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class CurrentClampSeriesData(ConfiguredBaseModel):
"""
Recorded voltage.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
class CurrentClampStimulusSeriesData(ConfiguredBaseModel):
"""
Stimulus current applied.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'amperes'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
class VoltageClampSeriesData(ConfiguredBaseModel):
"""
Recorded current.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'amperes'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
class VoltageClampSeriesCapacitanceFast(ConfiguredBaseModel):
"""
Fast capacitance, in farads.
"""
name: str = Field("capacitance_fast", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for capacitance_fast, which is fixed to 'farads'.""")
class VoltageClampSeriesCapacitanceSlow(ConfiguredBaseModel):
"""
Slow capacitance, in farads.
"""
name: str = Field("capacitance_slow", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for capacitance_fast, which is fixed to 'farads'.""")
class VoltageClampSeriesResistanceCompBandwidth(ConfiguredBaseModel):
"""
Resistance compensation bandwidth, in hertz.
"""
name: str = Field("resistance_comp_bandwidth", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for resistance_comp_bandwidth, which is fixed to 'hertz'.""")
class VoltageClampSeriesResistanceCompCorrection(ConfiguredBaseModel):
"""
Resistance compensation correction, in percent.
"""
name: str = Field("resistance_comp_correction", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for resistance_comp_correction, which is fixed to 'percent'.""")
class VoltageClampSeriesResistanceCompPrediction(ConfiguredBaseModel):
"""
Resistance compensation prediction, in percent.
"""
name: str = Field("resistance_comp_prediction", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for resistance_comp_prediction, which is fixed to 'percent'.""")
class VoltageClampSeriesWholeCellCapacitanceComp(ConfiguredBaseModel):
"""
Whole cell capacitance compensation, in farads.
"""
name: str = Field("whole_cell_capacitance_comp", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for whole_cell_capacitance_comp, which is fixed to 'farads'.""")
class VoltageClampSeriesWholeCellSeriesResistanceComp(ConfiguredBaseModel):
"""
Whole cell series resistance compensation, in ohms.
"""
name: str = Field("whole_cell_series_resistance_comp", const=True)
unit: Optional[str] = Field(None, description="""Unit of measurement for whole_cell_series_resistance_comp, which is fixed to 'ohms'.""")
class VoltageClampStimulusSeriesData(ConfiguredBaseModel):
"""
Stimulus voltage applied.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. which is fixed to 'volts'. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion' and add 'offset'.""")
class SweepTableSeriesIndex(VectorIndex):
"""
Index for series.
"""
name: str = Field("series_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class IntracellularStimuliTableStimulus(TimeSeriesReferenceVectorData):
"""
Column storing the reference to the recorded stimulus for the recording (rows).
"""
name: str = Field("stimulus", const=True)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class IntracellularResponsesTableResponse(TimeSeriesReferenceVectorData):
"""
Column storing the reference to the recorded response for the recording (rows)
"""
name: str = Field("response", const=True)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class SimultaneousRecordingsTableRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the IntracellularRecordingsTable table.
"""
name: str = Field("recordings", const=True)
table: Optional[IntracellularRecordingsTable] = Field(None, description="""Reference to the IntracellularRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class SimultaneousRecordingsTableRecordingsIndex(VectorIndex):
"""
Index dataset for the recordings column.
"""
name: str = Field("recordings_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class SequentialRecordingsTableSimultaneousRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the SimultaneousRecordingsTable table.
"""
name: str = Field("simultaneous_recordings", const=True)
table: Optional[SimultaneousRecordingsTable] = Field(None, description="""Reference to the SimultaneousRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class SequentialRecordingsTableSimultaneousRecordingsIndex(VectorIndex):
"""
Index dataset for the simultaneous_recordings column.
"""
name: str = Field("simultaneous_recordings_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class RepetitionsTableSequentialRecordings(DynamicTableRegion):
"""
A reference to one or more rows in the SequentialRecordingsTable table.
"""
name: str = Field("sequential_recordings", const=True)
table: Optional[SequentialRecordingsTable] = Field(None, description="""Reference to the SequentialRecordingsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class RepetitionsTableSequentialRecordingsIndex(VectorIndex):
"""
Index dataset for the sequential_recordings column.
"""
name: str = Field("sequential_recordings_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class ExperimentalConditionsTableRepetitions(DynamicTableRegion):
"""
A reference to one or more rows in the RepetitionsTable table.
"""
name: str = Field("repetitions", const=True)
table: Optional[RepetitionsTable] = Field(None, description="""Reference to the RepetitionsTable table that this table region applies to. This specializes the attribute inherited from DynamicTableRegion to fix the type of table that can be referenced here.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class ExperimentalConditionsTableRepetitionsIndex(VectorIndex):
"""
Index dataset for the repetitions column.
"""
name: str = Field("repetitions_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
CurrentClampSeriesData.model_rebuild()
CurrentClampStimulusSeriesData.model_rebuild()
VoltageClampSeriesData.model_rebuild()
VoltageClampSeriesCapacitanceFast.model_rebuild()
VoltageClampSeriesCapacitanceSlow.model_rebuild()
VoltageClampSeriesResistanceCompBandwidth.model_rebuild()
VoltageClampSeriesResistanceCompCorrection.model_rebuild()
VoltageClampSeriesResistanceCompPrediction.model_rebuild()
VoltageClampSeriesWholeCellCapacitanceComp.model_rebuild()
VoltageClampSeriesWholeCellSeriesResistanceComp.model_rebuild()
VoltageClampStimulusSeriesData.model_rebuild()
SweepTableSeriesIndex.model_rebuild()
IntracellularStimuliTableStimulus.model_rebuild()
IntracellularResponsesTableResponse.model_rebuild()
SimultaneousRecordingsTableRecordings.model_rebuild()
SimultaneousRecordingsTableRecordingsIndex.model_rebuild()
SequentialRecordingsTableSimultaneousRecordings.model_rebuild()
SequentialRecordingsTableSimultaneousRecordingsIndex.model_rebuild()
RepetitionsTableSequentialRecordings.model_rebuild()
RepetitionsTableSequentialRecordingsIndex.model_rebuild()
ExperimentalConditionsTableRepetitions.model_rebuild()
ExperimentalConditionsTableRepetitionsIndex.model_rebuild()

View file

@ -12,17 +12,10 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeriesStartingTime,
Image,
TimeSeries, TimeSeries,
Image TimeSeriesSync
)
from .core_nwb_image_include import (
ImageSeriesData,
RGBAImageArray,
GrayscaleImageArray,
RGBImageArray,
OpticalSeriesFieldOfView,
OpticalSeriesData
) )
@ -42,102 +35,135 @@ class GrayscaleImage(Image):
""" """
A grayscale image. A grayscale image.
""" """
name: str = Field(...) name:str= Field(...)
array: Optional[NDArray[Shape["* x, * y"], Number]] = Field(None) array:Optional[NDArray[Shape["* x, * y"], Number]]= Field(None)
resolution: Optional[float] = Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""") resolution:Optional[float]= Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""")
description: Optional[str] = Field(None, description="""Description of the image.""") description:Optional[str]= Field(None, description="""Description of the image.""")
class RGBImage(Image): class RGBImage(Image):
""" """
A color image. A color image.
""" """
name: str = Field(...) name:str= Field(...)
array: Optional[NDArray[Shape["* x, * y, 3 r_g_b"], Number]] = Field(None) array:Optional[NDArray[Shape["* x, * y, 3 r_g_b"], Number]]= Field(None)
resolution: Optional[float] = Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""") resolution:Optional[float]= Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""")
description: Optional[str] = Field(None, description="""Description of the image.""") description:Optional[str]= Field(None, description="""Description of the image.""")
class RGBAImage(Image): class RGBAImage(Image):
""" """
A color image with transparency. A color image with transparency.
""" """
name: str = Field(...) name:str= Field(...)
array: Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], Number]] = Field(None) array:Optional[NDArray[Shape["* x, * y, 4 r_g_b_a"], Number]]= Field(None)
resolution: Optional[float] = Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""") resolution:Optional[float]= Field(None, description="""Pixel resolution of the image, in pixels per centimeter.""")
description: Optional[str] = Field(None, description="""Description of the image.""") description:Optional[str]= Field(None, description="""Description of the image.""")
class ImageSeries(TimeSeries): class ImageSeries(TimeSeries):
""" """
General image data that is common between acquisition and stimulus time series. Sometimes the image data is stored in the file in a raw format while other times it will be stored as a series of external image files in the host file system. The data field will either be binary data, if the data is stored in the NWB file, or empty, if the data is stored in an external image stack. [frame][x][y] or [frame][x][y][z]. General image data that is common between acquisition and stimulus time series. Sometimes the image data is stored in the file in a raw format while other times it will be stored as a series of external image files in the host file system. The data field will either be binary data, if the data is stored in the NWB file, or empty, if the data is stored in an external image stack. [frame][x][y] or [frame][x][y][z].
""" """
name: str = Field(...) name:str= Field(...)
data: ImageSeriesData = Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""") data:ImageSeriesData= Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""")
dimension: Optional[List[int]] = Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""") dimension:Optional[List[int]]= Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""")
external_file: Optional[List[str]] = Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""") external_file:Optional[List[str]]= Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""")
format: Optional[str] = Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""") format:Optional[str]= Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class ImageSeriesData(ConfiguredBaseModel):
"""
Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.
"""
name:Literal["data"]= Field("data")
array:Optional[Union[
NDArray[Shape["* frame, * x, * y"], Number],
NDArray[Shape["* frame, * x, * y, * z"], Number]
]]= Field(None)
class ImageMaskSeries(ImageSeries): class ImageMaskSeries(ImageSeries):
""" """
An alpha mask that is applied to a presented visual stimulus. The 'data' array contains an array of mask values that are applied to the displayed image. Mask values are stored as RGBA. Mask can vary with time. The timestamps array indicates the starting time of a mask, and that mask pattern continues until it's explicitly changed. An alpha mask that is applied to a presented visual stimulus. The 'data' array contains an array of mask values that are applied to the displayed image. Mask values are stored as RGBA. Mask can vary with time. The timestamps array indicates the starting time of a mask, and that mask pattern continues until it's explicitly changed.
""" """
name: str = Field(...) name:str= Field(...)
data: ImageSeriesData = Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""") data:ImageSeriesData= Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""")
dimension: Optional[List[int]] = Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""") dimension:Optional[List[int]]= Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""")
external_file: Optional[List[str]] = Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""") external_file:Optional[List[str]]= Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""")
format: Optional[str] = Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""") format:Optional[str]= Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class OpticalSeries(ImageSeries): class OpticalSeries(ImageSeries):
""" """
Image data that is presented or recorded. A stimulus template movie will be stored only as an image. When the image is presented as stimulus, additional data is required, such as field of view (e.g., how much of the visual field the image covers, or how what is the area of the target being imaged). If the OpticalSeries represents acquired imaging data, orientation is also important. Image data that is presented or recorded. A stimulus template movie will be stored only as an image. When the image is presented as stimulus, additional data is required, such as field of view (e.g., how much of the visual field the image covers, or how what is the area of the target being imaged). If the OpticalSeries represents acquired imaging data, orientation is also important.
""" """
name: str = Field(...) name:str= Field(...)
distance: Optional[float] = Field(None, description="""Distance from camera/monitor to target/eye.""") distance:Optional[float]= Field(None, description="""Distance from camera/monitor to target/eye.""")
field_of_view: Optional[OpticalSeriesFieldOfView] = Field(None, description="""Width, height and depth of image, or imaged area, in meters.""") field_of_view:Optional[OpticalSeriesFieldOfView]= Field(None, description="""Width, height and depth of image, or imaged area, in meters.""")
data: OpticalSeriesData = Field(..., description="""Images presented to subject, either grayscale or RGB""") data:OpticalSeriesData= Field(..., description="""Images presented to subject, either grayscale or RGB""")
orientation: Optional[str] = Field(None, description="""Description of image relative to some reference frame (e.g., which way is up). Must also specify frame of reference.""") orientation:Optional[str]= Field(None, description="""Description of image relative to some reference frame (e.g., which way is up). Must also specify frame of reference.""")
dimension: Optional[List[int]] = Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""") dimension:Optional[List[int]]= Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""")
external_file: Optional[List[str]] = Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""") external_file:Optional[List[str]]= Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""")
format: Optional[str] = Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""") format:Optional[str]= Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class OpticalSeriesFieldOfView(ConfiguredBaseModel):
"""
Width, height and depth of image, or imaged area, in meters.
"""
name:Literal["field_of_view"]= Field("field_of_view")
array:Optional[Union[
NDArray[Shape["2 width_height"], Float32],
NDArray[Shape["2 width_height, 3 width_height_depth"], Float32]
]]= Field(None)
class OpticalSeriesData(ConfiguredBaseModel):
"""
Images presented to subject, either grayscale or RGB
"""
name:Literal["data"]= Field("data")
array:Optional[Union[
NDArray[Shape["* frame, * x, * y"], Number],
NDArray[Shape["* frame, * x, * y, 3 r_g_b"], Number]
]]= Field(None)
class IndexSeries(TimeSeries): class IndexSeries(TimeSeries):
""" """
Stores indices to image frames stored in an ImageSeries. The purpose of the IndexSeries is to allow a static image stack to be stored in an Images object, and the images in the stack to be referenced out-of-order. This can be for the display of individual images, or of movie segments (as a movie is simply a series of images). The data field stores the index of the frame in the referenced Images object, and the timestamps array indicates when that image was displayed. Stores indices to image frames stored in an ImageSeries. The purpose of the IndexSeries is to allow a static image stack to be stored in an Images object, and the images in the stack to be referenced out-of-order. This can be for the display of individual images, or of movie segments (as a movie is simply a series of images). The data field stores the index of the frame in the referenced Images object, and the timestamps array indicates when that image was displayed.
""" """
name: str = Field(...) name:str= Field(...)
data: List[int] = Field(default_factory=list, description="""Index of the image (using zero-indexing) in the linked Images object.""") data:List[int]= Field(default_factory=list, description="""Index of the image (using zero-indexing) in the linked Images object.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
@ -147,7 +173,10 @@ GrayscaleImage.model_rebuild()
RGBImage.model_rebuild() RGBImage.model_rebuild()
RGBAImage.model_rebuild() RGBAImage.model_rebuild()
ImageSeries.model_rebuild() ImageSeries.model_rebuild()
ImageSeriesData.model_rebuild()
ImageMaskSeries.model_rebuild() ImageMaskSeries.model_rebuild()
OpticalSeries.model_rebuild() OpticalSeries.model_rebuild()
OpticalSeriesFieldOfView.model_rebuild()
OpticalSeriesData.model_rebuild()
IndexSeries.model_rebuild() IndexSeries.model_rebuild()

View file

@ -1,118 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class GrayscaleImageArray(Arraylike):
x: float = Field(...)
y: float = Field(...)
class RGBImageArray(Arraylike):
x: float = Field(...)
y: float = Field(...)
r_g_b: float = Field(...)
class RGBAImageArray(Arraylike):
x: float = Field(...)
y: float = Field(...)
r_g_b_a: float = Field(...)
class ImageSeriesData(ConfiguredBaseModel):
"""
Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.
"""
name: str = Field("data", const=True)
array: Optional[Union[
NDArray[Shape["* frame, * x, * y"], Number],
NDArray[Shape["* frame, * x, * y, * z"], Number]
]] = Field(None)
class ImageSeriesDataArray(Arraylike):
frame: float = Field(...)
x: float = Field(...)
y: float = Field(...)
z: Optional[float] = Field(None)
class OpticalSeriesFieldOfView(ConfiguredBaseModel):
"""
Width, height and depth of image, or imaged area, in meters.
"""
name: str = Field("field_of_view", const=True)
array: Optional[Union[
NDArray[Shape["2 width_height"], Float32],
NDArray[Shape["2 width_height, 3 width_height_depth"], Float32]
]] = Field(None)
class OpticalSeriesFieldOfViewArray(Arraylike):
width_height: Optional[float] = Field(None)
width_height_depth: Optional[float] = Field(None)
class OpticalSeriesData(ConfiguredBaseModel):
"""
Images presented to subject, either grayscale or RGB
"""
name: str = Field("data", const=True)
array: Optional[Union[
NDArray[Shape["* frame, * x, * y"], Number],
NDArray[Shape["* frame, * x, * y, 3 r_g_b"], Number]
]] = Field(None)
class OpticalSeriesDataArray(Arraylike):
frame: float = Field(...)
x: float = Field(...)
y: float = Field(...)
r_g_b: Optional[float] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
GrayscaleImageArray.model_rebuild()
RGBImageArray.model_rebuild()
RGBAImageArray.model_rebuild()
ImageSeriesData.model_rebuild()
ImageSeriesDataArray.model_rebuild()
OpticalSeriesFieldOfView.model_rebuild()
OpticalSeriesFieldOfViewArray.model_rebuild()
OpticalSeriesData.model_rebuild()
OpticalSeriesDataArray.model_rebuild()

View file

@ -11,28 +11,9 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTable
)
from .core_nwb_misc_include import (
UnitsElectrodes,
UnitsElectrodesIndex,
UnitsObsIntervalsIndex,
UnitsSpikeTimes,
UnitsSpikeTimesIndex,
UnitsWaveformSd,
UnitsWaveformMean,
UnitsWaveforms,
AbstractFeatureSeriesData,
UnitsWaveformsIndexIndex,
UnitsObsIntervals,
UnitsWaveformsIndex,
DecompositionSeriesData,
DecompositionSeriesSourceChannels
)
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeriesStartingTime,
TimeSeriesSync,
TimeSeries TimeSeries
) )
@ -40,6 +21,13 @@ from .core_nwb_ecephys import (
ElectrodeGroup ElectrodeGroup
) )
from .hdmf_common_table import (
VectorIndex,
DynamicTable,
VectorData,
DynamicTableRegion
)
metamodel_version = "None" metamodel_version = "None"
version = "None" version = "None"
@ -57,96 +45,313 @@ class AbstractFeatureSeries(TimeSeries):
""" """
Abstract features, such as quantitative descriptions of sensory stimuli. The TimeSeries::data field is a 2D array, storing those features (e.g., for visual grating stimulus this might be orientation, spatial frequency and contrast). Null stimuli (eg, uniform gray) can be marked as being an independent feature (eg, 1.0 for gray, 0.0 for actual stimulus) or by storing NaNs for feature values, or through use of the TimeSeries::control fields. A set of features is considered to persist until the next set of features is defined. The final set of features stored should be the null set. This is useful when storing the raw stimulus is impractical. Abstract features, such as quantitative descriptions of sensory stimuli. The TimeSeries::data field is a 2D array, storing those features (e.g., for visual grating stimulus this might be orientation, spatial frequency and contrast). Null stimuli (eg, uniform gray) can be marked as being an independent feature (eg, 1.0 for gray, 0.0 for actual stimulus) or by storing NaNs for feature values, or through use of the TimeSeries::control fields. A set of features is considered to persist until the next set of features is defined. The final set of features stored should be the null set. This is useful when storing the raw stimulus is impractical.
""" """
name: str = Field(...) name:str= Field(...)
data: AbstractFeatureSeriesData = Field(..., description="""Values of each feature at each time.""") data:AbstractFeatureSeriesData= Field(..., description="""Values of each feature at each time.""")
feature_units: Optional[List[str]] = Field(default_factory=list, description="""Units of each feature.""") feature_units:Optional[List[str]]= Field(default_factory=list, description="""Units of each feature.""")
features: List[str] = Field(default_factory=list, description="""Description of the features represented in TimeSeries::data.""") features:List[str]= Field(default_factory=list, description="""Description of the features represented in TimeSeries::data.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class AbstractFeatureSeriesData(ConfiguredBaseModel):
"""
Values of each feature at each time.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Since there can be different units for different features, store the units in 'feature_units'. The default value for this attribute is \"see 'feature_units'\".""")
array:Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_features"], Number]
]]= Field(None)
class AnnotationSeries(TimeSeries): class AnnotationSeries(TimeSeries):
""" """
Stores user annotations made during an experiment. The data[] field stores a text array, and timestamps are stored for each annotation (ie, interval=1). This is largely an alias to a standard TimeSeries storing a text array but that is identifiable as storing annotations in a machine-readable way. Stores user annotations made during an experiment. The data[] field stores a text array, and timestamps are stored for each annotation (ie, interval=1). This is largely an alias to a standard TimeSeries storing a text array but that is identifiable as storing annotations in a machine-readable way.
""" """
name: str = Field(...) name:str= Field(...)
data: List[str] = Field(default_factory=list, description="""Annotations made during an experiment.""") data:List[str]= Field(default_factory=list, description="""Annotations made during an experiment.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class IntervalSeries(TimeSeries): class IntervalSeries(TimeSeries):
""" """
Stores intervals of data. The timestamps field stores the beginning and end of intervals. The data field stores whether the interval just started (>0 value) or ended (<0 value). Different interval types can be represented in the same series by using multiple key values (eg, 1 for feature A, 2 for feature B, 3 for feature C, etc). The field data stores an 8-bit integer. This is largely an alias of a standard TimeSeries but that is identifiable as representing time intervals in a machine-readable way. Stores intervals of data. The timestamps field stores the beginning and end of intervals. The data field stores whether the interval just started (>0 value) or ended (<0 value). Different interval types can be represented in the same series by using multiple key values (eg, 1 for feature A, 2 for feature B, 3 for feature C, etc). The field data stores an 8-bit integer. This is largely an alias of a standard TimeSeries but that is identifiable as representing time intervals in a machine-readable way.
""" """
name: str = Field(...) name:str= Field(...)
data: List[int] = Field(default_factory=list, description="""Use values >0 if interval started, <0 if interval ended.""") data:List[int]= Field(default_factory=list, description="""Use values >0 if interval started, <0 if interval ended.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class DecompositionSeries(TimeSeries): class DecompositionSeries(TimeSeries):
""" """
Spectral analysis of a time series, e.g. of an LFP or a speech signal. Spectral analysis of a time series, e.g. of an LFP or a speech signal.
""" """
name: str = Field(...) name:str= Field(...)
data: DecompositionSeriesData = Field(..., description="""Data decomposed into frequency bands.""") data:DecompositionSeriesData= Field(..., description="""Data decomposed into frequency bands.""")
metric: str = Field(..., description="""The metric used, e.g. phase, amplitude, power.""") metric:str= Field(..., description="""The metric used, e.g. phase, amplitude, power.""")
source_channels: Optional[DecompositionSeriesSourceChannels] = Field(None, description="""DynamicTableRegion pointer to the channels that this decomposition series was generated from.""") source_channels:Optional[DecompositionSeriesSourceChannels]= Field(None, description="""DynamicTableRegion pointer to the channels that this decomposition series was generated from.""")
bands: DynamicTable = Field(..., description="""Table for describing the bands that this series was generated from. There should be one row in this table for each band.""") bands:DynamicTable= Field(..., description="""Table for describing the bands that this series was generated from. There should be one row in this table for each band.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class DecompositionSeriesData(ConfiguredBaseModel):
"""
Data decomposed into frequency bands.
"""
name:Literal["data"]= Field("data")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion'.""")
array:Optional[NDArray[Shape["* num_times, * num_channels, * num_bands"], Number]]= Field(None)
class DecompositionSeriesSourceChannels(DynamicTableRegion):
"""
DynamicTableRegion pointer to the channels that this decomposition series was generated from.
"""
name:Literal["source_channels"]= Field("source_channels")
table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class Units(DynamicTable): class Units(DynamicTable):
""" """
Data about spiking units. Event times of observed units (e.g. cell, synapse, etc.) should be concatenated and stored in spike_times. Data about spiking units. Event times of observed units (e.g. cell, synapse, etc.) should be concatenated and stored in spike_times.
""" """
name: str = Field(...) name:str= Field(...)
spike_times_index: Optional[UnitsSpikeTimesIndex] = Field(None, description="""Index into the spike_times dataset.""") spike_times_index:Optional[UnitsSpikeTimesIndex]= Field(None, description="""Index into the spike_times dataset.""")
spike_times: Optional[UnitsSpikeTimes] = Field(None, description="""Spike times for each unit in seconds.""") spike_times:Optional[UnitsSpikeTimes]= Field(None, description="""Spike times for each unit in seconds.""")
obs_intervals_index: Optional[UnitsObsIntervalsIndex] = Field(None, description="""Index into the obs_intervals dataset.""") obs_intervals_index:Optional[UnitsObsIntervalsIndex]= Field(None, description="""Index into the obs_intervals dataset.""")
obs_intervals: Optional[UnitsObsIntervals] = Field(None, description="""Observation intervals for each unit.""") obs_intervals:Optional[UnitsObsIntervals]= Field(None, description="""Observation intervals for each unit.""")
electrodes_index: Optional[UnitsElectrodesIndex] = Field(None, description="""Index into electrodes.""") electrodes_index:Optional[UnitsElectrodesIndex]= Field(None, description="""Index into electrodes.""")
electrodes: Optional[UnitsElectrodes] = Field(None, description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""") electrodes:Optional[UnitsElectrodes]= Field(None, description="""Electrode that each spike unit came from, specified using a DynamicTableRegion.""")
electrode_group: Optional[List[ElectrodeGroup]] = Field(default_factory=list, description="""Electrode group that each spike unit came from.""") electrode_group:Optional[List[ElectrodeGroup]]= Field(default_factory=list, description="""Electrode group that each spike unit came from.""")
waveform_mean: Optional[UnitsWaveformMean] = Field(None, description="""Spike waveform mean for each spike unit.""") waveform_mean:Optional[UnitsWaveformMean]= Field(None, description="""Spike waveform mean for each spike unit.""")
waveform_sd: Optional[UnitsWaveformSd] = Field(None, description="""Spike waveform standard deviation for each spike unit.""") waveform_sd:Optional[UnitsWaveformSd]= Field(None, description="""Spike waveform standard deviation for each spike unit.""")
waveforms: Optional[UnitsWaveforms] = Field(None, description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""") waveforms:Optional[UnitsWaveforms]= Field(None, description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""")
waveforms_index: Optional[UnitsWaveformsIndex] = Field(None, description="""Index into the waveforms dataset. One value for every spike event. See 'waveforms' for more detail.""") waveforms_index:Optional[UnitsWaveformsIndex]= Field(None, description="""Index into the waveforms dataset. One value for every spike event. See 'waveforms' for more detail.""")
waveforms_index_index: Optional[UnitsWaveformsIndexIndex] = Field(None, description="""Index into the waveforms_index dataset. One value for every unit (row in the table). See 'waveforms' for more detail.""") waveforms_index_index:Optional[UnitsWaveformsIndexIndex]= Field(None, description="""Index into the waveforms_index dataset. One value for every unit (row in the table). See 'waveforms' for more detail.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class UnitsSpikeTimesIndex(VectorIndex):
"""
Index into the spike_times dataset.
"""
name:Literal["spike_times_index"]= Field("spike_times_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsSpikeTimes(VectorData):
"""
Spike times for each unit in seconds.
"""
name:Literal["spike_times"]= Field("spike_times")
resolution:Optional[float]= Field(None, description="""The smallest possible difference between two spike times. Usually 1 divided by the acquisition sampling rate from which spike times were extracted, but could be larger if the acquisition time series was downsampled or smaller if the acquisition time series was smoothed/interpolated and it is possible for the spike time to be between samples.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsObsIntervalsIndex(VectorIndex):
"""
Index into the obs_intervals dataset.
"""
name:Literal["obs_intervals_index"]= Field("obs_intervals_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsObsIntervals(VectorData):
"""
Observation intervals for each unit.
"""
name:Literal["obs_intervals"]= Field("obs_intervals")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsElectrodesIndex(VectorIndex):
"""
Index into electrodes.
"""
name:Literal["electrodes_index"]= Field("electrodes_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsElectrodes(DynamicTableRegion):
"""
Electrode that each spike unit came from, specified using a DynamicTableRegion.
"""
name:Literal["electrodes"]= Field("electrodes")
table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsWaveformMean(VectorData):
"""
Spike waveform mean for each spike unit.
"""
name:Literal["waveform_mean"]= Field("waveform_mean")
sampling_rate:Optional[float]= Field(None, description="""Sampling rate, in hertz.""")
unit:Optional[str]= Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsWaveformSd(VectorData):
"""
Spike waveform standard deviation for each spike unit.
"""
name:Literal["waveform_sd"]= Field("waveform_sd")
sampling_rate:Optional[float]= Field(None, description="""Sampling rate, in hertz.""")
unit:Optional[str]= Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsWaveforms(VectorData):
"""
Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.
"""
name:Literal["waveforms"]= Field("waveforms")
sampling_rate:Optional[float]= Field(None, description="""Sampling rate, in hertz.""")
unit:Optional[str]= Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsWaveformsIndex(VectorIndex):
"""
Index into the waveforms dataset. One value for every spike event. See 'waveforms' for more detail.
"""
name:Literal["waveforms_index"]= Field("waveforms_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class UnitsWaveformsIndexIndex(VectorIndex):
"""
Index into the waveforms_index dataset. One value for every unit (row in the table). See 'waveforms' for more detail.
"""
name:Literal["waveforms_index_index"]= Field("waveforms_index_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
# Model rebuild # Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
AbstractFeatureSeries.model_rebuild() AbstractFeatureSeries.model_rebuild()
AbstractFeatureSeriesData.model_rebuild()
AnnotationSeries.model_rebuild() AnnotationSeries.model_rebuild()
IntervalSeries.model_rebuild() IntervalSeries.model_rebuild()
DecompositionSeries.model_rebuild() DecompositionSeries.model_rebuild()
DecompositionSeriesData.model_rebuild()
DecompositionSeriesSourceChannels.model_rebuild()
Units.model_rebuild() Units.model_rebuild()
UnitsSpikeTimesIndex.model_rebuild()
UnitsSpikeTimes.model_rebuild()
UnitsObsIntervalsIndex.model_rebuild()
UnitsObsIntervals.model_rebuild()
UnitsElectrodesIndex.model_rebuild()
UnitsElectrodes.model_rebuild()
UnitsWaveformMean.model_rebuild()
UnitsWaveformSd.model_rebuild()
UnitsWaveforms.model_rebuild()
UnitsWaveformsIndex.model_rebuild()
UnitsWaveformsIndexIndex.model_rebuild()

View file

@ -1,272 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTableRegion,
VectorData,
VectorIndex
)
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class AbstractFeatureSeriesData(ConfiguredBaseModel):
"""
Values of each feature at each time.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Since there can be different units for different features, store the units in 'feature_units'. The default value for this attribute is \"see 'feature_units'\".""")
array: Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_features"], Number]
]] = Field(None)
class AbstractFeatureSeriesDataArray(Arraylike):
num_times: float = Field(...)
num_features: Optional[float] = Field(None)
class DecompositionSeriesData(ConfiguredBaseModel):
"""
Data decomposed into frequency bands.
"""
name: str = Field("data", const=True)
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. Actual stored values are not necessarily stored in these units. To access the data in these units, multiply 'data' by 'conversion'.""")
array: Optional[NDArray[Shape["* num_times, * num_channels, * num_bands"], Number]] = Field(None)
class DecompositionSeriesDataArray(Arraylike):
num_times: float = Field(...)
num_channels: float = Field(...)
num_bands: float = Field(...)
class DecompositionSeriesSourceChannels(DynamicTableRegion):
"""
DynamicTableRegion pointer to the channels that this decomposition series was generated from.
"""
name: str = Field("source_channels", const=True)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsSpikeTimesIndex(VectorIndex):
"""
Index into the spike_times dataset.
"""
name: str = Field("spike_times_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsSpikeTimes(VectorData):
"""
Spike times for each unit in seconds.
"""
name: str = Field("spike_times", const=True)
resolution: Optional[float] = Field(None, description="""The smallest possible difference between two spike times. Usually 1 divided by the acquisition sampling rate from which spike times were extracted, but could be larger if the acquisition time series was downsampled or smaller if the acquisition time series was smoothed/interpolated and it is possible for the spike time to be between samples.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsObsIntervalsIndex(VectorIndex):
"""
Index into the obs_intervals dataset.
"""
name: str = Field("obs_intervals_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsObsIntervals(VectorData):
"""
Observation intervals for each unit.
"""
name: str = Field("obs_intervals", const=True)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsElectrodesIndex(VectorIndex):
"""
Index into electrodes.
"""
name: str = Field("electrodes_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsElectrodes(DynamicTableRegion):
"""
Electrode that each spike unit came from, specified using a DynamicTableRegion.
"""
name: str = Field("electrodes", const=True)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsWaveformMean(VectorData):
"""
Spike waveform mean for each spike unit.
"""
name: str = Field("waveform_mean", const=True)
sampling_rate: Optional[float] = Field(None, description="""Sampling rate, in hertz.""")
unit: Optional[str] = Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsWaveformSd(VectorData):
"""
Spike waveform standard deviation for each spike unit.
"""
name: str = Field("waveform_sd", const=True)
sampling_rate: Optional[float] = Field(None, description="""Sampling rate, in hertz.""")
unit: Optional[str] = Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsWaveforms(VectorData):
"""
Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.
"""
name: str = Field("waveforms", const=True)
sampling_rate: Optional[float] = Field(None, description="""Sampling rate, in hertz.""")
unit: Optional[str] = Field(None, description="""Unit of measurement. This value is fixed to 'volts'.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsWaveformsIndex(VectorIndex):
"""
Index into the waveforms dataset. One value for every spike event. See 'waveforms' for more detail.
"""
name: str = Field("waveforms_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class UnitsWaveformsIndexIndex(VectorIndex):
"""
Index into the waveforms_index dataset. One value for every unit (row in the table). See 'waveforms' for more detail.
"""
name: str = Field("waveforms_index_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
AbstractFeatureSeriesData.model_rebuild()
AbstractFeatureSeriesDataArray.model_rebuild()
DecompositionSeriesData.model_rebuild()
DecompositionSeriesDataArray.model_rebuild()
DecompositionSeriesSourceChannels.model_rebuild()
UnitsSpikeTimesIndex.model_rebuild()
UnitsSpikeTimes.model_rebuild()
UnitsObsIntervalsIndex.model_rebuild()
UnitsObsIntervals.model_rebuild()
UnitsElectrodesIndex.model_rebuild()
UnitsElectrodes.model_rebuild()
UnitsWaveformMean.model_rebuild()
UnitsWaveformSd.model_rebuild()
UnitsWaveforms.model_rebuild()
UnitsWaveformsIndex.model_rebuild()
UnitsWaveformsIndexIndex.model_rebuild()

View file

@ -12,8 +12,10 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
NWBContainer, TimeSeriesStartingTime,
TimeSeries TimeSeries,
TimeSeriesSync,
NWBContainer
) )
@ -33,25 +35,25 @@ class OptogeneticSeries(TimeSeries):
""" """
An optogenetic stimulus. An optogenetic stimulus.
""" """
name: str = Field(...) name:str= Field(...)
data: List[float] = Field(default_factory=list, description="""Applied power for optogenetic stimulus, in watts.""") data:List[float]= Field(default_factory=list, description="""Applied power for optogenetic stimulus, in watts.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class OptogeneticStimulusSite(NWBContainer): class OptogeneticStimulusSite(NWBContainer):
""" """
A site of optogenetic stimulation. A site of optogenetic stimulation.
""" """
name: str = Field(...) name:str= Field(...)
description: str = Field(..., description="""Description of stimulation site.""") description:str= Field(..., description="""Description of stimulation site.""")
excitation_lambda: float = Field(..., description="""Excitation wavelength, in nm.""") excitation_lambda:float= Field(..., description="""Excitation wavelength, in nm.""")
location: str = Field(..., description="""Location of the stimulation site. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""") location:str= Field(..., description="""Location of the stimulation site. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""")

View file

@ -1,39 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class OptogeneticSeriesData(ConfiguredBaseModel):
"""
Applied power for optogenetic stimulus, in watts.
"""
unit: Optional[str] = Field(None, description="""Unit of measurement for data, which is fixed to 'watts'.""")
data: List[float] = Field(default_factory=list, description="""Applied power for optogenetic stimulus, in watts.""")
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
OptogeneticSeriesData.model_rebuild()

View file

@ -12,29 +12,23 @@ else:
from .core_nwb_base import ( from .core_nwb_base import (
TimeSeriesStartingTime,
NWBContainer,
TimeSeriesSync,
TimeSeries, TimeSeries,
NWBDataInterface, NWBDataInterface
NWBContainer
)
from .core_nwb_ophys_include import (
RoiResponseSeriesRois,
TwoPhotonSeriesFieldOfView,
ImagingPlaneOriginCoords,
RoiResponseSeriesData,
PlaneSegmentationPixelMaskIndex,
PlaneSegmentationImageMask,
ImagingPlaneGridSpacing,
PlaneSegmentationVoxelMaskIndex,
ImagingPlaneManifold
)
from .hdmf_common_table import (
DynamicTable
) )
from .core_nwb_image import ( from .core_nwb_image import (
ImageSeries ImageSeries,
ImageSeriesData
)
from .hdmf_common_table import (
VectorIndex,
DynamicTable,
VectorData,
DynamicTableRegion
) )
@ -54,145 +48,263 @@ class OnePhotonSeries(ImageSeries):
""" """
Image stack recorded over time from 1-photon microscope. Image stack recorded over time from 1-photon microscope.
""" """
name: str = Field(...) name:str= Field(...)
pmt_gain: Optional[float] = Field(None, description="""Photomultiplier gain.""") pmt_gain:Optional[float]= Field(None, description="""Photomultiplier gain.""")
scan_line_rate: Optional[float] = Field(None, description="""Lines imaged per second. This is also stored in /general/optophysiology but is kept here as it is useful information for analysis, and so good to be stored w/ the actual data.""") scan_line_rate:Optional[float]= Field(None, description="""Lines imaged per second. This is also stored in /general/optophysiology but is kept here as it is useful information for analysis, and so good to be stored w/ the actual data.""")
exposure_time: Optional[float] = Field(None, description="""Exposure time of the sample; often the inverse of the frequency.""") exposure_time:Optional[float]= Field(None, description="""Exposure time of the sample; often the inverse of the frequency.""")
binning: Optional[int] = Field(None, description="""Amount of pixels combined into 'bins'; could be 1, 2, 4, 8, etc.""") binning:Optional[int]= Field(None, description="""Amount of pixels combined into 'bins'; could be 1, 2, 4, 8, etc.""")
power: Optional[float] = Field(None, description="""Power of the excitation in mW, if known.""") power:Optional[float]= Field(None, description="""Power of the excitation in mW, if known.""")
intensity: Optional[float] = Field(None, description="""Intensity of the excitation in mW/mm^2, if known.""") intensity:Optional[float]= Field(None, description="""Intensity of the excitation in mW/mm^2, if known.""")
data: ImageSeriesData = Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""") data:ImageSeriesData= Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""")
dimension: Optional[List[int]] = Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""") dimension:Optional[List[int]]= Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""")
external_file: Optional[List[str]] = Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""") external_file:Optional[List[str]]= Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""")
format: Optional[str] = Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""") format:Optional[str]= Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class TwoPhotonSeries(ImageSeries): class TwoPhotonSeries(ImageSeries):
""" """
Image stack recorded over time from 2-photon microscope. Image stack recorded over time from 2-photon microscope.
""" """
name: str = Field(...) name:str= Field(...)
pmt_gain: Optional[float] = Field(None, description="""Photomultiplier gain.""") pmt_gain:Optional[float]= Field(None, description="""Photomultiplier gain.""")
scan_line_rate: Optional[float] = Field(None, description="""Lines imaged per second. This is also stored in /general/optophysiology but is kept here as it is useful information for analysis, and so good to be stored w/ the actual data.""") scan_line_rate:Optional[float]= Field(None, description="""Lines imaged per second. This is also stored in /general/optophysiology but is kept here as it is useful information for analysis, and so good to be stored w/ the actual data.""")
field_of_view: Optional[TwoPhotonSeriesFieldOfView] = Field(None, description="""Width, height and depth of image, or imaged area, in meters.""") field_of_view:Optional[TwoPhotonSeriesFieldOfView]= Field(None, description="""Width, height and depth of image, or imaged area, in meters.""")
data: ImageSeriesData = Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""") data:ImageSeriesData= Field(..., description="""Binary data representing images across frames. If data are stored in an external file, this should be an empty 3D array.""")
dimension: Optional[List[int]] = Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""") dimension:Optional[List[int]]= Field(default_factory=list, description="""Number of pixels on x, y, (and z) axes.""")
external_file: Optional[List[str]] = Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""") external_file:Optional[List[str]]= Field(default_factory=list, description="""Paths to one or more external file(s). The field is only present if format='external'. This is only relevant if the image series is stored in the file system as one or more image file(s). This field should NOT be used if the image is stored in another NWB file and that file is linked to this file.""")
format: Optional[str] = Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""") format:Optional[str]= Field(None, description="""Format of image. If this is 'external', then the attribute 'external_file' contains the path information to the image files. If this is 'raw', then the raw (single-channel) binary data is stored in the 'data' dataset. If this attribute is not present, then the default format='raw' case is assumed.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class TwoPhotonSeriesFieldOfView(ConfiguredBaseModel):
"""
Width, height and depth of image, or imaged area, in meters.
"""
name:Literal["field_of_view"]= Field("field_of_view")
array:Optional[Union[
NDArray[Shape["2 width_height"], Float32],
NDArray[Shape["2 width_height, 3 width_height_depth"], Float32]
]]= Field(None)
class RoiResponseSeries(TimeSeries): class RoiResponseSeries(TimeSeries):
""" """
ROI responses over an imaging plane. The first dimension represents time. The second dimension, if present, represents ROIs. ROI responses over an imaging plane. The first dimension represents time. The second dimension, if present, represents ROIs.
""" """
name: str = Field(...) name:str= Field(...)
data: RoiResponseSeriesData = Field(..., description="""Signals from ROIs.""") data:RoiResponseSeriesData= Field(..., description="""Signals from ROIs.""")
rois: RoiResponseSeriesRois = Field(..., description="""DynamicTableRegion referencing into an ROITable containing information on the ROIs stored in this timeseries.""") rois:RoiResponseSeriesRois= Field(..., description="""DynamicTableRegion referencing into an ROITable containing information on the ROIs stored in this timeseries.""")
description: Optional[str] = Field(None, description="""Description of the time series.""") description:Optional[str]= Field(None, description="""Description of the time series.""")
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""") comments:Optional[str]= Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
starting_time: Optional[TimeSeriesStartingTime] = Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""") starting_time:Optional[TimeSeriesStartingTime]= Field(None, description="""Timestamp of the first sample in seconds. When timestamps are uniformly spaced, the timestamp of the first sample can be specified and all subsequent ones calculated from the sampling rate attribute.""")
timestamps: Optional[List[float]] = Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""") timestamps:Optional[List[float]]= Field(default_factory=list, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
control: Optional[List[int]] = Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""") control:Optional[List[int]]= Field(default_factory=list, description="""Numerical labels that apply to each time point in data for the purpose of querying and slicing data by these values. If present, the length of this array should be the same size as the first dimension of data.""")
control_description: Optional[List[str]] = Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""") control_description:Optional[List[str]]= Field(default_factory=list, description="""Description of each control value. Must be present if control is present. If present, control_description[0] should describe time points where control == 0.""")
sync: Optional[TimeSeriesSync] = Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""") sync:Optional[TimeSeriesSync]= Field(None, description="""Lab-specific time and sync information as provided directly from hardware devices and that is necessary for aligning all acquired time information to a common timebase. The timestamp array stores time in the common timebase. This group will usually only be populated in TimeSeries that are stored external to the NWB file, in files storing raw data. Once timestamp data is calculated, the contents of 'sync' are mostly for archival purposes.""")
class RoiResponseSeriesData(ConfiguredBaseModel):
"""
Signals from ROIs.
"""
name:Literal["data"]= Field("data")
array:Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_ROIs"], Number]
]]= Field(None)
class RoiResponseSeriesRois(DynamicTableRegion):
"""
DynamicTableRegion referencing into an ROITable containing information on the ROIs stored in this timeseries.
"""
name:Literal["rois"]= Field("rois")
table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class DfOverF(NWBDataInterface): class DfOverF(NWBDataInterface):
""" """
dF/F information about a region of interest (ROI). Storage hierarchy of dF/F should be the same as for segmentation (i.e., same names for ROIs and for image planes). dF/F information about a region of interest (ROI). Storage hierarchy of dF/F should be the same as for segmentation (i.e., same names for ROIs and for image planes).
""" """
name: str = Field(...) name:str= Field(...)
roi_response_series: List[RoiResponseSeries] = Field(default_factory=list, description="""RoiResponseSeries object(s) containing dF/F for a ROI.""") roi_response_series:List[RoiResponseSeries]= Field(default_factory=list, description="""RoiResponseSeries object(s) containing dF/F for a ROI.""")
class Fluorescence(NWBDataInterface): class Fluorescence(NWBDataInterface):
""" """
Fluorescence information about a region of interest (ROI). Storage hierarchy of fluorescence should be the same as for segmentation (ie, same names for ROIs and for image planes). Fluorescence information about a region of interest (ROI). Storage hierarchy of fluorescence should be the same as for segmentation (ie, same names for ROIs and for image planes).
""" """
name: str = Field(...) name:str= Field(...)
roi_response_series: List[RoiResponseSeries] = Field(default_factory=list, description="""RoiResponseSeries object(s) containing fluorescence data for a ROI.""") roi_response_series:List[RoiResponseSeries]= Field(default_factory=list, description="""RoiResponseSeries object(s) containing fluorescence data for a ROI.""")
class ImageSegmentation(NWBDataInterface): class ImageSegmentation(NWBDataInterface):
""" """
Stores pixels in an image that represent different regions of interest (ROIs) or masks. All segmentation for a given imaging plane is stored together, with storage for multiple imaging planes (masks) supported. Each ROI is stored in its own subgroup, with the ROI group containing both a 2D mask and a list of pixels that make up this mask. Segments can also be used for masking neuropil. If segmentation is allowed to change with time, a new imaging plane (or module) is required and ROI names should remain consistent between them. Stores pixels in an image that represent different regions of interest (ROIs) or masks. All segmentation for a given imaging plane is stored together, with storage for multiple imaging planes (masks) supported. Each ROI is stored in its own subgroup, with the ROI group containing both a 2D mask and a list of pixels that make up this mask. Segments can also be used for masking neuropil. If segmentation is allowed to change with time, a new imaging plane (or module) is required and ROI names should remain consistent between them.
""" """
name: str = Field(...) name:str= Field(...)
plane_segmentation: List[PlaneSegmentation] = Field(default_factory=list, description="""Results from image segmentation of a specific imaging plane.""") plane_segmentation:List[PlaneSegmentation]= Field(default_factory=list, description="""Results from image segmentation of a specific imaging plane.""")
class PlaneSegmentation(DynamicTable): class PlaneSegmentation(DynamicTable):
""" """
Results from image segmentation of a specific imaging plane. Results from image segmentation of a specific imaging plane.
""" """
name: str = Field(...) name:str= Field(...)
image_mask: Optional[PlaneSegmentationImageMask] = Field(None, description="""ROI masks for each ROI. Each image mask is the size of the original imaging plane (or volume) and members of the ROI are finite non-zero.""") image_mask:Optional[PlaneSegmentationImageMask]= Field(None, description="""ROI masks for each ROI. Each image mask is the size of the original imaging plane (or volume) and members of the ROI are finite non-zero.""")
pixel_mask_index: Optional[PlaneSegmentationPixelMaskIndex] = Field(None, description="""Index into pixel_mask.""") pixel_mask_index:Optional[PlaneSegmentationPixelMaskIndex]= Field(None, description="""Index into pixel_mask.""")
pixel_mask: Optional[List[Any]] = Field(default_factory=list, description="""Pixel masks for each ROI: a list of indices and weights for the ROI. Pixel masks are concatenated and parsing of this dataset is maintained by the PlaneSegmentation""") pixel_mask:Optional[List[Any]]= Field(default_factory=list, description="""Pixel masks for each ROI: a list of indices and weights for the ROI. Pixel masks are concatenated and parsing of this dataset is maintained by the PlaneSegmentation""")
voxel_mask_index: Optional[PlaneSegmentationVoxelMaskIndex] = Field(None, description="""Index into voxel_mask.""") voxel_mask_index:Optional[PlaneSegmentationVoxelMaskIndex]= Field(None, description="""Index into voxel_mask.""")
voxel_mask: Optional[List[Any]] = Field(default_factory=list, description="""Voxel masks for each ROI: a list of indices and weights for the ROI. Voxel masks are concatenated and parsing of this dataset is maintained by the PlaneSegmentation""") voxel_mask:Optional[List[Any]]= Field(default_factory=list, description="""Voxel masks for each ROI: a list of indices and weights for the ROI. Voxel masks are concatenated and parsing of this dataset is maintained by the PlaneSegmentation""")
reference_images: Optional[List[ImageSeries]] = Field(default_factory=list, description="""Image stacks that the segmentation masks apply to.""") reference_images:Optional[List[ImageSeries]]= Field(default_factory=list, description="""Image stacks that the segmentation masks apply to.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class PlaneSegmentationImageMask(VectorData):
"""
ROI masks for each ROI. Each image mask is the size of the original imaging plane (or volume) and members of the ROI are finite non-zero.
"""
name:Literal["image_mask"]= Field("image_mask")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class PlaneSegmentationPixelMaskIndex(VectorIndex):
"""
Index into pixel_mask.
"""
name:Literal["pixel_mask_index"]= Field("pixel_mask_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class PlaneSegmentationVoxelMaskIndex(VectorIndex):
"""
Index into voxel_mask.
"""
name:Literal["voxel_mask_index"]= Field("voxel_mask_index")
target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array:Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]]= Field(None)
class ImagingPlane(NWBContainer): class ImagingPlane(NWBContainer):
""" """
An imaging plane and its metadata. An imaging plane and its metadata.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of the imaging plane.""") description:Optional[str]= Field(None, description="""Description of the imaging plane.""")
excitation_lambda: float = Field(..., description="""Excitation wavelength, in nm.""") excitation_lambda:float= Field(..., description="""Excitation wavelength, in nm.""")
imaging_rate: Optional[float] = Field(None, description="""Rate that images are acquired, in Hz. If the corresponding TimeSeries is present, the rate should be stored there instead.""") imaging_rate:Optional[float]= Field(None, description="""Rate that images are acquired, in Hz. If the corresponding TimeSeries is present, the rate should be stored there instead.""")
indicator: str = Field(..., description="""Calcium indicator.""") indicator:str= Field(..., description="""Calcium indicator.""")
location: str = Field(..., description="""Location of the imaging plane. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""") location:str= Field(..., description="""Location of the imaging plane. Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""")
manifold: Optional[ImagingPlaneManifold] = Field(None, description="""DEPRECATED Physical position of each pixel. 'xyz' represents the position of the pixel relative to the defined coordinate space. Deprecated in favor of origin_coords and grid_spacing.""") manifold:Optional[ImagingPlaneManifold]= Field(None, description="""DEPRECATED Physical position of each pixel. 'xyz' represents the position of the pixel relative to the defined coordinate space. Deprecated in favor of origin_coords and grid_spacing.""")
origin_coords: Optional[ImagingPlaneOriginCoords] = Field(None, description="""Physical location of the first element of the imaging plane (0, 0) for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the physical location is relative to (e.g., bregma).""") origin_coords:Optional[ImagingPlaneOriginCoords]= Field(None, description="""Physical location of the first element of the imaging plane (0, 0) for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the physical location is relative to (e.g., bregma).""")
grid_spacing: Optional[ImagingPlaneGridSpacing] = Field(None, description="""Space between pixels in (x, y) or voxels in (x, y, z) directions, in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame to interpret the grid.""") grid_spacing:Optional[ImagingPlaneGridSpacing]= Field(None, description="""Space between pixels in (x, y) or voxels in (x, y, z) directions, in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame to interpret the grid.""")
reference_frame: Optional[str] = Field(None, description="""Describes reference frame of origin_coords and grid_spacing. For example, this can be a text description of the anatomical location and orientation of the grid defined by origin_coords and grid_spacing or the vectors needed to transform or rotate the grid to a common anatomical axis (e.g., AP/DV/ML). This field is necessary to interpret origin_coords and grid_spacing. If origin_coords and grid_spacing are not present, then this field is not required. For example, if the microscope takes 10 x 10 x 2 images, where the first value of the data matrix (index (0, 0, 0)) corresponds to (-1.2, -0.6, -2) mm relative to bregma, the spacing between pixels is 0.2 mm in x, 0.2 mm in y and 0.5 mm in z, and larger numbers in x means more anterior, larger numbers in y means more rightward, and larger numbers in z means more ventral, then enter the following -- origin_coords = (-1.2, -0.6, -2) grid_spacing = (0.2, 0.2, 0.5) reference_frame = \"Origin coordinates are relative to bregma. First dimension corresponds to anterior-posterior axis (larger index = more anterior). Second dimension corresponds to medial-lateral axis (larger index = more rightward). Third dimension corresponds to dorsal-ventral axis (larger index = more ventral).\"""") reference_frame:Optional[str]= Field(None, description="""Describes reference frame of origin_coords and grid_spacing. For example, this can be a text description of the anatomical location and orientation of the grid defined by origin_coords and grid_spacing or the vectors needed to transform or rotate the grid to a common anatomical axis (e.g., AP/DV/ML). This field is necessary to interpret origin_coords and grid_spacing. If origin_coords and grid_spacing are not present, then this field is not required. For example, if the microscope takes 10 x 10 x 2 images, where the first value of the data matrix (index (0, 0, 0)) corresponds to (-1.2, -0.6, -2) mm relative to bregma, the spacing between pixels is 0.2 mm in x, 0.2 mm in y and 0.5 mm in z, and larger numbers in x means more anterior, larger numbers in y means more rightward, and larger numbers in z means more ventral, then enter the following -- origin_coords = (-1.2, -0.6, -2) grid_spacing = (0.2, 0.2, 0.5) reference_frame = \"Origin coordinates are relative to bregma. First dimension corresponds to anterior-posterior axis (larger index = more anterior). Second dimension corresponds to medial-lateral axis (larger index = more rightward). Third dimension corresponds to dorsal-ventral axis (larger index = more ventral).\"""")
optical_channel: List[OpticalChannel] = Field(default_factory=list, description="""An optical channel used to record from an imaging plane.""") optical_channel:List[OpticalChannel]= Field(default_factory=list, description="""An optical channel used to record from an imaging plane.""")
class ImagingPlaneManifold(ConfiguredBaseModel):
"""
DEPRECATED Physical position of each pixel. 'xyz' represents the position of the pixel relative to the defined coordinate space. Deprecated in favor of origin_coords and grid_spacing.
"""
name:Literal["manifold"]= Field("manifold")
conversion:Optional[float]= Field(None, description="""Scalar to multiply each element in data to convert it to the specified 'unit'. If the data are stored in acquisition system units or other units that require a conversion to be interpretable, multiply the data by 'conversion' to convert the data to the specified 'unit'. e.g. if the data acquisition system stores values in this object as pixels from x = -500 to 499, y = -500 to 499 that correspond to a 2 m x 2 m range, then the 'conversion' multiplier to get from raw data acquisition pixel units to meters is 2/1000.""")
unit:Optional[str]= Field(None, description="""Base unit of measurement for working with the data. The default value is 'meters'.""")
array:Optional[Union[
NDArray[Shape["* height, * width, 3 x_y_z"], Float32],
NDArray[Shape["* height, * width, 3 x_y_z, * depth"], Float32]
]]= Field(None)
class ImagingPlaneOriginCoords(ConfiguredBaseModel):
"""
Physical location of the first element of the imaging plane (0, 0) for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the physical location is relative to (e.g., bregma).
"""
name:Literal["origin_coords"]= Field("origin_coords")
unit:Optional[str]= Field(None, description="""Measurement units for origin_coords. The default value is 'meters'.""")
array:Optional[Union[
NDArray[Shape["2 x_y"], Float32],
NDArray[Shape["2 x_y, 3 x_y_z"], Float32]
]]= Field(None)
class ImagingPlaneGridSpacing(ConfiguredBaseModel):
"""
Space between pixels in (x, y) or voxels in (x, y, z) directions, in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame to interpret the grid.
"""
name:Literal["grid_spacing"]= Field("grid_spacing")
unit:Optional[str]= Field(None, description="""Measurement units for grid_spacing. The default value is 'meters'.""")
array:Optional[Union[
NDArray[Shape["2 x_y"], Float32],
NDArray[Shape["2 x_y, 3 x_y_z"], Float32]
]]= Field(None)
class OpticalChannel(NWBContainer): class OpticalChannel(NWBContainer):
""" """
An optical channel used to record from an imaging plane. An optical channel used to record from an imaging plane.
""" """
name: str = Field(...) name:str= Field(...)
description: str = Field(..., description="""Description or other notes about the channel.""") description:str= Field(..., description="""Description or other notes about the channel.""")
emission_lambda: float = Field(..., description="""Emission wavelength for channel, in nm.""") emission_lambda:float= Field(..., description="""Emission wavelength for channel, in nm.""")
class MotionCorrection(NWBDataInterface): class MotionCorrection(NWBDataInterface):
""" """
An image stack where all frames are shifted (registered) to a common coordinate system, to account for movement and drift between frames. Note: each frame at each point in time is assumed to be 2-D (has only x & y dimensions). An image stack where all frames are shifted (registered) to a common coordinate system, to account for movement and drift between frames. Note: each frame at each point in time is assumed to be 2-D (has only x & y dimensions).
""" """
name: str = Field(...) name:str= Field(...)
corrected_image_stack: List[CorrectedImageStack] = Field(default_factory=list, description="""Reuslts from motion correction of an image stack.""") corrected_image_stack:List[CorrectedImageStack]= Field(default_factory=list, description="""Reuslts from motion correction of an image stack.""")
class CorrectedImageStack(NWBDataInterface): class CorrectedImageStack(NWBDataInterface):
""" """
Reuslts from motion correction of an image stack. Reuslts from motion correction of an image stack.
""" """
name: str = Field(...) name:str= Field(...)
corrected: ImageSeries = Field(..., description="""Image stack with frames shifted to the common coordinates.""") corrected:ImageSeries= Field(..., description="""Image stack with frames shifted to the common coordinates.""")
xy_translation: TimeSeries = Field(..., description="""Stores the x,y delta necessary to align each frame to the common coordinates, for example, to align each frame to a reference image.""") xy_translation:TimeSeries= Field(..., description="""Stores the x,y delta necessary to align each frame to the common coordinates, for example, to align each frame to a reference image.""")
@ -200,12 +312,21 @@ class CorrectedImageStack(NWBDataInterface):
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
OnePhotonSeries.model_rebuild() OnePhotonSeries.model_rebuild()
TwoPhotonSeries.model_rebuild() TwoPhotonSeries.model_rebuild()
TwoPhotonSeriesFieldOfView.model_rebuild()
RoiResponseSeries.model_rebuild() RoiResponseSeries.model_rebuild()
RoiResponseSeriesData.model_rebuild()
RoiResponseSeriesRois.model_rebuild()
DfOverF.model_rebuild() DfOverF.model_rebuild()
Fluorescence.model_rebuild() Fluorescence.model_rebuild()
ImageSegmentation.model_rebuild() ImageSegmentation.model_rebuild()
PlaneSegmentation.model_rebuild() PlaneSegmentation.model_rebuild()
PlaneSegmentationImageMask.model_rebuild()
PlaneSegmentationPixelMaskIndex.model_rebuild()
PlaneSegmentationVoxelMaskIndex.model_rebuild()
ImagingPlane.model_rebuild() ImagingPlane.model_rebuild()
ImagingPlaneManifold.model_rebuild()
ImagingPlaneOriginCoords.model_rebuild()
ImagingPlaneGridSpacing.model_rebuild()
OpticalChannel.model_rebuild() OpticalChannel.model_rebuild()
MotionCorrection.model_rebuild() MotionCorrection.model_rebuild()
CorrectedImageStack.model_rebuild() CorrectedImageStack.model_rebuild()

View file

@ -1,204 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .hdmf_common_table import (
DynamicTableRegion,
VectorData,
VectorIndex
)
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class TwoPhotonSeriesFieldOfView(ConfiguredBaseModel):
"""
Width, height and depth of image, or imaged area, in meters.
"""
name: str = Field("field_of_view", const=True)
array: Optional[Union[
NDArray[Shape["2 width|height"], Float32],
NDArray[Shape["2 width|height, 3 width|height|depth"], Float32]
]] = Field(None)
class TwoPhotonSeriesFieldOfViewArray(Arraylike):
width|height: Optional[float] = Field(None)
width|height|depth: Optional[float] = Field(None)
class RoiResponseSeriesData(ConfiguredBaseModel):
"""
Signals from ROIs.
"""
name: str = Field("data", const=True)
array: Optional[Union[
NDArray[Shape["* num_times"], Number],
NDArray[Shape["* num_times, * num_ROIs"], Number]
]] = Field(None)
class RoiResponseSeriesDataArray(Arraylike):
num_times: float = Field(...)
num_ROIs: Optional[float] = Field(None)
class RoiResponseSeriesRois(DynamicTableRegion):
"""
DynamicTableRegion referencing into an ROITable containing information on the ROIs stored in this timeseries.
"""
name: str = Field("rois", const=True)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class PlaneSegmentationImageMask(VectorData):
"""
ROI masks for each ROI. Each image mask is the size of the original imaging plane (or volume) and members of the ROI are finite non-zero.
"""
name: str = Field("image_mask", const=True)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class PlaneSegmentationPixelMaskIndex(VectorIndex):
"""
Index into pixel_mask.
"""
name: str = Field("pixel_mask_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class PlaneSegmentationVoxelMaskIndex(VectorIndex):
"""
Index into voxel_mask.
"""
name: str = Field("voxel_mask_index", const=True)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[
NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None)
class ImagingPlaneManifold(ConfiguredBaseModel):
"""
DEPRECATED Physical position of each pixel. 'xyz' represents the position of the pixel relative to the defined coordinate space. Deprecated in favor of origin_coords and grid_spacing.
"""
name: str = Field("manifold", const=True)
conversion: Optional[float] = Field(None, description="""Scalar to multiply each element in data to convert it to the specified 'unit'. If the data are stored in acquisition system units or other units that require a conversion to be interpretable, multiply the data by 'conversion' to convert the data to the specified 'unit'. e.g. if the data acquisition system stores values in this object as pixels from x = -500 to 499, y = -500 to 499 that correspond to a 2 m x 2 m range, then the 'conversion' multiplier to get from raw data acquisition pixel units to meters is 2/1000.""")
unit: Optional[str] = Field(None, description="""Base unit of measurement for working with the data. The default value is 'meters'.""")
array: Optional[Union[
NDArray[Shape["* height, * width, 3 x_y_z"], Float32],
NDArray[Shape["* height, * width, 3 x_y_z, * depth"], Float32]
]] = Field(None)
class ImagingPlaneManifoldArray(Arraylike):
height: float = Field(...)
width: float = Field(...)
x_y_z: float = Field(...)
depth: Optional[float] = Field(None)
class ImagingPlaneOriginCoords(ConfiguredBaseModel):
"""
Physical location of the first element of the imaging plane (0, 0) for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the physical location is relative to (e.g., bregma).
"""
name: str = Field("origin_coords", const=True)
unit: Optional[str] = Field(None, description="""Measurement units for origin_coords. The default value is 'meters'.""")
array: Optional[Union[
NDArray[Shape["2 x_y"], Float32],
NDArray[Shape["2 x_y, 3 x_y_z"], Float32]
]] = Field(None)
class ImagingPlaneOriginCoordsArray(Arraylike):
x_y: Optional[float] = Field(None)
x_y_z: Optional[float] = Field(None)
class ImagingPlaneGridSpacing(ConfiguredBaseModel):
"""
Space between pixels in (x, y) or voxels in (x, y, z) directions, in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame to interpret the grid.
"""
name: str = Field("grid_spacing", const=True)
unit: Optional[str] = Field(None, description="""Measurement units for grid_spacing. The default value is 'meters'.""")
array: Optional[Union[
NDArray[Shape["2 x_y"], Float32],
NDArray[Shape["2 x_y, 3 x_y_z"], Float32]
]] = Field(None)
class ImagingPlaneGridSpacingArray(Arraylike):
x_y: Optional[float] = Field(None)
x_y_z: Optional[float] = Field(None)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
TwoPhotonSeriesFieldOfView.model_rebuild()
TwoPhotonSeriesFieldOfViewArray.model_rebuild()
RoiResponseSeriesData.model_rebuild()
RoiResponseSeriesDataArray.model_rebuild()
RoiResponseSeriesRois.model_rebuild()
PlaneSegmentationImageMask.model_rebuild()
PlaneSegmentationPixelMaskIndex.model_rebuild()
PlaneSegmentationVoxelMaskIndex.model_rebuild()
ImagingPlaneManifold.model_rebuild()
ImagingPlaneManifoldArray.model_rebuild()
ImagingPlaneOriginCoords.model_rebuild()
ImagingPlaneOriginCoordsArray.model_rebuild()
ImagingPlaneGridSpacing.model_rebuild()
ImagingPlaneGridSpacingArray.model_rebuild()

View file

@ -11,16 +11,6 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .core_nwb_retinotopy_include import (
ImagingRetinotopyAxis1PowerMap,
ImagingRetinotopyAxis1PhaseMap,
ImagingRetinotopyVasculatureImage,
ImagingRetinotopySignMap,
ImagingRetinotopyAxis2PowerMap,
ImagingRetinotopyAxis2PhaseMap,
ImagingRetinotopyFocalDepthImage
)
from .core_nwb_base import ( from .core_nwb_base import (
NWBDataInterface NWBDataInterface
) )
@ -42,19 +32,105 @@ class ImagingRetinotopy(NWBDataInterface):
""" """
Intrinsic signal optical imaging or widefield imaging for measuring retinotopy. Stores orthogonal maps (e.g., altitude/azimuth; radius/theta) of responses to specific stimuli and a combined polarity map from which to identify visual areas. This group does not store the raw responses imaged during retinotopic mapping or the stimuli presented, but rather the resulting phase and power maps after applying a Fourier transform on the averaged responses. Note: for data consistency, all images and arrays are stored in the format [row][column] and [row, col], which equates to [y][x]. Field of view and dimension arrays may appear backward (i.e., y before x). Intrinsic signal optical imaging or widefield imaging for measuring retinotopy. Stores orthogonal maps (e.g., altitude/azimuth; radius/theta) of responses to specific stimuli and a combined polarity map from which to identify visual areas. This group does not store the raw responses imaged during retinotopic mapping or the stimuli presented, but rather the resulting phase and power maps after applying a Fourier transform on the averaged responses. Note: for data consistency, all images and arrays are stored in the format [row][column] and [row, col], which equates to [y][x]. Field of view and dimension arrays may appear backward (i.e., y before x).
""" """
name: str = Field(...) name:str= Field(...)
axis_1_phase_map: ImagingRetinotopyAxis1PhaseMap = Field(..., description="""Phase response to stimulus on the first measured axis.""") axis_1_phase_map:ImagingRetinotopyAxis1PhaseMap= Field(..., description="""Phase response to stimulus on the first measured axis.""")
axis_1_power_map: Optional[ImagingRetinotopyAxis1PowerMap] = Field(None, description="""Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""") axis_1_power_map:Optional[ImagingRetinotopyAxis1PowerMap]= Field(None, description="""Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""")
axis_2_phase_map: ImagingRetinotopyAxis2PhaseMap = Field(..., description="""Phase response to stimulus on the second measured axis.""") axis_2_phase_map:ImagingRetinotopyAxis2PhaseMap= Field(..., description="""Phase response to stimulus on the second measured axis.""")
axis_2_power_map: Optional[ImagingRetinotopyAxis2PowerMap] = Field(None, description="""Power response on the second measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""") axis_2_power_map:Optional[ImagingRetinotopyAxis2PowerMap]= Field(None, description="""Power response on the second measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.""")
axis_descriptions: List[str] = Field(default_factory=list, description="""Two-element array describing the contents of the two response axis fields. Description should be something like ['altitude', 'azimuth'] or '['radius', 'theta'].""") axis_descriptions:List[str]= Field(default_factory=list, description="""Two-element array describing the contents of the two response axis fields. Description should be something like ['altitude', 'azimuth'] or '['radius', 'theta'].""")
focal_depth_image: Optional[ImagingRetinotopyFocalDepthImage] = Field(None, description="""Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns].""") focal_depth_image:Optional[ImagingRetinotopyFocalDepthImage]= Field(None, description="""Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns].""")
sign_map: Optional[ImagingRetinotopySignMap] = Field(None, description="""Sine of the angle between the direction of the gradient in axis_1 and axis_2.""") sign_map:Optional[ImagingRetinotopySignMap]= Field(None, description="""Sine of the angle between the direction of the gradient in axis_1 and axis_2.""")
vasculature_image: ImagingRetinotopyVasculatureImage = Field(..., description="""Gray-scale anatomical image of cortical surface. Array structure: [rows][columns]""") vasculature_image:ImagingRetinotopyVasculatureImage= Field(..., description="""Gray-scale anatomical image of cortical surface. Array structure: [rows][columns]""")
class ImagingRetinotopyAxis1PhaseMap(ConfiguredBaseModel):
"""
Phase response to stimulus on the first measured axis.
"""
name:Literal["axis_1_phase_map"]= Field("axis_1_phase_map")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
unit:Optional[str]= Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]]= Field(None)
class ImagingRetinotopyAxis1PowerMap(ConfiguredBaseModel):
"""
Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.
"""
name:Literal["axis_1_power_map"]= Field("axis_1_power_map")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
unit:Optional[str]= Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]]= Field(None)
class ImagingRetinotopyAxis2PhaseMap(ConfiguredBaseModel):
"""
Phase response to stimulus on the second measured axis.
"""
name:Literal["axis_2_phase_map"]= Field("axis_2_phase_map")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
unit:Optional[str]= Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]]= Field(None)
class ImagingRetinotopyAxis2PowerMap(ConfiguredBaseModel):
"""
Power response on the second measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.
"""
name:Literal["axis_2_power_map"]= Field("axis_2_power_map")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
unit:Optional[str]= Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]]= Field(None)
class ImagingRetinotopyFocalDepthImage(ConfiguredBaseModel):
"""
Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns].
"""
name:Literal["focal_depth_image"]= Field("focal_depth_image")
bits_per_pixel:Optional[int]= Field(None, description="""Number of bits used to represent each value. This is necessary to determine maximum (white) pixel value.""")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
focal_depth:Optional[float]= Field(None, description="""Focal depth offset, in meters.""")
format:Optional[str]= Field(None, description="""Format of image. Right now only 'raw' is supported.""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], UInt16]]= Field(None)
class ImagingRetinotopySignMap(ConfiguredBaseModel):
"""
Sine of the angle between the direction of the gradient in axis_1 and axis_2.
"""
name:Literal["sign_map"]= Field("sign_map")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]]= Field(None)
class ImagingRetinotopyVasculatureImage(ConfiguredBaseModel):
"""
Gray-scale anatomical image of cortical surface. Array structure: [rows][columns]
"""
name:Literal["vasculature_image"]= Field("vasculature_image")
bits_per_pixel:Optional[int]= Field(None, description="""Number of bits used to represent each value. This is necessary to determine maximum (white) pixel value""")
dimension:Optional[int]= Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view:Optional[float]= Field(None, description="""Size of viewing area, in meters.""")
format:Optional[str]= Field(None, description="""Format of image. Right now only 'raw' is supported.""")
array:Optional[NDArray[Shape["* num_rows, * num_cols"], UInt16]]= Field(None)
# Model rebuild # Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model # see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ImagingRetinotopy.model_rebuild() ImagingRetinotopy.model_rebuild()
ImagingRetinotopyAxis1PhaseMap.model_rebuild()
ImagingRetinotopyAxis1PowerMap.model_rebuild()
ImagingRetinotopyAxis2PhaseMap.model_rebuild()
ImagingRetinotopyAxis2PowerMap.model_rebuild()
ImagingRetinotopyFocalDepthImage.model_rebuild()
ImagingRetinotopySignMap.model_rebuild()
ImagingRetinotopyVasculatureImage.model_rebuild()

View file

@ -1,169 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class ImagingRetinotopyAxis1PhaseMap(ConfiguredBaseModel):
"""
Phase response to stimulus on the first measured axis.
"""
name: str = Field("axis_1_phase_map", const=True)
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
unit: Optional[str] = Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]] = Field(None)
class ImagingRetinotopyAxis1PhaseMapArray(Arraylike):
num_rows: float = Field(...)
num_cols: float = Field(...)
class ImagingRetinotopyAxis1PowerMap(ConfiguredBaseModel):
"""
Power response on the first measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.
"""
name: str = Field("axis_1_power_map", const=True)
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
unit: Optional[str] = Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]] = Field(None)
class ImagingRetinotopyAxis1PowerMapArray(Arraylike):
num_rows: float = Field(...)
num_cols: float = Field(...)
class ImagingRetinotopyAxis2PhaseMap(ConfiguredBaseModel):
"""
Phase response to stimulus on the second measured axis.
"""
name: str = Field("axis_2_phase_map", const=True)
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
unit: Optional[str] = Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]] = Field(None)
class ImagingRetinotopyAxis2PhaseMapArray(Arraylike):
num_rows: float = Field(...)
num_cols: float = Field(...)
class ImagingRetinotopyAxis2PowerMap(ConfiguredBaseModel):
"""
Power response on the second measured axis. Response is scaled so 0.0 is no power in the response and 1.0 is maximum relative power.
"""
name: str = Field("axis_2_power_map", const=True)
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
unit: Optional[str] = Field(None, description="""Unit that axis data is stored in (e.g., degrees).""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]] = Field(None)
class ImagingRetinotopyAxis2PowerMapArray(Arraylike):
num_rows: float = Field(...)
num_cols: float = Field(...)
class ImagingRetinotopyFocalDepthImage(ConfiguredBaseModel):
"""
Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns].
"""
name: str = Field("focal_depth_image", const=True)
bits_per_pixel: Optional[int] = Field(None, description="""Number of bits used to represent each value. This is necessary to determine maximum (white) pixel value.""")
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
focal_depth: Optional[float] = Field(None, description="""Focal depth offset, in meters.""")
format: Optional[str] = Field(None, description="""Format of image. Right now only 'raw' is supported.""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], UInt16]] = Field(None)
class ImagingRetinotopyFocalDepthImageArray(Arraylike):
num_rows: int = Field(...)
num_cols: int = Field(...)
class ImagingRetinotopySignMap(ConfiguredBaseModel):
"""
Sine of the angle between the direction of the gradient in axis_1 and axis_2.
"""
name: str = Field("sign_map", const=True)
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], Float32]] = Field(None)
class ImagingRetinotopySignMapArray(Arraylike):
num_rows: float = Field(...)
num_cols: float = Field(...)
class ImagingRetinotopyVasculatureImage(ConfiguredBaseModel):
"""
Gray-scale anatomical image of cortical surface. Array structure: [rows][columns]
"""
name: str = Field("vasculature_image", const=True)
bits_per_pixel: Optional[int] = Field(None, description="""Number of bits used to represent each value. This is necessary to determine maximum (white) pixel value""")
dimension: Optional[int] = Field(None, description="""Number of rows and columns in the image. NOTE: row, column representation is equivalent to height, width.""")
field_of_view: Optional[float] = Field(None, description="""Size of viewing area, in meters.""")
format: Optional[str] = Field(None, description="""Format of image. Right now only 'raw' is supported.""")
array: Optional[NDArray[Shape["* num_rows, * num_cols"], UInt16]] = Field(None)
class ImagingRetinotopyVasculatureImageArray(Arraylike):
num_rows: int = Field(...)
num_cols: int = Field(...)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
ImagingRetinotopyAxis1PhaseMap.model_rebuild()
ImagingRetinotopyAxis1PhaseMapArray.model_rebuild()
ImagingRetinotopyAxis1PowerMap.model_rebuild()
ImagingRetinotopyAxis1PowerMapArray.model_rebuild()
ImagingRetinotopyAxis2PhaseMap.model_rebuild()
ImagingRetinotopyAxis2PhaseMapArray.model_rebuild()
ImagingRetinotopyAxis2PowerMap.model_rebuild()
ImagingRetinotopyAxis2PowerMapArray.model_rebuild()
ImagingRetinotopyFocalDepthImage.model_rebuild()
ImagingRetinotopyFocalDepthImageArray.model_rebuild()
ImagingRetinotopySignMap.model_rebuild()
ImagingRetinotopySignMapArray.model_rebuild()
ImagingRetinotopyVasculatureImage.model_rebuild()
ImagingRetinotopyVasculatureImageArray.model_rebuild()

View file

@ -11,6 +11,25 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .hdmf_common_sparse import (
CSRMatrix
)
from .hdmf_common_base import (
Data,
Container,
SimpleMultiContainer
)
from .hdmf_common_table import (
VectorData,
VectorIndex,
ElementIdentifiers,
DynamicTableRegion,
DynamicTable,
AlignedDynamicTable
)
metamodel_version = "None" metamodel_version = "None"
version = "1.8.0" version = "1.8.0"

View file

@ -28,23 +28,23 @@ class Data(ConfiguredBaseModel):
""" """
An abstract data type for a dataset. An abstract data type for a dataset.
""" """
name: str = Field(...) name:str= Field(...)
class Container(ConfiguredBaseModel): class Container(ConfiguredBaseModel):
""" """
An abstract data type for a group storing collections of data and metadata. Base type for all data and metadata containers. An abstract data type for a group storing collections of data and metadata. Base type for all data and metadata containers.
""" """
name: str = Field(...) name:str= Field(...)
class SimpleMultiContainer(Container): class SimpleMultiContainer(Container):
""" """
A simple Container for holding onto multiple containers. A simple Container for holding onto multiple containers.
""" """
name: str = Field(...) name:str= Field(...)
Data: Optional[List[Data]] = Field(default_factory=list, description="""Data objects held within this SimpleMultiContainer.""") data:Optional[List[Data]]= Field(default_factory=list, description="""Data objects held within this SimpleMultiContainer.""")
container: Optional[List[Container]] = Field(default_factory=list, description="""Container objects held within this SimpleMultiContainer.""") container:Optional[List[Container]]= Field(default_factory=list, description="""Container objects held within this SimpleMultiContainer.""")

View file

@ -32,11 +32,11 @@ class CSRMatrix(Container):
""" """
A compressed sparse row matrix. Data are stored in the standard CSR format, where column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. A compressed sparse row matrix. Data are stored in the standard CSR format, where column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]].
""" """
name: str = Field(...) name:str= Field(...)
shape: Optional[int] = Field(None, description="""The shape (number of rows, number of columns) of this sparse matrix.""") shape:Optional[int]= Field(None, description="""The shape (number of rows, number of columns) of this sparse matrix.""")
indices: List[int] = Field(default_factory=list, description="""The column indices.""") indices:List[int]= Field(default_factory=list, description="""The column indices.""")
indptr: List[int] = Field(default_factory=list, description="""The row index pointer.""") indptr:List[int]= Field(default_factory=list, description="""The row index pointer.""")
data: List[Any] = Field(default_factory=list, description="""The non-zero values in the matrix.""") data:List[Any]= Field(default_factory=list, description="""The non-zero values in the matrix.""")

View file

@ -12,13 +12,8 @@ else:
from .hdmf_common_base import ( from .hdmf_common_base import (
Data, Container,
Container Data
)
from .hdmf_common_table_include import (
VectorDataArray,
ElementIdentifiersArray
) )
@ -38,76 +33,76 @@ class VectorData(Data):
""" """
An n-dimensional dataset representing a column of a DynamicTable. If used without an accompanying VectorIndex, first dimension is along the rows of the DynamicTable and each step along the first dimension is a cell of the larger table. VectorData can also be used to represent a ragged array if paired with a VectorIndex. This allows for storing arrays of varying length in a single cell of the DynamicTable by indexing into this VectorData. The first vector is at VectorData[0:VectorIndex[0]]. The second vector is at VectorData[VectorIndex[0]:VectorIndex[1]], and so on. An n-dimensional dataset representing a column of a DynamicTable. If used without an accompanying VectorIndex, first dimension is along the rows of the DynamicTable and each step along the first dimension is a cell of the larger table. VectorData can also be used to represent a ragged array if paired with a VectorIndex. This allows for storing arrays of varying length in a single cell of the DynamicTable by indexing into this VectorData. The first vector is at VectorData[0:VectorIndex[0]]. The second vector is at VectorData[VectorIndex[0]:VectorIndex[1]], and so on.
""" """
name: str = Field(...) name:str= Field(...)
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""") description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* dim0"], Any], NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any], NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any], NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any] NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None) ]]= Field(None)
class VectorIndex(VectorData): class VectorIndex(VectorData):
""" """
Used with VectorData to encode a ragged array. An array of indices into the first dimension of the target VectorData, and forming a map between the rows of a DynamicTable and the indices of the VectorData. The name of the VectorIndex is expected to be the name of the target VectorData object followed by \"_index\". Used with VectorData to encode a ragged array. An array of indices into the first dimension of the target VectorData, and forming a map between the rows of a DynamicTable and the indices of the VectorData. The name of the VectorIndex is expected to be the name of the target VectorData object followed by \"_index\".
""" """
name: str = Field(...) name:str= Field(...)
target: Optional[VectorData] = Field(None, description="""Reference to the target dataset that this index applies to.""") target:Optional[VectorData]= Field(None, description="""Reference to the target dataset that this index applies to.""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""") description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* dim0"], Any], NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any], NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any], NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any] NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None) ]]= Field(None)
class ElementIdentifiers(Data): class ElementIdentifiers(Data):
""" """
A list of unique identifiers for values within a dataset, e.g. rows of a DynamicTable. A list of unique identifiers for values within a dataset, e.g. rows of a DynamicTable.
""" """
name: str = Field(...) name:str= Field(...)
array: Optional[NDArray[Shape["* num_elements"], Int]] = Field(None) array:Optional[NDArray[Shape["* num_elements"], Int]]= Field(None)
class DynamicTableRegion(VectorData): class DynamicTableRegion(VectorData):
""" """
DynamicTableRegion provides a link from one table to an index or region of another. The `table` attribute is a link to another `DynamicTable`, indicating which table is referenced, and the data is int(s) indicating the row(s) (0-indexed) of the target array. `DynamicTableRegion`s can be used to associate rows with repeated meta-data without data duplication. They can also be used to create hierarchical relationships between multiple `DynamicTable`s. `DynamicTableRegion` objects may be paired with a `VectorIndex` object to create ragged references, so a single cell of a `DynamicTable` can reference many rows of another `DynamicTable`. DynamicTableRegion provides a link from one table to an index or region of another. The `table` attribute is a link to another `DynamicTable`, indicating which table is referenced, and the data is int(s) indicating the row(s) (0-indexed) of the target array. `DynamicTableRegion`s can be used to associate rows with repeated meta-data without data duplication. They can also be used to create hierarchical relationships between multiple `DynamicTable`s. `DynamicTableRegion` objects may be paired with a `VectorIndex` object to create ragged references, so a single cell of a `DynamicTable` can reference many rows of another `DynamicTable`.
""" """
name: str = Field(...) name:str= Field(...)
table: Optional[DynamicTable] = Field(None, description="""Reference to the DynamicTable object that this region applies to.""") table:Optional[DynamicTable]= Field(None, description="""Reference to the DynamicTable object that this region applies to.""")
description: Optional[str] = Field(None, description="""Description of what this table region points to.""") description:Optional[str]= Field(None, description="""Description of what this table region points to.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* dim0"], Any], NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any], NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any], NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any] NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None) ]]= Field(None)
class DynamicTable(Container): class DynamicTable(Container):
""" """
A group containing multiple datasets that are aligned on the first dimension (Currently, this requirement if left up to APIs to check and enforce). These datasets represent different columns in the table. Apart from a column that contains unique identifiers for each row, there are no other required datasets. Users are free to add any number of custom VectorData objects (columns) here. DynamicTable also supports ragged array columns, where each element can be of a different size. To add a ragged array column, use a VectorIndex type to index the corresponding VectorData type. See documentation for VectorData and VectorIndex for more details. Unlike a compound data type, which is analogous to storing an array-of-structs, a DynamicTable can be thought of as a struct-of-arrays. This provides an alternative structure to choose from when optimizing storage for anticipated access patterns. Additionally, this type provides a way of creating a table without having to define a compound type up front. Although this convenience may be attractive, users should think carefully about how data will be accessed. DynamicTable is more appropriate for column-centric access, whereas a dataset with a compound type would be more appropriate for row-centric access. Finally, data size should also be taken into account. For small tables, performance loss may be an acceptable trade-off for the flexibility of a DynamicTable. A group containing multiple datasets that are aligned on the first dimension (Currently, this requirement if left up to APIs to check and enforce). These datasets represent different columns in the table. Apart from a column that contains unique identifiers for each row, there are no other required datasets. Users are free to add any number of custom VectorData objects (columns) here. DynamicTable also supports ragged array columns, where each element can be of a different size. To add a ragged array column, use a VectorIndex type to index the corresponding VectorData type. See documentation for VectorData and VectorIndex for more details. Unlike a compound data type, which is analogous to storing an array-of-structs, a DynamicTable can be thought of as a struct-of-arrays. This provides an alternative structure to choose from when optimizing storage for anticipated access patterns. Additionally, this type provides a way of creating a table without having to define a compound type up front. Although this convenience may be attractive, users should think carefully about how data will be accessed. DynamicTable is more appropriate for column-centric access, whereas a dataset with a compound type would be more appropriate for row-centric access. Finally, data size should also be taken into account. For small tables, performance loss may be an acceptable trade-off for the flexibility of a DynamicTable.
""" """
name: str = Field(...) name:str= Field(...)
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")
class AlignedDynamicTable(DynamicTable): class AlignedDynamicTable(DynamicTable):
""" """
DynamicTable container that supports storing a collection of sub-tables. Each sub-table is a DynamicTable itself that is aligned with the main table by row index. I.e., all DynamicTables stored in this group MUST have the same number of rows. This type effectively defines a 2-level table in which the main data is stored in the main table implemented by this type and additional columns of the table are grouped into categories, with each category being represented by a separate DynamicTable stored within the group. DynamicTable container that supports storing a collection of sub-tables. Each sub-table is a DynamicTable itself that is aligned with the main table by row index. I.e., all DynamicTables stored in this group MUST have the same number of rows. This type effectively defines a 2-level table in which the main data is stored in the main table implemented by this type and additional columns of the table are grouped into categories, with each category being represented by a separate DynamicTable stored within the group.
""" """
name: str = Field(...) name:str= Field(...)
categories: Optional[str] = Field(None, description="""The names of the categories in this AlignedDynamicTable. Each category is represented by one DynamicTable stored in the parent group. This attribute should be used to specify an order of categories and the category names must match the names of the corresponding DynamicTable in the group.""") categories:Optional[str]= Field(None, description="""The names of the categories in this AlignedDynamicTable. Each category is represented by one DynamicTable stored in the parent group. This attribute should be used to specify an order of categories and the category names must match the names of the corresponding DynamicTable in the group.""")
dynamic_table: Optional[List[DynamicTable]] = Field(default_factory=list, description="""A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.""") dynamic_table:Optional[List[DynamicTable]]= Field(default_factory=list, description="""A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.""")
colnames: Optional[str] = Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""") colnames:Optional[str]= Field(None, description="""The names of the columns in this table. This should be used to specify an order to the columns.""")
description: Optional[str] = Field(None, description="""Description of what is in this dynamic table.""") description:Optional[str]= Field(None, description="""Description of what is in this dynamic table.""")
id: List[int] = Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""") id:List[int]= Field(default_factory=list, description="""Array of unique identifiers for the rows of this dynamic table.""")
VectorData: Optional[List[VectorData]] = Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""") vector_data:Optional[List[VectorData]]= Field(default_factory=list, description="""Vector columns, including index columns, of this dynamic table.""")

View file

@ -1,49 +0,0 @@
from __future__ import annotations
from datetime import datetime, date
from enum import Enum
from typing import List, Dict, Optional, Any, Union
from pydantic import BaseModel as BaseModel, Field
from nptyping import NDArray, Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
from .nwb_language import (
Arraylike
)
metamodel_version = "None"
version = "None"
class ConfiguredBaseModel(BaseModel,
validate_assignment = True,
validate_default = True,
extra = 'forbid',
arbitrary_types_allowed = True,
use_enum_values = True):
pass
class VectorDataArray(Arraylike):
dim0: Any = Field(...)
dim1: Optional[Any] = Field(None)
dim2: Optional[Any] = Field(None)
dim3: Optional[Any] = Field(None)
class ElementIdentifiersArray(Arraylike):
num_elements: int = Field(...)
# Model rebuild
# see https://pydantic-docs.helpmanual.io/usage/models/#rebuilding-a-model
VectorDataArray.model_rebuild()
ElementIdentifiersArray.model_rebuild()

View file

@ -11,6 +11,29 @@ else:
from typing_extensions import Literal from typing_extensions import Literal
from .hdmf_experimental_resources import (
HERD
)
from .hdmf_common_base import (
Data,
Container,
SimpleMultiContainer
)
from .hdmf_experimental_experimental import (
EnumData
)
from .hdmf_common_table import (
VectorData,
VectorIndex,
ElementIdentifiers,
DynamicTableRegion,
DynamicTable,
AlignedDynamicTable
)
metamodel_version = "None" metamodel_version = "None"
version = "0.5.0" version = "0.5.0"

View file

@ -32,15 +32,15 @@ class EnumData(VectorData):
""" """
Data that come from a fixed set of values. A data value of i corresponds to the i-th value in the VectorData referenced by the 'elements' attribute. Data that come from a fixed set of values. A data value of i corresponds to the i-th value in the VectorData referenced by the 'elements' attribute.
""" """
name: str = Field(...) name:str= Field(...)
elements: Optional[VectorData] = Field(None, description="""Reference to the VectorData object that contains the enumerable elements""") elements:Optional[VectorData]= Field(None, description="""Reference to the VectorData object that contains the enumerable elements""")
description: Optional[str] = Field(None, description="""Description of what these vectors represent.""") description:Optional[str]= Field(None, description="""Description of what these vectors represent.""")
array: Optional[Union[ array:Optional[Union[
NDArray[Shape["* dim0"], Any], NDArray[Shape["* dim0"], Any],
NDArray[Shape["* dim0, * dim1"], Any], NDArray[Shape["* dim0, * dim1"], Any],
NDArray[Shape["* dim0, * dim1, * dim2"], Any], NDArray[Shape["* dim0, * dim1, * dim2"], Any],
NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any] NDArray[Shape["* dim0, * dim1, * dim2, * dim3"], Any]
]] = Field(None) ]]= Field(None)

View file

@ -32,13 +32,13 @@ class HERD(Container):
""" """
HDMF External Resources Data Structure. A set of six tables for tracking external resource references in a file or across multiple files. HDMF External Resources Data Structure. A set of six tables for tracking external resource references in a file or across multiple files.
""" """
name: str = Field(...) name:str= Field(...)
keys: List[Any] = Field(default_factory=list, description="""A table for storing user terms that are used to refer to external resources.""") keys:List[Any]= Field(default_factory=list, description="""A table for storing user terms that are used to refer to external resources.""")
files: List[Any] = Field(default_factory=list, description="""A table for storing object ids of files used in external resources.""") files:List[Any]= Field(default_factory=list, description="""A table for storing object ids of files used in external resources.""")
entities: List[Any] = Field(default_factory=list, description="""A table for mapping user terms (i.e., keys) to resource entities.""") entities:List[Any]= Field(default_factory=list, description="""A table for mapping user terms (i.e., keys) to resource entities.""")
objects: List[Any] = Field(default_factory=list, description="""A table for identifying which objects in a file contain references to external resources.""") objects:List[Any]= Field(default_factory=list, description="""A table for identifying which objects in a file contain references to external resources.""")
object_keys: List[Any] = Field(default_factory=list, description="""A table for identifying which objects use which keys.""") object_keys:List[Any]= Field(default_factory=list, description="""A table for identifying which objects use which keys.""")
entity_keys: List[Any] = Field(default_factory=list, description="""A table for identifying which keys use which entity.""") entity_keys:List[Any]= Field(default_factory=list, description="""A table for identifying which keys use which entity.""")

View file

@ -1,170 +0,0 @@
name: core.nwb.base.include
id: core.nwb.base.include
imports:
- hdmf-common.base
- hdmf-common.table
- nwb.language
- core.nwb.base.include
- core.nwb.base
default_prefix: core.nwb.base.include/
classes:
Image__Array:
name: Image__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3
r, g, b, a:
name: r, g, b, a
range: numeric
required: false
minimum_cardinality: 4
maximum_cardinality: 4
ImageReferences__Array:
name: ImageReferences__Array
is_a: Arraylike
attributes:
num_images:
name: num_images
range: Image
required: true
TimeSeries__data:
name: TimeSeries__data
description: Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension
should always represent time. This can also be used to store binary data (e.g.,
image frames). This can also be a link to data stored in an external file.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
conversion:
name: conversion
description: Scalar to multiply each element in data to convert it to the
specified 'unit'. If the data are stored in acquisition system units or
other units that require a conversion to be interpretable, multiply the
data by 'conversion' to convert the data to the specified 'unit'. e.g. if
the data acquisition system stores values in this object as signed 16-bit
integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V
to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion'
multiplier to get from raw data acquisition values to recorded volts is
2.5/32768/8000 = 9.5367e-9.
range: float32
offset:
name: offset
description: Scalar to add to the data after scaling by 'conversion' to finalize
its coercion to the specified 'unit'. Two common examples of this include
(a) data stored in an unsigned type that requires a shift after scaling
to re-center the data, and (b) specialized recording devices that naturally
cause a scalar offset with respect to the true units.
range: float32
resolution:
name: resolution
description: Smallest meaningful difference between values in data, stored
in the specified by unit, e.g., the change in value of the least significant
bit, or a larger number if signal noise is known to be present. If unknown,
use -1.0.
range: float32
unit:
name: unit
description: Base unit of measurement for working with the data. Actual stored
values are not necessarily stored in these units. To access the data in
these units, multiply 'data' by 'conversion' and add 'offset'.
range: text
continuity:
name: continuity
description: Optionally describe the continuity of the data. Can be "continuous",
"instantaneous", or "step". For example, a voltage trace would be "continuous",
because samples are recorded from a continuous process. An array of lick
times would be "instantaneous", because the data represents distinct moments
in time. Times of image presentations would be "step" because the picture
remains the same until the next timepoint. This field is optional, but is
useful in providing information about the underlying data. It may inform
the way this data is interpreted, the way it is visualized, and what analysis
methods are applicable.
range: text
array:
name: array
range: TimeSeries__data__Array
TimeSeries__data__Array:
name: TimeSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: AnyType
required: true
num_DIM2:
name: num_DIM2
range: AnyType
required: false
num_DIM3:
name: num_DIM3
range: AnyType
required: false
num_DIM4:
name: num_DIM4
range: AnyType
required: false
TimeSeries__starting_time:
name: TimeSeries__starting_time
description: Timestamp of the first sample in seconds. When timestamps are uniformly
spaced, the timestamp of the first sample can be specified and all subsequent
ones calculated from the sampling rate attribute.
attributes:
name:
name: name
ifabsent: string(starting_time)
range: string
required: true
equals_string: starting_time
rate:
name: rate
description: Sampling rate, in Hz.
range: float32
unit:
name: unit
description: Unit of measurement for time, which is fixed to 'seconds'.
range: text
TimeSeries__sync:
name: TimeSeries__sync
description: Lab-specific time and sync information as provided directly from
hardware devices and that is necessary for aligning all acquired time information
to a common timebase. The timestamp array stores time in the common timebase.
This group will usually only be populated in TimeSeries that are stored external
to the NWB file, in files storing raw data. Once timestamp data is calculated,
the contents of 'sync' are mostly for archival purposes.
attributes:
name:
name: name
ifabsent: string(sync)
range: string
required: true
equals_string: sync
Images__order_of_images:
name: Images__order_of_images
description: Ordered dataset of references to Image objects stored in the parent
group. Each Image object in the Images group should be stored once and only
once, so the dataset should have the same length as the number of images.
is_a: ImageReferences
attributes:
name:
name: name
ifabsent: string(order_of_images)
range: string
required: true
equals_string: order_of_images

View file

@ -4,8 +4,6 @@ imports:
- hdmf-common.base - hdmf-common.base
- hdmf-common.table - hdmf-common.table
- nwb.language - nwb.language
- core.nwb.base.include
- core.nwb.base
default_prefix: core.nwb.base/ default_prefix: core.nwb.base/
classes: classes:
NWBData: NWBData:
@ -53,6 +51,30 @@ classes:
name: array name: array
range: Image__Array range: Image__Array
tree_root: true tree_root: true
Image__Array:
name: Image__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3
r, g, b, a:
name: r, g, b, a
range: numeric
required: false
minimum_cardinality: 4
maximum_cardinality: 4
ImageReferences: ImageReferences:
name: ImageReferences name: ImageReferences
description: Ordered dataset of references to Image objects. description: Ordered dataset of references to Image objects.
@ -66,6 +88,14 @@ classes:
name: array name: array
range: ImageReferences__Array range: ImageReferences__Array
tree_root: true tree_root: true
ImageReferences__Array:
name: ImageReferences__Array
is_a: Arraylike
attributes:
num_images:
name: num_images
range: Image
required: true
NWBContainer: NWBContainer:
name: NWBContainer name: NWBContainer
description: An abstract data type for a generic container storing collections description: An abstract data type for a generic container storing collections
@ -159,6 +189,125 @@ classes:
range: TimeSeries__sync range: TimeSeries__sync
required: false required: false
tree_root: true tree_root: true
TimeSeries__data:
name: TimeSeries__data
description: Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension
should always represent time. This can also be used to store binary data (e.g.,
image frames). This can also be a link to data stored in an external file.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
conversion:
name: conversion
description: Scalar to multiply each element in data to convert it to the
specified 'unit'. If the data are stored in acquisition system units or
other units that require a conversion to be interpretable, multiply the
data by 'conversion' to convert the data to the specified 'unit'. e.g. if
the data acquisition system stores values in this object as signed 16-bit
integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V
to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion'
multiplier to get from raw data acquisition values to recorded volts is
2.5/32768/8000 = 9.5367e-9.
range: float32
offset:
name: offset
description: Scalar to add to the data after scaling by 'conversion' to finalize
its coercion to the specified 'unit'. Two common examples of this include
(a) data stored in an unsigned type that requires a shift after scaling
to re-center the data, and (b) specialized recording devices that naturally
cause a scalar offset with respect to the true units.
range: float32
resolution:
name: resolution
description: Smallest meaningful difference between values in data, stored
in the specified by unit, e.g., the change in value of the least significant
bit, or a larger number if signal noise is known to be present. If unknown,
use -1.0.
range: float32
unit:
name: unit
description: Base unit of measurement for working with the data. Actual stored
values are not necessarily stored in these units. To access the data in
these units, multiply 'data' by 'conversion' and add 'offset'.
range: text
continuity:
name: continuity
description: Optionally describe the continuity of the data. Can be "continuous",
"instantaneous", or "step". For example, a voltage trace would be "continuous",
because samples are recorded from a continuous process. An array of lick
times would be "instantaneous", because the data represents distinct moments
in time. Times of image presentations would be "step" because the picture
remains the same until the next timepoint. This field is optional, but is
useful in providing information about the underlying data. It may inform
the way this data is interpreted, the way it is visualized, and what analysis
methods are applicable.
range: text
array:
name: array
range: TimeSeries__data__Array
TimeSeries__data__Array:
name: TimeSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: AnyType
required: true
num_DIM2:
name: num_DIM2
range: AnyType
required: false
num_DIM3:
name: num_DIM3
range: AnyType
required: false
num_DIM4:
name: num_DIM4
range: AnyType
required: false
TimeSeries__starting_time:
name: TimeSeries__starting_time
description: Timestamp of the first sample in seconds. When timestamps are uniformly
spaced, the timestamp of the first sample can be specified and all subsequent
ones calculated from the sampling rate attribute.
attributes:
name:
name: name
ifabsent: string(starting_time)
range: string
required: true
equals_string: starting_time
rate:
name: rate
description: Sampling rate, in Hz.
range: float32
unit:
name: unit
description: Unit of measurement for time, which is fixed to 'seconds'.
range: text
value:
name: value
range: float64
required: true
TimeSeries__sync:
name: TimeSeries__sync
description: Lab-specific time and sync information as provided directly from
hardware devices and that is necessary for aligning all acquired time information
to a common timebase. The timestamp array stores time in the common timebase.
This group will usually only be populated in TimeSeries that are stored external
to the NWB file, in files storing raw data. Once timestamp data is calculated,
the contents of 'sync' are mostly for archival purposes.
attributes:
name:
name: name
ifabsent: string(sync)
range: string
required: true
equals_string: sync
ProcessingModule: ProcessingModule:
name: ProcessingModule name: ProcessingModule
description: A collection of processed data. description: A collection of processed data.
@ -216,3 +365,16 @@ classes:
range: Images__order_of_images range: Images__order_of_images
required: false required: false
tree_root: true tree_root: true
Images__order_of_images:
name: Images__order_of_images
description: Ordered dataset of references to Image objects stored in the parent
group. Each Image object in the Images group should be stored once and only
once, so the dataset should have the same length as the number of images.
is_a: ImageReferences
attributes:
name:
name: name
ifabsent: string(order_of_images)
range: string
required: true
equals_string: order_of_images

View file

@ -1,57 +0,0 @@
name: core.nwb.behavior.include
id: core.nwb.behavior.include
imports:
- core.nwb.base
- core.nwb.misc
- nwb.language
- core.nwb.behavior.include
- core.nwb.behavior
default_prefix: core.nwb.behavior.include/
classes:
SpatialSeries__data:
name: SpatialSeries__data
description: 1-D or 2-D array storing position or direction relative to some reference
frame.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. The default
value is 'meters'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
array:
name: array
range: SpatialSeries__data__Array
SpatialSeries__data__Array:
name: SpatialSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
x:
name: x
range: numeric
required: false
minimum_cardinality: 1
maximum_cardinality: 1
x,y:
name: x,y
range: numeric
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x,y,z:
name: x,y,z
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3

View file

@ -4,8 +4,6 @@ imports:
- core.nwb.base - core.nwb.base
- core.nwb.misc - core.nwb.misc
- nwb.language - nwb.language
- core.nwb.behavior.include
- core.nwb.behavior
default_prefix: core.nwb.behavior/ default_prefix: core.nwb.behavior/
classes: classes:
SpatialSeries: SpatialSeries:
@ -39,6 +37,53 @@ classes:
range: text range: text
required: false required: false
tree_root: true tree_root: true
SpatialSeries__data:
name: SpatialSeries__data
description: 1-D or 2-D array storing position or direction relative to some reference
frame.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. The default
value is 'meters'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
array:
name: array
range: SpatialSeries__data__Array
SpatialSeries__data__Array:
name: SpatialSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
x:
name: x
range: numeric
required: false
minimum_cardinality: 1
maximum_cardinality: 1
x,y:
name: x,y
range: numeric
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x,y,z:
name: x,y,z
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3
BehavioralEpochs: BehavioralEpochs:
name: BehavioralEpochs name: BehavioralEpochs
description: TimeSeries for storing behavioral epochs. The objective of this description: TimeSeries for storing behavioral epochs. The objective of this

View file

@ -3,7 +3,6 @@ id: core.nwb.device
imports: imports:
- core.nwb.base - core.nwb.base
- nwb.language - nwb.language
- core.nwb.device
default_prefix: core.nwb.device/ default_prefix: core.nwb.device/
classes: classes:
Device: Device:

View file

@ -1,187 +0,0 @@
name: core.nwb.ecephys.include
id: core.nwb.ecephys.include
imports:
- core.nwb.base
- hdmf-common.table
- core.nwb.device
- nwb.language
- core.nwb.ecephys.include
- core.nwb.ecephys
default_prefix: core.nwb.ecephys.include/
classes:
ElectricalSeries__data:
name: ElectricalSeries__data
description: Recorded voltage data.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. This value
is fixed to 'volts'. Actual stored values are not necessarily stored in
these units. To access the data in these units, multiply 'data' by 'conversion',
followed by 'channel_conversion' (if present), and then add 'offset'.
range: text
array:
name: array
range: ElectricalSeries__data__Array
ElectricalSeries__data__Array:
name: ElectricalSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: false
num_samples:
name: num_samples
range: numeric
required: false
ElectricalSeries__electrodes:
name: ElectricalSeries__electrodes
description: DynamicTableRegion pointer to the electrodes that this time series
was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
SpikeEventSeries__data:
name: SpikeEventSeries__data
description: Spike waveforms.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Unit of measurement for waveforms, which is fixed to 'volts'.
range: text
array:
name: array
range: SpikeEventSeries__data__Array
SpikeEventSeries__data__Array:
name: SpikeEventSeries__data__Array
is_a: Arraylike
attributes:
num_events:
name: num_events
range: numeric
required: true
num_samples:
name: num_samples
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: false
FeatureExtraction__features:
name: FeatureExtraction__features
description: Multi-dimensional array of features extracted from each event.
attributes:
name:
name: name
ifabsent: string(features)
range: string
required: true
equals_string: features
array:
name: array
range: FeatureExtraction__features__Array
FeatureExtraction__features__Array:
name: FeatureExtraction__features__Array
is_a: Arraylike
attributes:
num_events:
name: num_events
range: float32
required: true
num_channels:
name: num_channels
range: float32
required: true
num_features:
name: num_features
range: float32
required: true
FeatureExtraction__electrodes:
name: FeatureExtraction__electrodes
description: DynamicTableRegion pointer to the electrodes that this time series
was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
ClusterWaveforms__waveform_mean:
name: ClusterWaveforms__waveform_mean
description: The mean waveform for each cluster, using the same indices for each
wave as cluster numbers in the associated Clustering module (i.e, cluster 3
is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should
be empty (e.g., zero- filled)
attributes:
name:
name: name
ifabsent: string(waveform_mean)
range: string
required: true
equals_string: waveform_mean
array:
name: array
range: ClusterWaveforms__waveform_mean__Array
ClusterWaveforms__waveform_mean__Array:
name: ClusterWaveforms__waveform_mean__Array
is_a: Arraylike
attributes:
num_clusters:
name: num_clusters
range: float32
required: true
num_samples:
name: num_samples
range: float32
required: true
ClusterWaveforms__waveform_sd:
name: ClusterWaveforms__waveform_sd
description: Stdev of waveforms for each cluster, using the same indices as in
mean
attributes:
name:
name: name
ifabsent: string(waveform_sd)
range: string
required: true
equals_string: waveform_sd
array:
name: array
range: ClusterWaveforms__waveform_sd__Array
ClusterWaveforms__waveform_sd__Array:
name: ClusterWaveforms__waveform_sd__Array
is_a: Arraylike
attributes:
num_clusters:
name: num_clusters
range: float32
required: true
num_samples:
name: num_samples
range: float32
required: true

View file

@ -5,8 +5,6 @@ imports:
- hdmf-common.table - hdmf-common.table
- core.nwb.device - core.nwb.device
- nwb.language - nwb.language
- core.nwb.ecephys.include
- core.nwb.ecephys
default_prefix: core.nwb.ecephys/ default_prefix: core.nwb.ecephys/
classes: classes:
ElectricalSeries: ElectricalSeries:
@ -59,6 +57,54 @@ classes:
range: float32 range: float32
required: false required: false
tree_root: true tree_root: true
ElectricalSeries__data:
name: ElectricalSeries__data
description: Recorded voltage data.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. This value
is fixed to 'volts'. Actual stored values are not necessarily stored in
these units. To access the data in these units, multiply 'data' by 'conversion',
followed by 'channel_conversion' (if present), and then add 'offset'.
range: text
array:
name: array
range: ElectricalSeries__data__Array
ElectricalSeries__data__Array:
name: ElectricalSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: false
num_samples:
name: num_samples
range: numeric
required: false
ElectricalSeries__electrodes:
name: ElectricalSeries__electrodes
description: DynamicTableRegion pointer to the electrodes that this time series
was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
SpikeEventSeries: SpikeEventSeries:
name: SpikeEventSeries name: SpikeEventSeries
description: 'Stores snapshots/snippets of recorded spike events (i.e., threshold description: 'Stores snapshots/snippets of recorded spike events (i.e., threshold
@ -91,6 +137,39 @@ classes:
range: float64 range: float64
required: true required: true
tree_root: true tree_root: true
SpikeEventSeries__data:
name: SpikeEventSeries__data
description: Spike waveforms.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Unit of measurement for waveforms, which is fixed to 'volts'.
range: text
array:
name: array
range: SpikeEventSeries__data__Array
SpikeEventSeries__data__Array:
name: SpikeEventSeries__data__Array
is_a: Arraylike
attributes:
num_events:
name: num_events
range: numeric
required: true
num_samples:
name: num_samples
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: false
FeatureExtraction: FeatureExtraction:
name: FeatureExtraction name: FeatureExtraction
description: Features, such as PC1 and PC2, that are extracted from signals stored description: Features, such as PC1 and PC2, that are extracted from signals stored
@ -128,6 +207,47 @@ classes:
range: FeatureExtraction__electrodes range: FeatureExtraction__electrodes
required: true required: true
tree_root: true tree_root: true
FeatureExtraction__features:
name: FeatureExtraction__features
description: Multi-dimensional array of features extracted from each event.
attributes:
name:
name: name
ifabsent: string(features)
range: string
required: true
equals_string: features
array:
name: array
range: FeatureExtraction__features__Array
FeatureExtraction__features__Array:
name: FeatureExtraction__features__Array
is_a: Arraylike
attributes:
num_events:
name: num_events
range: float32
required: true
num_channels:
name: num_channels
range: float32
required: true
num_features:
name: num_features
range: float32
required: true
FeatureExtraction__electrodes:
name: FeatureExtraction__electrodes
description: DynamicTableRegion pointer to the electrodes that this time series
was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
EventDetection: EventDetection:
name: EventDetection name: EventDetection
description: Detected spike events from voltage trace(s). description: Detected spike events from voltage trace(s).
@ -287,6 +407,60 @@ classes:
range: ClusterWaveforms__waveform_sd range: ClusterWaveforms__waveform_sd
required: true required: true
tree_root: true tree_root: true
ClusterWaveforms__waveform_mean:
name: ClusterWaveforms__waveform_mean
description: The mean waveform for each cluster, using the same indices for each
wave as cluster numbers in the associated Clustering module (i.e, cluster 3
is in array slot [3]). Waveforms corresponding to gaps in cluster sequence should
be empty (e.g., zero- filled)
attributes:
name:
name: name
ifabsent: string(waveform_mean)
range: string
required: true
equals_string: waveform_mean
array:
name: array
range: ClusterWaveforms__waveform_mean__Array
ClusterWaveforms__waveform_mean__Array:
name: ClusterWaveforms__waveform_mean__Array
is_a: Arraylike
attributes:
num_clusters:
name: num_clusters
range: float32
required: true
num_samples:
name: num_samples
range: float32
required: true
ClusterWaveforms__waveform_sd:
name: ClusterWaveforms__waveform_sd
description: Stdev of waveforms for each cluster, using the same indices as in
mean
attributes:
name:
name: name
ifabsent: string(waveform_sd)
range: string
required: true
equals_string: waveform_sd
array:
name: array
range: ClusterWaveforms__waveform_sd__Array
ClusterWaveforms__waveform_sd__Array:
name: ClusterWaveforms__waveform_sd__Array
is_a: Arraylike
attributes:
num_clusters:
name: num_clusters
range: float32
required: true
num_samples:
name: num_samples
range: float32
required: true
Clustering: Clustering:
name: Clustering name: Clustering
description: DEPRECATED Clustered spike data, whether from automatic clustering description: DEPRECATED Clustered spike data, whether from automatic clustering

View file

@ -1,43 +0,0 @@
name: core.nwb.epoch.include
id: core.nwb.epoch.include
imports:
- hdmf-common.table
- core.nwb.base
- nwb.language
- core.nwb.epoch.include
- core.nwb.epoch
default_prefix: core.nwb.epoch.include/
classes:
TimeIntervals__tags_index:
name: TimeIntervals__tags_index
description: Index for tags.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(tags_index)
range: string
required: true
equals_string: tags_index
TimeIntervals__timeseries:
name: TimeIntervals__timeseries
description: An index into a TimeSeries object.
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(timeseries)
range: string
required: true
equals_string: timeseries
TimeIntervals__timeseries_index:
name: TimeIntervals__timeseries_index
description: Index for timeseries.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(timeseries_index)
range: string
required: true
equals_string: timeseries_index

View file

@ -4,8 +4,6 @@ imports:
- hdmf-common.table - hdmf-common.table
- core.nwb.base - core.nwb.base
- nwb.language - nwb.language
- core.nwb.epoch.include
- core.nwb.epoch
default_prefix: core.nwb.epoch/ default_prefix: core.nwb.epoch/
classes: classes:
TimeIntervals: TimeIntervals:
@ -52,3 +50,36 @@ classes:
range: TimeIntervals__timeseries_index range: TimeIntervals__timeseries_index
required: false required: false
tree_root: true tree_root: true
TimeIntervals__tags_index:
name: TimeIntervals__tags_index
description: Index for tags.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(tags_index)
range: string
required: true
equals_string: tags_index
TimeIntervals__timeseries:
name: TimeIntervals__timeseries
description: An index into a TimeSeries object.
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(timeseries)
range: string
required: true
equals_string: timeseries
TimeIntervals__timeseries_index:
name: TimeIntervals__timeseries_index
description: Index for timeseries.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(timeseries_index)
range: string
required: true
equals_string: timeseries_index

View file

@ -1,399 +0,0 @@
name: core.nwb.file.include
id: core.nwb.file.include
imports:
- core.nwb.base
- hdmf-common.table
- core.nwb.device
- core.nwb.ecephys
- core.nwb.icephys
- core.nwb.ogen
- core.nwb.ophys
- core.nwb.epoch
- core.nwb.misc
- nwb.language
- core.nwb.file.include
- core.nwb.file
default_prefix: core.nwb.file.include/
classes:
NWBFile__stimulus:
name: NWBFile__stimulus
description: Data pushed into the system (eg, video stimulus, sound, voltage,
etc) and secondary representations of that data (eg, measurements of something
used as a stimulus). This group should be made read-only after experiment complete
and timestamps are corrected to common timebase. Stores both presented stimuli
and stimulus templates, the latter in case the same stimulus is presented multiple
times, or is pulled from an external stimulus library. Stimuli are here defined
as any signal that is pushed into the system as part of the experiment (eg,
sound, video, voltage, etc). Many different experiments can use the same stimuli,
and stimuli can be re-used during an experiment. The stimulus group is organized
so that one version of template stimuli can be stored and these be used multiple
times. These templates can exist in the present file or can be linked to a remote
library file.
attributes:
name:
name: name
ifabsent: string(stimulus)
range: string
required: true
equals_string: stimulus
presentation:
name: presentation
description: Stimuli presented during the experiment.
multivalued: true
any_of:
- range: TimeSeries
templates:
name: templates
description: Template stimuli. Timestamps in templates are based on stimulus
design and are relative to the beginning of the stimulus. When templates
are used, the stimulus instances must convert presentation times to the
experiment`s time reference frame.
multivalued: true
any_of:
- range: TimeSeries
- range: Images
NWBFile__general:
name: NWBFile__general
description: Experimental metadata, including protocol, notes and description
of hardware device(s). The metadata stored in this section should be used to
describe the experiment. Metadata necessary for interpreting the data is stored
with the data. General experimental metadata, including animal strain, experimental
protocols, experimenter, devices, etc, are stored under 'general'. Core metadata
(e.g., that required to interpret data fields) is stored with the data itself,
and implicitly defined by the file specification (e.g., time is in seconds).
The strategy used here for storing non-core metadata is to use free-form text
fields, such as would appear in sentences or paragraphs from a Methods section.
Metadata fields are text to enable them to be more general, for example to represent
ranges instead of numerical values. Machine-readable metadata is stored as attributes
to these free-form datasets. All entries in the below table are to be included
when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology
experiment) should not be created unless there is data to store within them.
attributes:
name:
name: name
ifabsent: string(general)
range: string
required: true
equals_string: general
data_collection:
name: data_collection
description: Notes about data collection and analysis.
multivalued: false
range: text
required: false
experiment_description:
name: experiment_description
description: General description of the experiment.
multivalued: false
range: text
required: false
experimenter:
name: experimenter
description: Name of person(s) who performed the experiment. Can also specify
roles of different people involved.
multivalued: true
range: text
required: false
institution:
name: institution
description: Institution(s) where experiment was performed.
multivalued: false
range: text
required: false
keywords:
name: keywords
description: Terms to search over.
multivalued: true
range: text
required: false
lab:
name: lab
description: Laboratory where experiment was performed.
multivalued: false
range: text
required: false
notes:
name: notes
description: Notes about the experiment.
multivalued: false
range: text
required: false
pharmacology:
name: pharmacology
description: Description of drugs used, including how and when they were administered.
Anesthesia(s), painkiller(s), etc., plus dosage, concentration, etc.
multivalued: false
range: text
required: false
protocol:
name: protocol
description: Experimental protocol, if applicable. e.g., include IACUC protocol
number.
multivalued: false
range: text
required: false
related_publications:
name: related_publications
description: Publication information. PMID, DOI, URL, etc.
multivalued: true
range: text
required: false
session_id:
name: session_id
description: Lab-specific ID for the session.
multivalued: false
range: text
required: false
slices:
name: slices
description: Description of slices, including information about preparation
thickness, orientation, temperature, and bath solution.
multivalued: false
range: text
required: false
source_script:
name: source_script
description: Script file or link to public source code used to create this
NWB file.
multivalued: false
range: NWBFile__general__source_script
required: false
stimulus:
name: stimulus
description: Notes about stimuli, such as how and where they were presented.
multivalued: false
range: text
required: false
surgery:
name: surgery
description: Narrative description about surgery/surgeries, including date(s)
and who performed surgery.
multivalued: false
range: text
required: false
virus:
name: virus
description: Information about virus(es) used in experiments, including virus
ID, source, date made, injection location, volume, etc.
multivalued: false
range: text
required: false
lab_meta_data:
name: lab_meta_data
description: Place-holder than can be extended so that lab-specific meta-data
can be placed in /general.
multivalued: true
range: LabMetaData
required: false
devices:
name: devices
description: Description of hardware devices used during experiment, e.g.,
monitors, ADC boards, microscopes, etc.
multivalued: true
any_of:
- range: Device
subject:
name: subject
description: Information about the animal or person from which the data was
measured.
multivalued: false
range: Subject
required: false
extracellular_ephys:
name: extracellular_ephys
description: Metadata related to extracellular electrophysiology.
multivalued: false
range: NWBFile__general__extracellular_ephys
required: false
intracellular_ephys:
name: intracellular_ephys
description: Metadata related to intracellular electrophysiology.
multivalued: false
range: NWBFile__general__intracellular_ephys
required: false
optogenetics:
name: optogenetics
description: Metadata describing optogenetic stimuluation.
multivalued: true
any_of:
- range: OptogeneticStimulusSite
optophysiology:
name: optophysiology
description: Metadata related to optophysiology.
multivalued: true
any_of:
- range: ImagingPlane
NWBFile__general__source_script:
name: NWBFile__general__source_script
description: Script file or link to public source code used to create this NWB
file.
attributes:
name:
name: name
ifabsent: string(source_script)
range: string
required: true
equals_string: source_script
file_name:
name: file_name
description: Name of script file.
range: text
NWBFile__general__extracellular_ephys:
name: NWBFile__general__extracellular_ephys
description: Metadata related to extracellular electrophysiology.
attributes:
name:
name: name
ifabsent: string(extracellular_ephys)
range: string
required: true
equals_string: extracellular_ephys
electrode_group:
name: electrode_group
description: Physical group of electrodes.
multivalued: true
range: ElectrodeGroup
required: false
electrodes:
name: electrodes
description: A table of all electrodes (i.e. channels) used for recording.
multivalued: false
range: DynamicTable
required: false
NWBFile__general__intracellular_ephys:
name: NWBFile__general__intracellular_ephys
description: Metadata related to intracellular electrophysiology.
attributes:
name:
name: name
ifabsent: string(intracellular_ephys)
range: string
required: true
equals_string: intracellular_ephys
filtering:
name: filtering
description: '[DEPRECATED] Use IntracellularElectrode.filtering instead. Description
of filtering used. Includes filtering type and parameters, frequency fall-off,
etc. If this changes between TimeSeries, filter description should be stored
as a text attribute for each TimeSeries.'
multivalued: false
range: text
required: false
intracellular_electrode:
name: intracellular_electrode
description: An intracellular electrode.
multivalued: true
range: IntracellularElectrode
required: false
sweep_table:
name: sweep_table
description: '[DEPRECATED] Table used to group different PatchClampSeries.
SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable
tables. Additional SequentialRecordingsTable, RepetitionsTable and ExperimentalConditions
tables provide enhanced support for experiment metadata.'
multivalued: false
range: SweepTable
required: false
intracellular_recordings:
name: intracellular_recordings
description: A table to group together a stimulus and response from a single
electrode and a single simultaneous recording. Each row in the table represents
a single recording consisting typically of a stimulus and a corresponding
response. In some cases, however, only a stimulus or a response are recorded
as as part of an experiment. In this case both, the stimulus and response
will point to the same TimeSeries while the idx_start and count of the invalid
column will be set to -1, thus, indicating that no values have been recorded
for the stimulus or response, respectively. Note, a recording MUST contain
at least a stimulus or a response. Typically the stimulus and response are
PatchClampSeries. However, the use of AD/DA channels that are not associated
to an electrode is also common in intracellular electrophysiology, in which
case other TimeSeries may be used.
multivalued: false
range: IntracellularRecordingsTable
required: false
simultaneous_recordings:
name: simultaneous_recordings
description: A table for grouping different intracellular recordings from
the IntracellularRecordingsTable table together that were recorded simultaneously
from different electrodes
multivalued: false
range: SimultaneousRecordingsTable
required: false
sequential_recordings:
name: sequential_recordings
description: A table for grouping different sequential recordings from the
SimultaneousRecordingsTable table together. This is typically used to group
together sequential recordings where the a sequence of stimuli of the same
type with varying parameters have been presented in a sequence.
multivalued: false
range: SequentialRecordingsTable
required: false
repetitions:
name: repetitions
description: A table for grouping different sequential intracellular recordings
together. With each SequentialRecording typically representing a particular
type of stimulus, the RepetitionsTable table is typically used to group
sets of stimuli applied in sequence.
multivalued: false
range: RepetitionsTable
required: false
experimental_conditions:
name: experimental_conditions
description: A table for grouping different intracellular recording repetitions
together that belong to the same experimental experimental_conditions.
multivalued: false
range: ExperimentalConditionsTable
required: false
NWBFile__intervals:
name: NWBFile__intervals
description: Experimental intervals, whether that be logically distinct sub-experiments
having a particular scientific goal, trials (see trials subgroup) during an
experiment, or epochs (see epochs subgroup) deriving from analysis of data.
attributes:
name:
name: name
ifabsent: string(intervals)
range: string
required: true
equals_string: intervals
epochs:
name: epochs
description: Divisions in time marking experimental stages or sub-divisions
of a single recording session.
multivalued: false
range: TimeIntervals
required: false
trials:
name: trials
description: Repeated experimental events that have a logical grouping.
multivalued: false
range: TimeIntervals
required: false
invalid_times:
name: invalid_times
description: Time intervals that should be removed from analysis.
multivalued: false
range: TimeIntervals
required: false
time_intervals:
name: time_intervals
description: Optional additional table(s) for describing other experimental
time intervals.
multivalued: true
range: TimeIntervals
required: false
Subject__age:
name: Subject__age
description: Age of subject. Can be supplied instead of 'date_of_birth'.
attributes:
name:
name: name
ifabsent: string(age)
range: string
required: true
equals_string: age
reference:
name: reference
description: Age is with reference to this event. Can be 'birth' or 'gestational'.
If reference is omitted, 'birth' is implied.
range: text

View file

@ -11,8 +11,6 @@ imports:
- core.nwb.epoch - core.nwb.epoch
- core.nwb.misc - core.nwb.misc
- nwb.language - nwb.language
- core.nwb.file.include
- core.nwb.file
default_prefix: core.nwb.file/ default_prefix: core.nwb.file/
classes: classes:
ScratchData: ScratchData:
@ -199,6 +197,377 @@ classes:
range: Units range: Units
required: false required: false
tree_root: true tree_root: true
NWBFile__stimulus:
name: NWBFile__stimulus
description: Data pushed into the system (eg, video stimulus, sound, voltage,
etc) and secondary representations of that data (eg, measurements of something
used as a stimulus). This group should be made read-only after experiment complete
and timestamps are corrected to common timebase. Stores both presented stimuli
and stimulus templates, the latter in case the same stimulus is presented multiple
times, or is pulled from an external stimulus library. Stimuli are here defined
as any signal that is pushed into the system as part of the experiment (eg,
sound, video, voltage, etc). Many different experiments can use the same stimuli,
and stimuli can be re-used during an experiment. The stimulus group is organized
so that one version of template stimuli can be stored and these be used multiple
times. These templates can exist in the present file or can be linked to a remote
library file.
attributes:
name:
name: name
ifabsent: string(stimulus)
range: string
required: true
equals_string: stimulus
presentation:
name: presentation
description: Stimuli presented during the experiment.
multivalued: true
any_of:
- range: TimeSeries
templates:
name: templates
description: Template stimuli. Timestamps in templates are based on stimulus
design and are relative to the beginning of the stimulus. When templates
are used, the stimulus instances must convert presentation times to the
experiment`s time reference frame.
multivalued: true
any_of:
- range: TimeSeries
- range: Images
NWBFile__general:
name: NWBFile__general
description: Experimental metadata, including protocol, notes and description
of hardware device(s). The metadata stored in this section should be used to
describe the experiment. Metadata necessary for interpreting the data is stored
with the data. General experimental metadata, including animal strain, experimental
protocols, experimenter, devices, etc, are stored under 'general'. Core metadata
(e.g., that required to interpret data fields) is stored with the data itself,
and implicitly defined by the file specification (e.g., time is in seconds).
The strategy used here for storing non-core metadata is to use free-form text
fields, such as would appear in sentences or paragraphs from a Methods section.
Metadata fields are text to enable them to be more general, for example to represent
ranges instead of numerical values. Machine-readable metadata is stored as attributes
to these free-form datasets. All entries in the below table are to be included
when data is present. Unused groups (e.g., intracellular_ephys in an optophysiology
experiment) should not be created unless there is data to store within them.
attributes:
name:
name: name
ifabsent: string(general)
range: string
required: true
equals_string: general
data_collection:
name: data_collection
description: Notes about data collection and analysis.
multivalued: false
range: text
required: false
experiment_description:
name: experiment_description
description: General description of the experiment.
multivalued: false
range: text
required: false
experimenter:
name: experimenter
description: Name of person(s) who performed the experiment. Can also specify
roles of different people involved.
multivalued: true
range: text
required: false
institution:
name: institution
description: Institution(s) where experiment was performed.
multivalued: false
range: text
required: false
keywords:
name: keywords
description: Terms to search over.
multivalued: true
range: text
required: false
lab:
name: lab
description: Laboratory where experiment was performed.
multivalued: false
range: text
required: false
notes:
name: notes
description: Notes about the experiment.
multivalued: false
range: text
required: false
pharmacology:
name: pharmacology
description: Description of drugs used, including how and when they were administered.
Anesthesia(s), painkiller(s), etc., plus dosage, concentration, etc.
multivalued: false
range: text
required: false
protocol:
name: protocol
description: Experimental protocol, if applicable. e.g., include IACUC protocol
number.
multivalued: false
range: text
required: false
related_publications:
name: related_publications
description: Publication information. PMID, DOI, URL, etc.
multivalued: true
range: text
required: false
session_id:
name: session_id
description: Lab-specific ID for the session.
multivalued: false
range: text
required: false
slices:
name: slices
description: Description of slices, including information about preparation
thickness, orientation, temperature, and bath solution.
multivalued: false
range: text
required: false
source_script:
name: source_script
description: Script file or link to public source code used to create this
NWB file.
multivalued: false
range: NWBFile__general__source_script
required: false
stimulus:
name: stimulus
description: Notes about stimuli, such as how and where they were presented.
multivalued: false
range: text
required: false
surgery:
name: surgery
description: Narrative description about surgery/surgeries, including date(s)
and who performed surgery.
multivalued: false
range: text
required: false
virus:
name: virus
description: Information about virus(es) used in experiments, including virus
ID, source, date made, injection location, volume, etc.
multivalued: false
range: text
required: false
lab_meta_data:
name: lab_meta_data
description: Place-holder than can be extended so that lab-specific meta-data
can be placed in /general.
multivalued: true
range: LabMetaData
required: false
devices:
name: devices
description: Description of hardware devices used during experiment, e.g.,
monitors, ADC boards, microscopes, etc.
multivalued: true
any_of:
- range: Device
subject:
name: subject
description: Information about the animal or person from which the data was
measured.
multivalued: false
range: Subject
required: false
extracellular_ephys:
name: extracellular_ephys
description: Metadata related to extracellular electrophysiology.
multivalued: false
range: NWBFile__general__extracellular_ephys
required: false
intracellular_ephys:
name: intracellular_ephys
description: Metadata related to intracellular electrophysiology.
multivalued: false
range: NWBFile__general__intracellular_ephys
required: false
optogenetics:
name: optogenetics
description: Metadata describing optogenetic stimuluation.
multivalued: true
any_of:
- range: OptogeneticStimulusSite
optophysiology:
name: optophysiology
description: Metadata related to optophysiology.
multivalued: true
any_of:
- range: ImagingPlane
NWBFile__general__source_script:
name: NWBFile__general__source_script
description: Script file or link to public source code used to create this NWB
file.
attributes:
name:
name: name
ifabsent: string(source_script)
range: string
required: true
equals_string: source_script
file_name:
name: file_name
description: Name of script file.
range: text
value:
name: value
range: text
required: true
NWBFile__general__extracellular_ephys:
name: NWBFile__general__extracellular_ephys
description: Metadata related to extracellular electrophysiology.
attributes:
name:
name: name
ifabsent: string(extracellular_ephys)
range: string
required: true
equals_string: extracellular_ephys
electrode_group:
name: electrode_group
description: Physical group of electrodes.
multivalued: true
range: ElectrodeGroup
required: false
electrodes:
name: electrodes
description: A table of all electrodes (i.e. channels) used for recording.
multivalued: false
range: DynamicTable
required: false
NWBFile__general__intracellular_ephys:
name: NWBFile__general__intracellular_ephys
description: Metadata related to intracellular electrophysiology.
attributes:
name:
name: name
ifabsent: string(intracellular_ephys)
range: string
required: true
equals_string: intracellular_ephys
filtering:
name: filtering
description: '[DEPRECATED] Use IntracellularElectrode.filtering instead. Description
of filtering used. Includes filtering type and parameters, frequency fall-off,
etc. If this changes between TimeSeries, filter description should be stored
as a text attribute for each TimeSeries.'
multivalued: false
range: text
required: false
intracellular_electrode:
name: intracellular_electrode
description: An intracellular electrode.
multivalued: true
range: IntracellularElectrode
required: false
sweep_table:
name: sweep_table
description: '[DEPRECATED] Table used to group different PatchClampSeries.
SweepTable is being replaced by IntracellularRecordingsTable and SimultaneousRecordingsTable
tables. Additional SequentialRecordingsTable, RepetitionsTable and ExperimentalConditions
tables provide enhanced support for experiment metadata.'
multivalued: false
range: SweepTable
required: false
intracellular_recordings:
name: intracellular_recordings
description: A table to group together a stimulus and response from a single
electrode and a single simultaneous recording. Each row in the table represents
a single recording consisting typically of a stimulus and a corresponding
response. In some cases, however, only a stimulus or a response are recorded
as as part of an experiment. In this case both, the stimulus and response
will point to the same TimeSeries while the idx_start and count of the invalid
column will be set to -1, thus, indicating that no values have been recorded
for the stimulus or response, respectively. Note, a recording MUST contain
at least a stimulus or a response. Typically the stimulus and response are
PatchClampSeries. However, the use of AD/DA channels that are not associated
to an electrode is also common in intracellular electrophysiology, in which
case other TimeSeries may be used.
multivalued: false
range: IntracellularRecordingsTable
required: false
simultaneous_recordings:
name: simultaneous_recordings
description: A table for grouping different intracellular recordings from
the IntracellularRecordingsTable table together that were recorded simultaneously
from different electrodes
multivalued: false
range: SimultaneousRecordingsTable
required: false
sequential_recordings:
name: sequential_recordings
description: A table for grouping different sequential recordings from the
SimultaneousRecordingsTable table together. This is typically used to group
together sequential recordings where the a sequence of stimuli of the same
type with varying parameters have been presented in a sequence.
multivalued: false
range: SequentialRecordingsTable
required: false
repetitions:
name: repetitions
description: A table for grouping different sequential intracellular recordings
together. With each SequentialRecording typically representing a particular
type of stimulus, the RepetitionsTable table is typically used to group
sets of stimuli applied in sequence.
multivalued: false
range: RepetitionsTable
required: false
experimental_conditions:
name: experimental_conditions
description: A table for grouping different intracellular recording repetitions
together that belong to the same experimental experimental_conditions.
multivalued: false
range: ExperimentalConditionsTable
required: false
NWBFile__intervals:
name: NWBFile__intervals
description: Experimental intervals, whether that be logically distinct sub-experiments
having a particular scientific goal, trials (see trials subgroup) during an
experiment, or epochs (see epochs subgroup) deriving from analysis of data.
attributes:
name:
name: name
ifabsent: string(intervals)
range: string
required: true
equals_string: intervals
epochs:
name: epochs
description: Divisions in time marking experimental stages or sub-divisions
of a single recording session.
multivalued: false
range: TimeIntervals
required: false
trials:
name: trials
description: Repeated experimental events that have a logical grouping.
multivalued: false
range: TimeIntervals
required: false
invalid_times:
name: invalid_times
description: Time intervals that should be removed from analysis.
multivalued: false
range: TimeIntervals
required: false
time_intervals:
name: time_intervals
description: Optional additional table(s) for describing other experimental
time intervals.
multivalued: true
range: TimeIntervals
required: false
LabMetaData: LabMetaData:
name: LabMetaData name: LabMetaData
description: Lab-specific meta-data. description: Lab-specific meta-data.
@ -275,3 +644,22 @@ classes:
range: text range: text
required: false required: false
tree_root: true tree_root: true
Subject__age:
name: Subject__age
description: Age of subject. Can be supplied instead of 'date_of_birth'.
attributes:
name:
name: name
ifabsent: string(age)
range: string
required: true
equals_string: age
reference:
name: reference
description: Age is with reference to this event. Can be 'birth' or 'gestational'.
If reference is omitted, 'birth' is implied.
range: text
value:
name: value
range: text
required: true

View file

@ -1,332 +0,0 @@
name: core.nwb.icephys.include
id: core.nwb.icephys.include
imports:
- core.nwb.base
- core.nwb.device
- hdmf-common.table
- nwb.language
- core.nwb.icephys.include
- core.nwb.icephys
default_prefix: core.nwb.icephys.include/
classes:
CurrentClampSeries__data:
name: CurrentClampSeries__data
description: Recorded voltage.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'volts'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
CurrentClampStimulusSeries__data:
name: CurrentClampStimulusSeries__data
description: Stimulus current applied.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'amperes'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
VoltageClampSeries__data:
name: VoltageClampSeries__data
description: Recorded current.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'amperes'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
VoltageClampSeries__capacitance_fast:
name: VoltageClampSeries__capacitance_fast
description: Fast capacitance, in farads.
attributes:
name:
name: name
ifabsent: string(capacitance_fast)
range: string
required: true
equals_string: capacitance_fast
unit:
name: unit
description: Unit of measurement for capacitance_fast, which is fixed to 'farads'.
range: text
VoltageClampSeries__capacitance_slow:
name: VoltageClampSeries__capacitance_slow
description: Slow capacitance, in farads.
attributes:
name:
name: name
ifabsent: string(capacitance_slow)
range: string
required: true
equals_string: capacitance_slow
unit:
name: unit
description: Unit of measurement for capacitance_fast, which is fixed to 'farads'.
range: text
VoltageClampSeries__resistance_comp_bandwidth:
name: VoltageClampSeries__resistance_comp_bandwidth
description: Resistance compensation bandwidth, in hertz.
attributes:
name:
name: name
ifabsent: string(resistance_comp_bandwidth)
range: string
required: true
equals_string: resistance_comp_bandwidth
unit:
name: unit
description: Unit of measurement for resistance_comp_bandwidth, which is fixed
to 'hertz'.
range: text
VoltageClampSeries__resistance_comp_correction:
name: VoltageClampSeries__resistance_comp_correction
description: Resistance compensation correction, in percent.
attributes:
name:
name: name
ifabsent: string(resistance_comp_correction)
range: string
required: true
equals_string: resistance_comp_correction
unit:
name: unit
description: Unit of measurement for resistance_comp_correction, which is
fixed to 'percent'.
range: text
VoltageClampSeries__resistance_comp_prediction:
name: VoltageClampSeries__resistance_comp_prediction
description: Resistance compensation prediction, in percent.
attributes:
name:
name: name
ifabsent: string(resistance_comp_prediction)
range: string
required: true
equals_string: resistance_comp_prediction
unit:
name: unit
description: Unit of measurement for resistance_comp_prediction, which is
fixed to 'percent'.
range: text
VoltageClampSeries__whole_cell_capacitance_comp:
name: VoltageClampSeries__whole_cell_capacitance_comp
description: Whole cell capacitance compensation, in farads.
attributes:
name:
name: name
ifabsent: string(whole_cell_capacitance_comp)
range: string
required: true
equals_string: whole_cell_capacitance_comp
unit:
name: unit
description: Unit of measurement for whole_cell_capacitance_comp, which is
fixed to 'farads'.
range: text
VoltageClampSeries__whole_cell_series_resistance_comp:
name: VoltageClampSeries__whole_cell_series_resistance_comp
description: Whole cell series resistance compensation, in ohms.
attributes:
name:
name: name
ifabsent: string(whole_cell_series_resistance_comp)
range: string
required: true
equals_string: whole_cell_series_resistance_comp
unit:
name: unit
description: Unit of measurement for whole_cell_series_resistance_comp, which
is fixed to 'ohms'.
range: text
VoltageClampStimulusSeries__data:
name: VoltageClampStimulusSeries__data
description: Stimulus voltage applied.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'volts'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
SweepTable__series_index:
name: SweepTable__series_index
description: Index for series.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(series_index)
range: string
required: true
equals_string: series_index
IntracellularStimuliTable__stimulus:
name: IntracellularStimuliTable__stimulus
description: Column storing the reference to the recorded stimulus for the recording
(rows).
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(stimulus)
range: string
required: true
equals_string: stimulus
IntracellularResponsesTable__response:
name: IntracellularResponsesTable__response
description: Column storing the reference to the recorded response for the recording
(rows)
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(response)
range: string
required: true
equals_string: response
SimultaneousRecordingsTable__recordings:
name: SimultaneousRecordingsTable__recordings
description: A reference to one or more rows in the IntracellularRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(recordings)
range: string
required: true
equals_string: recordings
table:
name: table
description: Reference to the IntracellularRecordingsTable table that this
table region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: IntracellularRecordingsTable
SimultaneousRecordingsTable__recordings_index:
name: SimultaneousRecordingsTable__recordings_index
description: Index dataset for the recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(recordings_index)
range: string
required: true
equals_string: recordings_index
SequentialRecordingsTable__simultaneous_recordings:
name: SequentialRecordingsTable__simultaneous_recordings
description: A reference to one or more rows in the SimultaneousRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(simultaneous_recordings)
range: string
required: true
equals_string: simultaneous_recordings
table:
name: table
description: Reference to the SimultaneousRecordingsTable table that this
table region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: SimultaneousRecordingsTable
SequentialRecordingsTable__simultaneous_recordings_index:
name: SequentialRecordingsTable__simultaneous_recordings_index
description: Index dataset for the simultaneous_recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(simultaneous_recordings_index)
range: string
required: true
equals_string: simultaneous_recordings_index
RepetitionsTable__sequential_recordings:
name: RepetitionsTable__sequential_recordings
description: A reference to one or more rows in the SequentialRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(sequential_recordings)
range: string
required: true
equals_string: sequential_recordings
table:
name: table
description: Reference to the SequentialRecordingsTable table that this table
region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: SequentialRecordingsTable
RepetitionsTable__sequential_recordings_index:
name: RepetitionsTable__sequential_recordings_index
description: Index dataset for the sequential_recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(sequential_recordings_index)
range: string
required: true
equals_string: sequential_recordings_index
ExperimentalConditionsTable__repetitions:
name: ExperimentalConditionsTable__repetitions
description: A reference to one or more rows in the RepetitionsTable table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(repetitions)
range: string
required: true
equals_string: repetitions
table:
name: table
description: Reference to the RepetitionsTable table that this table region
applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: RepetitionsTable
ExperimentalConditionsTable__repetitions_index:
name: ExperimentalConditionsTable__repetitions_index
description: Index dataset for the repetitions column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(repetitions_index)
range: string
required: true
equals_string: repetitions_index

View file

@ -5,8 +5,6 @@ imports:
- core.nwb.device - core.nwb.device
- hdmf-common.table - hdmf-common.table
- nwb.language - nwb.language
- core.nwb.icephys.include
- core.nwb.icephys
default_prefix: core.nwb.icephys/ default_prefix: core.nwb.icephys/
classes: classes:
PatchClampSeries: PatchClampSeries:
@ -77,6 +75,27 @@ classes:
range: float32 range: float32
required: false required: false
tree_root: true tree_root: true
CurrentClampSeries__data:
name: CurrentClampSeries__data
description: Recorded voltage.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'volts'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
value:
name: value
range: AnyType
required: true
IZeroClampSeries: IZeroClampSeries:
name: IZeroClampSeries name: IZeroClampSeries
description: Voltage data from an intracellular recording when all current and description: Voltage data from an intracellular recording when all current and
@ -129,6 +148,27 @@ classes:
range: CurrentClampStimulusSeries__data range: CurrentClampStimulusSeries__data
required: true required: true
tree_root: true tree_root: true
CurrentClampStimulusSeries__data:
name: CurrentClampStimulusSeries__data
description: Stimulus current applied.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'amperes'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
value:
name: value
range: AnyType
required: true
VoltageClampSeries: VoltageClampSeries:
name: VoltageClampSeries name: VoltageClampSeries
description: Current data from an intracellular voltage-clamp recording. A corresponding description: Current data from an intracellular voltage-clamp recording. A corresponding
@ -189,6 +229,158 @@ classes:
range: VoltageClampSeries__whole_cell_series_resistance_comp range: VoltageClampSeries__whole_cell_series_resistance_comp
required: false required: false
tree_root: true tree_root: true
VoltageClampSeries__data:
name: VoltageClampSeries__data
description: Recorded current.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'amperes'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
value:
name: value
range: AnyType
required: true
VoltageClampSeries__capacitance_fast:
name: VoltageClampSeries__capacitance_fast
description: Fast capacitance, in farads.
attributes:
name:
name: name
ifabsent: string(capacitance_fast)
range: string
required: true
equals_string: capacitance_fast
unit:
name: unit
description: Unit of measurement for capacitance_fast, which is fixed to 'farads'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__capacitance_slow:
name: VoltageClampSeries__capacitance_slow
description: Slow capacitance, in farads.
attributes:
name:
name: name
ifabsent: string(capacitance_slow)
range: string
required: true
equals_string: capacitance_slow
unit:
name: unit
description: Unit of measurement for capacitance_fast, which is fixed to 'farads'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__resistance_comp_bandwidth:
name: VoltageClampSeries__resistance_comp_bandwidth
description: Resistance compensation bandwidth, in hertz.
attributes:
name:
name: name
ifabsent: string(resistance_comp_bandwidth)
range: string
required: true
equals_string: resistance_comp_bandwidth
unit:
name: unit
description: Unit of measurement for resistance_comp_bandwidth, which is fixed
to 'hertz'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__resistance_comp_correction:
name: VoltageClampSeries__resistance_comp_correction
description: Resistance compensation correction, in percent.
attributes:
name:
name: name
ifabsent: string(resistance_comp_correction)
range: string
required: true
equals_string: resistance_comp_correction
unit:
name: unit
description: Unit of measurement for resistance_comp_correction, which is
fixed to 'percent'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__resistance_comp_prediction:
name: VoltageClampSeries__resistance_comp_prediction
description: Resistance compensation prediction, in percent.
attributes:
name:
name: name
ifabsent: string(resistance_comp_prediction)
range: string
required: true
equals_string: resistance_comp_prediction
unit:
name: unit
description: Unit of measurement for resistance_comp_prediction, which is
fixed to 'percent'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__whole_cell_capacitance_comp:
name: VoltageClampSeries__whole_cell_capacitance_comp
description: Whole cell capacitance compensation, in farads.
attributes:
name:
name: name
ifabsent: string(whole_cell_capacitance_comp)
range: string
required: true
equals_string: whole_cell_capacitance_comp
unit:
name: unit
description: Unit of measurement for whole_cell_capacitance_comp, which is
fixed to 'farads'.
range: text
value:
name: value
range: float32
required: true
VoltageClampSeries__whole_cell_series_resistance_comp:
name: VoltageClampSeries__whole_cell_series_resistance_comp
description: Whole cell series resistance compensation, in ohms.
attributes:
name:
name: name
ifabsent: string(whole_cell_series_resistance_comp)
range: string
required: true
equals_string: whole_cell_series_resistance_comp
unit:
name: unit
description: Unit of measurement for whole_cell_series_resistance_comp, which
is fixed to 'ohms'.
range: text
value:
name: value
range: float32
required: true
VoltageClampStimulusSeries: VoltageClampStimulusSeries:
name: VoltageClampStimulusSeries name: VoltageClampStimulusSeries
description: Stimulus voltage applied during a voltage clamp recording. description: Stimulus voltage applied during a voltage clamp recording.
@ -205,6 +397,27 @@ classes:
range: VoltageClampStimulusSeries__data range: VoltageClampStimulusSeries__data
required: true required: true
tree_root: true tree_root: true
VoltageClampStimulusSeries__data:
name: VoltageClampStimulusSeries__data
description: Stimulus voltage applied.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. which is
fixed to 'volts'. Actual stored values are not necessarily stored in these
units. To access the data in these units, multiply 'data' by 'conversion'
and add 'offset'.
range: text
value:
name: value
range: AnyType
required: true
IntracellularElectrode: IntracellularElectrode:
name: IntracellularElectrode name: IntracellularElectrode
description: An intracellular electrode and its metadata. description: An intracellular electrode and its metadata.
@ -294,6 +507,17 @@ classes:
range: SweepTable__series_index range: SweepTable__series_index
required: true required: true
tree_root: true tree_root: true
SweepTable__series_index:
name: SweepTable__series_index
description: Index for series.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(series_index)
range: string
required: true
equals_string: series_index
IntracellularElectrodesTable: IntracellularElectrodesTable:
name: IntracellularElectrodesTable name: IntracellularElectrodesTable
description: Table for storing intracellular electrode related metadata. description: Table for storing intracellular electrode related metadata.
@ -334,6 +558,18 @@ classes:
range: IntracellularStimuliTable__stimulus range: IntracellularStimuliTable__stimulus
required: true required: true
tree_root: true tree_root: true
IntracellularStimuliTable__stimulus:
name: IntracellularStimuliTable__stimulus
description: Column storing the reference to the recorded stimulus for the recording
(rows).
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(stimulus)
range: string
required: true
equals_string: stimulus
IntracellularResponsesTable: IntracellularResponsesTable:
name: IntracellularResponsesTable name: IntracellularResponsesTable
description: Table for storing intracellular response related metadata. description: Table for storing intracellular response related metadata.
@ -355,6 +591,18 @@ classes:
range: IntracellularResponsesTable__response range: IntracellularResponsesTable__response
required: true required: true
tree_root: true tree_root: true
IntracellularResponsesTable__response:
name: IntracellularResponsesTable__response
description: Column storing the reference to the recorded response for the recording
(rows)
is_a: TimeSeriesReferenceVectorData
attributes:
name:
name: name
ifabsent: string(response)
range: string
required: true
equals_string: response
IntracellularRecordingsTable: IntracellularRecordingsTable:
name: IntracellularRecordingsTable name: IntracellularRecordingsTable
description: A table to group together a stimulus and response from a single electrode description: A table to group together a stimulus and response from a single electrode
@ -427,6 +675,35 @@ classes:
range: SimultaneousRecordingsTable__recordings_index range: SimultaneousRecordingsTable__recordings_index
required: true required: true
tree_root: true tree_root: true
SimultaneousRecordingsTable__recordings:
name: SimultaneousRecordingsTable__recordings
description: A reference to one or more rows in the IntracellularRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(recordings)
range: string
required: true
equals_string: recordings
table:
name: table
description: Reference to the IntracellularRecordingsTable table that this
table region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: IntracellularRecordingsTable
SimultaneousRecordingsTable__recordings_index:
name: SimultaneousRecordingsTable__recordings_index
description: Index dataset for the recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(recordings_index)
range: string
required: true
equals_string: recordings_index
SequentialRecordingsTable: SequentialRecordingsTable:
name: SequentialRecordingsTable name: SequentialRecordingsTable
description: A table for grouping different sequential recordings from the SimultaneousRecordingsTable description: A table for grouping different sequential recordings from the SimultaneousRecordingsTable
@ -460,6 +737,35 @@ classes:
multivalued: true multivalued: true
range: text range: text
tree_root: true tree_root: true
SequentialRecordingsTable__simultaneous_recordings:
name: SequentialRecordingsTable__simultaneous_recordings
description: A reference to one or more rows in the SimultaneousRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(simultaneous_recordings)
range: string
required: true
equals_string: simultaneous_recordings
table:
name: table
description: Reference to the SimultaneousRecordingsTable table that this
table region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: SimultaneousRecordingsTable
SequentialRecordingsTable__simultaneous_recordings_index:
name: SequentialRecordingsTable__simultaneous_recordings_index
description: Index dataset for the simultaneous_recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(simultaneous_recordings_index)
range: string
required: true
equals_string: simultaneous_recordings_index
RepetitionsTable: RepetitionsTable:
name: RepetitionsTable name: RepetitionsTable
description: A table for grouping different sequential intracellular recordings description: A table for grouping different sequential intracellular recordings
@ -488,6 +794,35 @@ classes:
range: RepetitionsTable__sequential_recordings_index range: RepetitionsTable__sequential_recordings_index
required: true required: true
tree_root: true tree_root: true
RepetitionsTable__sequential_recordings:
name: RepetitionsTable__sequential_recordings
description: A reference to one or more rows in the SequentialRecordingsTable
table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(sequential_recordings)
range: string
required: true
equals_string: sequential_recordings
table:
name: table
description: Reference to the SequentialRecordingsTable table that this table
region applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: SequentialRecordingsTable
RepetitionsTable__sequential_recordings_index:
name: RepetitionsTable__sequential_recordings_index
description: Index dataset for the sequential_recordings column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(sequential_recordings_index)
range: string
required: true
equals_string: sequential_recordings_index
ExperimentalConditionsTable: ExperimentalConditionsTable:
name: ExperimentalConditionsTable name: ExperimentalConditionsTable
description: A table for grouping different intracellular recording repetitions description: A table for grouping different intracellular recording repetitions
@ -513,3 +848,31 @@ classes:
range: ExperimentalConditionsTable__repetitions_index range: ExperimentalConditionsTable__repetitions_index
required: true required: true
tree_root: true tree_root: true
ExperimentalConditionsTable__repetitions:
name: ExperimentalConditionsTable__repetitions
description: A reference to one or more rows in the RepetitionsTable table.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(repetitions)
range: string
required: true
equals_string: repetitions
table:
name: table
description: Reference to the RepetitionsTable table that this table region
applies to. This specializes the attribute inherited from DynamicTableRegion
to fix the type of table that can be referenced here.
range: RepetitionsTable
ExperimentalConditionsTable__repetitions_index:
name: ExperimentalConditionsTable__repetitions_index
description: Index dataset for the repetitions column.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(repetitions_index)
range: string
required: true
equals_string: repetitions_index

View file

@ -1,156 +0,0 @@
name: core.nwb.image.include
id: core.nwb.image.include
imports:
- core.nwb.base
- core.nwb.device
- nwb.language
- core.nwb.image.include
- core.nwb.image
default_prefix: core.nwb.image.include/
classes:
GrayscaleImage__Array:
name: GrayscaleImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
RGBImage__Array:
name: RGBImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: true
minimum_cardinality: 3
maximum_cardinality: 3
RGBAImage__Array:
name: RGBAImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b, a:
name: r, g, b, a
range: numeric
required: true
minimum_cardinality: 4
maximum_cardinality: 4
ImageSeries__data:
name: ImageSeries__data
description: Binary data representing images across frames. If data are stored
in an external file, this should be an empty 3D array.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: ImageSeries__data__Array
ImageSeries__data__Array:
name: ImageSeries__data__Array
is_a: Arraylike
attributes:
frame:
name: frame
range: numeric
required: true
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
z:
name: z
range: numeric
required: false
OpticalSeries__field_of_view:
name: OpticalSeries__field_of_view
description: Width, height and depth of image, or imaged area, in meters.
attributes:
name:
name: name
ifabsent: string(field_of_view)
range: string
required: true
equals_string: field_of_view
array:
name: array
range: OpticalSeries__field_of_view__Array
OpticalSeries__field_of_view__Array:
name: OpticalSeries__field_of_view__Array
is_a: Arraylike
attributes:
width, height:
name: width, height
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
width, height, depth:
name: width, height, depth
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
OpticalSeries__data:
name: OpticalSeries__data
description: Images presented to subject, either grayscale or RGB
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: OpticalSeries__data__Array
OpticalSeries__data__Array:
name: OpticalSeries__data__Array
is_a: Arraylike
attributes:
frame:
name: frame
range: numeric
required: true
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3

View file

@ -4,8 +4,6 @@ imports:
- core.nwb.base - core.nwb.base
- core.nwb.device - core.nwb.device
- nwb.language - nwb.language
- core.nwb.image.include
- core.nwb.image
default_prefix: core.nwb.image/ default_prefix: core.nwb.image/
classes: classes:
GrayscaleImage: GrayscaleImage:
@ -21,6 +19,18 @@ classes:
name: array name: array
range: GrayscaleImage__Array range: GrayscaleImage__Array
tree_root: true tree_root: true
GrayscaleImage__Array:
name: GrayscaleImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
RGBImage: RGBImage:
name: RGBImage name: RGBImage
description: A color image. description: A color image.
@ -34,6 +44,24 @@ classes:
name: array name: array
range: RGBImage__Array range: RGBImage__Array
tree_root: true tree_root: true
RGBImage__Array:
name: RGBImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: true
minimum_cardinality: 3
maximum_cardinality: 3
RGBAImage: RGBAImage:
name: RGBAImage name: RGBAImage
description: A color image with transparency. description: A color image with transparency.
@ -47,6 +75,24 @@ classes:
name: array name: array
range: RGBAImage__Array range: RGBAImage__Array
tree_root: true tree_root: true
RGBAImage__Array:
name: RGBAImage__Array
is_a: Arraylike
attributes:
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b, a:
name: r, g, b, a
range: numeric
required: true
minimum_cardinality: 4
maximum_cardinality: 4
ImageSeries: ImageSeries:
name: ImageSeries name: ImageSeries
description: General image data that is common between acquisition and stimulus description: General image data that is common between acquisition and stimulus
@ -94,6 +140,40 @@ classes:
range: text range: text
required: false required: false
tree_root: true tree_root: true
ImageSeries__data:
name: ImageSeries__data
description: Binary data representing images across frames. If data are stored
in an external file, this should be an empty 3D array.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: ImageSeries__data__Array
ImageSeries__data__Array:
name: ImageSeries__data__Array
is_a: Arraylike
attributes:
frame:
name: frame
range: numeric
required: true
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
z:
name: z
range: numeric
required: false
ImageMaskSeries: ImageMaskSeries:
name: ImageMaskSeries name: ImageMaskSeries
description: An alpha mask that is applied to a presented visual stimulus. The description: An alpha mask that is applied to a presented visual stimulus. The
@ -147,6 +227,70 @@ classes:
range: text range: text
required: false required: false
tree_root: true tree_root: true
OpticalSeries__field_of_view:
name: OpticalSeries__field_of_view
description: Width, height and depth of image, or imaged area, in meters.
attributes:
name:
name: name
ifabsent: string(field_of_view)
range: string
required: true
equals_string: field_of_view
array:
name: array
range: OpticalSeries__field_of_view__Array
OpticalSeries__field_of_view__Array:
name: OpticalSeries__field_of_view__Array
is_a: Arraylike
attributes:
width, height:
name: width, height
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
width, height, depth:
name: width, height, depth
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
OpticalSeries__data:
name: OpticalSeries__data
description: Images presented to subject, either grayscale or RGB
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: OpticalSeries__data__Array
OpticalSeries__data__Array:
name: OpticalSeries__data__Array
is_a: Arraylike
attributes:
frame:
name: frame
range: numeric
required: true
x:
name: x
range: numeric
required: true
y:
name: y
range: numeric
required: true
r, g, b:
name: r, g, b
range: numeric
required: false
minimum_cardinality: 3
maximum_cardinality: 3
IndexSeries: IndexSeries:
name: IndexSeries name: IndexSeries
description: Stores indices to image frames stored in an ImageSeries. The purpose description: Stores indices to image frames stored in an ImageSeries. The purpose

View file

@ -1,266 +0,0 @@
name: core.nwb.misc.include
id: core.nwb.misc.include
imports:
- core.nwb.base
- hdmf-common.table
- core.nwb.ecephys
- nwb.language
- core.nwb.misc.include
- core.nwb.misc
default_prefix: core.nwb.misc.include/
classes:
AbstractFeatureSeries__data:
name: AbstractFeatureSeries__data
description: Values of each feature at each time.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Since there can be different units for different features, store
the units in 'feature_units'. The default value for this attribute is "see
'feature_units'".
range: text
array:
name: array
range: AbstractFeatureSeries__data__Array
AbstractFeatureSeries__data__Array:
name: AbstractFeatureSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_features:
name: num_features
range: numeric
required: false
DecompositionSeries__data:
name: DecompositionSeries__data
description: Data decomposed into frequency bands.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. Actual stored
values are not necessarily stored in these units. To access the data in
these units, multiply 'data' by 'conversion'.
range: text
array:
name: array
range: DecompositionSeries__data__Array
DecompositionSeries__data__Array:
name: DecompositionSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: true
num_bands:
name: num_bands
range: numeric
required: true
DecompositionSeries__source_channels:
name: DecompositionSeries__source_channels
description: DynamicTableRegion pointer to the channels that this decomposition
series was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(source_channels)
range: string
required: true
equals_string: source_channels
Units__spike_times_index:
name: Units__spike_times_index
description: Index into the spike_times dataset.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(spike_times_index)
range: string
required: true
equals_string: spike_times_index
Units__spike_times:
name: Units__spike_times
description: Spike times for each unit in seconds.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(spike_times)
range: string
required: true
equals_string: spike_times
resolution:
name: resolution
description: The smallest possible difference between two spike times. Usually
1 divided by the acquisition sampling rate from which spike times were extracted,
but could be larger if the acquisition time series was downsampled or smaller
if the acquisition time series was smoothed/interpolated and it is possible
for the spike time to be between samples.
range: float64
Units__obs_intervals_index:
name: Units__obs_intervals_index
description: Index into the obs_intervals dataset.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(obs_intervals_index)
range: string
required: true
equals_string: obs_intervals_index
Units__obs_intervals:
name: Units__obs_intervals
description: Observation intervals for each unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(obs_intervals)
range: string
required: true
equals_string: obs_intervals
Units__electrodes_index:
name: Units__electrodes_index
description: Index into electrodes.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(electrodes_index)
range: string
required: true
equals_string: electrodes_index
Units__electrodes:
name: Units__electrodes
description: Electrode that each spike unit came from, specified using a DynamicTableRegion.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
Units__waveform_mean:
name: Units__waveform_mean
description: Spike waveform mean for each spike unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveform_mean)
range: string
required: true
equals_string: waveform_mean
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveform_sd:
name: Units__waveform_sd
description: Spike waveform standard deviation for each spike unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveform_sd)
range: string
required: true
equals_string: waveform_sd
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveforms:
name: Units__waveforms
description: Individual waveforms for each spike on each electrode. This is a
doubly indexed column. The 'waveforms_index' column indexes which waveforms
in this column belong to the same spike event for a given unit, where each waveform
was recorded from a different electrode. The 'waveforms_index_index' column
indexes the 'waveforms_index' column to indicate which spike events belong to
a given unit. For example, if the 'waveforms_index_index' column has values
[2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond
to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index'
column correspond to the 3 spike events of the second unit, and the next 1 element
of the 'waveforms_index' column corresponds to the 1 spike event of the third
unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then
the first 3 elements of the 'waveforms' column contain the 3 spike waveforms
that were recorded from 3 different electrodes for the first spike time of the
first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays
for a graphical representation of this example. When there is only one electrode
for each unit (i.e., each spike time is associated with a single waveform),
then the 'waveforms_index' column will have values 1, 2, ..., N, where N is
the number of spike events. The number of electrodes for each spike event should
be the same within a given unit. The 'electrodes' column should be used to indicate
which electrodes are associated with each unit, and the order of the waveforms
within a given unit x spike event should be in the same order as the electrodes
referenced in the 'electrodes' column of this table. The number of samples for
each waveform must be the same.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveforms)
range: string
required: true
equals_string: waveforms
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveforms_index:
name: Units__waveforms_index
description: Index into the waveforms dataset. One value for every spike event.
See 'waveforms' for more detail.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(waveforms_index)
range: string
required: true
equals_string: waveforms_index
Units__waveforms_index_index:
name: Units__waveforms_index_index
description: Index into the waveforms_index dataset. One value for every unit
(row in the table). See 'waveforms' for more detail.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(waveforms_index_index)
range: string
required: true
equals_string: waveforms_index_index

View file

@ -5,8 +5,6 @@ imports:
- hdmf-common.table - hdmf-common.table
- core.nwb.ecephys - core.nwb.ecephys
- nwb.language - nwb.language
- core.nwb.misc.include
- core.nwb.misc
default_prefix: core.nwb.misc/ default_prefix: core.nwb.misc/
classes: classes:
AbstractFeatureSeries: AbstractFeatureSeries:
@ -45,6 +43,37 @@ classes:
range: text range: text
required: true required: true
tree_root: true tree_root: true
AbstractFeatureSeries__data:
name: AbstractFeatureSeries__data
description: Values of each feature at each time.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Since there can be different units for different features, store
the units in 'feature_units'. The default value for this attribute is "see
'feature_units'".
range: text
array:
name: array
range: AbstractFeatureSeries__data__Array
AbstractFeatureSeries__data__Array:
name: AbstractFeatureSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_features:
name: num_features
range: numeric
required: false
AnnotationSeries: AnnotationSeries:
name: AnnotationSeries name: AnnotationSeries
description: Stores user annotations made during an experiment. The data[] field description: Stores user annotations made during an experiment. The data[] field
@ -122,6 +151,53 @@ classes:
range: DynamicTable range: DynamicTable
required: true required: true
tree_root: true tree_root: true
DecompositionSeries__data:
name: DecompositionSeries__data
description: Data decomposed into frequency bands.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
unit:
name: unit
description: Base unit of measurement for working with the data. Actual stored
values are not necessarily stored in these units. To access the data in
these units, multiply 'data' by 'conversion'.
range: text
array:
name: array
range: DecompositionSeries__data__Array
DecompositionSeries__data__Array:
name: DecompositionSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_channels:
name: num_channels
range: numeric
required: true
num_bands:
name: num_bands
range: numeric
required: true
DecompositionSeries__source_channels:
name: DecompositionSeries__source_channels
description: DynamicTableRegion pointer to the channels that this decomposition
series was generated from.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(source_channels)
range: string
required: true
equals_string: source_channels
Units: Units:
name: Units name: Units
description: Data about spiking units. Event times of observed units (e.g. cell, description: Data about spiking units. Event times of observed units (e.g. cell,
@ -228,3 +304,180 @@ classes:
range: Units__waveforms_index_index range: Units__waveforms_index_index
required: false required: false
tree_root: true tree_root: true
Units__spike_times_index:
name: Units__spike_times_index
description: Index into the spike_times dataset.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(spike_times_index)
range: string
required: true
equals_string: spike_times_index
Units__spike_times:
name: Units__spike_times
description: Spike times for each unit in seconds.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(spike_times)
range: string
required: true
equals_string: spike_times
resolution:
name: resolution
description: The smallest possible difference between two spike times. Usually
1 divided by the acquisition sampling rate from which spike times were extracted,
but could be larger if the acquisition time series was downsampled or smaller
if the acquisition time series was smoothed/interpolated and it is possible
for the spike time to be between samples.
range: float64
Units__obs_intervals_index:
name: Units__obs_intervals_index
description: Index into the obs_intervals dataset.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(obs_intervals_index)
range: string
required: true
equals_string: obs_intervals_index
Units__obs_intervals:
name: Units__obs_intervals
description: Observation intervals for each unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(obs_intervals)
range: string
required: true
equals_string: obs_intervals
Units__electrodes_index:
name: Units__electrodes_index
description: Index into electrodes.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(electrodes_index)
range: string
required: true
equals_string: electrodes_index
Units__electrodes:
name: Units__electrodes
description: Electrode that each spike unit came from, specified using a DynamicTableRegion.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(electrodes)
range: string
required: true
equals_string: electrodes
Units__waveform_mean:
name: Units__waveform_mean
description: Spike waveform mean for each spike unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveform_mean)
range: string
required: true
equals_string: waveform_mean
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveform_sd:
name: Units__waveform_sd
description: Spike waveform standard deviation for each spike unit.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveform_sd)
range: string
required: true
equals_string: waveform_sd
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveforms:
name: Units__waveforms
description: Individual waveforms for each spike on each electrode. This is a
doubly indexed column. The 'waveforms_index' column indexes which waveforms
in this column belong to the same spike event for a given unit, where each waveform
was recorded from a different electrode. The 'waveforms_index_index' column
indexes the 'waveforms_index' column to indicate which spike events belong to
a given unit. For example, if the 'waveforms_index_index' column has values
[2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond
to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index'
column correspond to the 3 spike events of the second unit, and the next 1 element
of the 'waveforms_index' column corresponds to the 1 spike event of the third
unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then
the first 3 elements of the 'waveforms' column contain the 3 spike waveforms
that were recorded from 3 different electrodes for the first spike time of the
first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays
for a graphical representation of this example. When there is only one electrode
for each unit (i.e., each spike time is associated with a single waveform),
then the 'waveforms_index' column will have values 1, 2, ..., N, where N is
the number of spike events. The number of electrodes for each spike event should
be the same within a given unit. The 'electrodes' column should be used to indicate
which electrodes are associated with each unit, and the order of the waveforms
within a given unit x spike event should be in the same order as the electrodes
referenced in the 'electrodes' column of this table. The number of samples for
each waveform must be the same.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(waveforms)
range: string
required: true
equals_string: waveforms
sampling_rate:
name: sampling_rate
description: Sampling rate, in hertz.
range: float32
unit:
name: unit
description: Unit of measurement. This value is fixed to 'volts'.
range: text
Units__waveforms_index:
name: Units__waveforms_index
description: Index into the waveforms dataset. One value for every spike event.
See 'waveforms' for more detail.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(waveforms_index)
range: string
required: true
equals_string: waveforms_index
Units__waveforms_index_index:
name: Units__waveforms_index_index
description: Index into the waveforms_index dataset. One value for every unit
(row in the table). See 'waveforms' for more detail.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(waveforms_index_index)
range: string
required: true
equals_string: waveforms_index_index

View file

@ -4,7 +4,6 @@ imports:
- core.nwb.base - core.nwb.base
- core.nwb.device - core.nwb.device
- nwb.language - nwb.language
- core.nwb.ogen
default_prefix: core.nwb.ogen/ default_prefix: core.nwb.ogen/
classes: classes:
OptogeneticSeries: OptogeneticSeries:

View file

@ -1,235 +0,0 @@
name: core.nwb.ophys.include
id: core.nwb.ophys.include
imports:
- core.nwb.image
- core.nwb.base
- hdmf-common.table
- core.nwb.device
- nwb.language
- core.nwb.ophys.include
- core.nwb.ophys
default_prefix: core.nwb.ophys.include/
classes:
TwoPhotonSeries__field_of_view:
name: TwoPhotonSeries__field_of_view
description: Width, height and depth of image, or imaged area, in meters.
attributes:
name:
name: name
ifabsent: string(field_of_view)
range: string
required: true
equals_string: field_of_view
array:
name: array
range: TwoPhotonSeries__field_of_view__Array
TwoPhotonSeries__field_of_view__Array:
name: TwoPhotonSeries__field_of_view__Array
is_a: Arraylike
attributes:
width|height:
name: width|height
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
width|height|depth:
name: width|height|depth
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
RoiResponseSeries__data:
name: RoiResponseSeries__data
description: Signals from ROIs.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: RoiResponseSeries__data__Array
RoiResponseSeries__data__Array:
name: RoiResponseSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_ROIs:
name: num_ROIs
range: numeric
required: false
RoiResponseSeries__rois:
name: RoiResponseSeries__rois
description: DynamicTableRegion referencing into an ROITable containing information
on the ROIs stored in this timeseries.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(rois)
range: string
required: true
equals_string: rois
PlaneSegmentation__image_mask:
name: PlaneSegmentation__image_mask
description: ROI masks for each ROI. Each image mask is the size of the original
imaging plane (or volume) and members of the ROI are finite non-zero.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(image_mask)
range: string
required: true
equals_string: image_mask
PlaneSegmentation__pixel_mask_index:
name: PlaneSegmentation__pixel_mask_index
description: Index into pixel_mask.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(pixel_mask_index)
range: string
required: true
equals_string: pixel_mask_index
PlaneSegmentation__voxel_mask_index:
name: PlaneSegmentation__voxel_mask_index
description: Index into voxel_mask.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(voxel_mask_index)
range: string
required: true
equals_string: voxel_mask_index
ImagingPlane__manifold:
name: ImagingPlane__manifold
description: DEPRECATED Physical position of each pixel. 'xyz' represents the
position of the pixel relative to the defined coordinate space. Deprecated in
favor of origin_coords and grid_spacing.
attributes:
name:
name: name
ifabsent: string(manifold)
range: string
required: true
equals_string: manifold
conversion:
name: conversion
description: Scalar to multiply each element in data to convert it to the
specified 'unit'. If the data are stored in acquisition system units or
other units that require a conversion to be interpretable, multiply the
data by 'conversion' to convert the data to the specified 'unit'. e.g. if
the data acquisition system stores values in this object as pixels from
x = -500 to 499, y = -500 to 499 that correspond to a 2 m x 2 m range, then
the 'conversion' multiplier to get from raw data acquisition pixel units
to meters is 2/1000.
range: float32
unit:
name: unit
description: Base unit of measurement for working with the data. The default
value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__manifold__Array
ImagingPlane__manifold__Array:
name: ImagingPlane__manifold__Array
is_a: Arraylike
attributes:
height:
name: height
range: float32
required: true
width:
name: width
range: float32
required: true
x, y, z:
name: x, y, z
range: float32
required: true
minimum_cardinality: 3
maximum_cardinality: 3
depth:
name: depth
range: float32
required: false
ImagingPlane__origin_coords:
name: ImagingPlane__origin_coords
description: Physical location of the first element of the imaging plane (0, 0)
for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the
physical location is relative to (e.g., bregma).
attributes:
name:
name: name
ifabsent: string(origin_coords)
range: string
required: true
equals_string: origin_coords
unit:
name: unit
description: Measurement units for origin_coords. The default value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__origin_coords__Array
ImagingPlane__origin_coords__Array:
name: ImagingPlane__origin_coords__Array
is_a: Arraylike
attributes:
x, y:
name: x, y
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x, y, z:
name: x, y, z
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
ImagingPlane__grid_spacing:
name: ImagingPlane__grid_spacing
description: Space between pixels in (x, y) or voxels in (x, y, z) directions,
in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame
to interpret the grid.
attributes:
name:
name: name
ifabsent: string(grid_spacing)
range: string
required: true
equals_string: grid_spacing
unit:
name: unit
description: Measurement units for grid_spacing. The default value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__grid_spacing__Array
ImagingPlane__grid_spacing__Array:
name: ImagingPlane__grid_spacing__Array
is_a: Arraylike
attributes:
x, y:
name: x, y
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x, y, z:
name: x, y, z
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3

View file

@ -6,8 +6,6 @@ imports:
- hdmf-common.table - hdmf-common.table
- core.nwb.device - core.nwb.device
- nwb.language - nwb.language
- core.nwb.ophys.include
- core.nwb.ophys
default_prefix: core.nwb.ophys/ default_prefix: core.nwb.ophys/
classes: classes:
OnePhotonSeries: OnePhotonSeries:
@ -72,6 +70,35 @@ classes:
range: TwoPhotonSeries__field_of_view range: TwoPhotonSeries__field_of_view
required: false required: false
tree_root: true tree_root: true
TwoPhotonSeries__field_of_view:
name: TwoPhotonSeries__field_of_view
description: Width, height and depth of image, or imaged area, in meters.
attributes:
name:
name: name
ifabsent: string(field_of_view)
range: string
required: true
equals_string: field_of_view
array:
name: array
range: TwoPhotonSeries__field_of_view__Array
TwoPhotonSeries__field_of_view__Array:
name: TwoPhotonSeries__field_of_view__Array
is_a: Arraylike
attributes:
width|height:
name: width|height
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
width|height|depth:
name: width|height|depth
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
RoiResponseSeries: RoiResponseSeries:
name: RoiResponseSeries name: RoiResponseSeries
description: ROI responses over an imaging plane. The first dimension represents description: ROI responses over an imaging plane. The first dimension represents
@ -96,6 +123,43 @@ classes:
range: RoiResponseSeries__rois range: RoiResponseSeries__rois
required: true required: true
tree_root: true tree_root: true
RoiResponseSeries__data:
name: RoiResponseSeries__data
description: Signals from ROIs.
attributes:
name:
name: name
ifabsent: string(data)
range: string
required: true
equals_string: data
array:
name: array
range: RoiResponseSeries__data__Array
RoiResponseSeries__data__Array:
name: RoiResponseSeries__data__Array
is_a: Arraylike
attributes:
num_times:
name: num_times
range: numeric
required: true
num_ROIs:
name: num_ROIs
range: numeric
required: false
RoiResponseSeries__rois:
name: RoiResponseSeries__rois
description: DynamicTableRegion referencing into an ROITable containing information
on the ROIs stored in this timeseries.
is_a: DynamicTableRegion
attributes:
name:
name: name
ifabsent: string(rois)
range: string
required: true
equals_string: rois
DfOverF: DfOverF:
name: DfOverF name: DfOverF
description: dF/F information about a region of interest (ROI). Storage hierarchy description: dF/F information about a region of interest (ROI). Storage hierarchy
@ -204,6 +268,40 @@ classes:
any_of: any_of:
- range: ImageSeries - range: ImageSeries
tree_root: true tree_root: true
PlaneSegmentation__image_mask:
name: PlaneSegmentation__image_mask
description: ROI masks for each ROI. Each image mask is the size of the original
imaging plane (or volume) and members of the ROI are finite non-zero.
is_a: VectorData
attributes:
name:
name: name
ifabsent: string(image_mask)
range: string
required: true
equals_string: image_mask
PlaneSegmentation__pixel_mask_index:
name: PlaneSegmentation__pixel_mask_index
description: Index into pixel_mask.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(pixel_mask_index)
range: string
required: true
equals_string: pixel_mask_index
PlaneSegmentation__voxel_mask_index:
name: PlaneSegmentation__voxel_mask_index
description: Index into voxel_mask.
is_a: VectorIndex
attributes:
name:
name: name
ifabsent: string(voxel_mask_index)
range: string
required: true
equals_string: voxel_mask_index
ImagingPlane: ImagingPlane:
name: ImagingPlane name: ImagingPlane
description: An imaging plane and its metadata. description: An imaging plane and its metadata.
@ -299,6 +397,129 @@ classes:
range: OpticalChannel range: OpticalChannel
required: true required: true
tree_root: true tree_root: true
ImagingPlane__manifold:
name: ImagingPlane__manifold
description: DEPRECATED Physical position of each pixel. 'xyz' represents the
position of the pixel relative to the defined coordinate space. Deprecated in
favor of origin_coords and grid_spacing.
attributes:
name:
name: name
ifabsent: string(manifold)
range: string
required: true
equals_string: manifold
conversion:
name: conversion
description: Scalar to multiply each element in data to convert it to the
specified 'unit'. If the data are stored in acquisition system units or
other units that require a conversion to be interpretable, multiply the
data by 'conversion' to convert the data to the specified 'unit'. e.g. if
the data acquisition system stores values in this object as pixels from
x = -500 to 499, y = -500 to 499 that correspond to a 2 m x 2 m range, then
the 'conversion' multiplier to get from raw data acquisition pixel units
to meters is 2/1000.
range: float32
unit:
name: unit
description: Base unit of measurement for working with the data. The default
value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__manifold__Array
ImagingPlane__manifold__Array:
name: ImagingPlane__manifold__Array
is_a: Arraylike
attributes:
height:
name: height
range: float32
required: true
width:
name: width
range: float32
required: true
x, y, z:
name: x, y, z
range: float32
required: true
minimum_cardinality: 3
maximum_cardinality: 3
depth:
name: depth
range: float32
required: false
ImagingPlane__origin_coords:
name: ImagingPlane__origin_coords
description: Physical location of the first element of the imaging plane (0, 0)
for 2-D data or (0, 0, 0) for 3-D data. See also reference_frame for what the
physical location is relative to (e.g., bregma).
attributes:
name:
name: name
ifabsent: string(origin_coords)
range: string
required: true
equals_string: origin_coords
unit:
name: unit
description: Measurement units for origin_coords. The default value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__origin_coords__Array
ImagingPlane__origin_coords__Array:
name: ImagingPlane__origin_coords__Array
is_a: Arraylike
attributes:
x, y:
name: x, y
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x, y, z:
name: x, y, z
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
ImagingPlane__grid_spacing:
name: ImagingPlane__grid_spacing
description: Space between pixels in (x, y) or voxels in (x, y, z) directions,
in the specified unit. Assumes imaging plane is a regular grid. See also reference_frame
to interpret the grid.
attributes:
name:
name: name
ifabsent: string(grid_spacing)
range: string
required: true
equals_string: grid_spacing
unit:
name: unit
description: Measurement units for grid_spacing. The default value is 'meters'.
range: text
array:
name: array
range: ImagingPlane__grid_spacing__Array
ImagingPlane__grid_spacing__Array:
name: ImagingPlane__grid_spacing__Array
is_a: Arraylike
attributes:
x, y:
name: x, y
range: float32
required: false
minimum_cardinality: 2
maximum_cardinality: 2
x, y, z:
name: x, y, z
range: float32
required: false
minimum_cardinality: 3
maximum_cardinality: 3
OpticalChannel: OpticalChannel:
name: OpticalChannel name: OpticalChannel
description: An optical channel used to record from an imaging plane. description: An optical channel used to record from an imaging plane.

View file

@ -1,290 +0,0 @@
name: core.nwb.retinotopy.include
id: core.nwb.retinotopy.include
imports:
- core.nwb.base
- nwb.language
- core.nwb.retinotopy.include
- core.nwb.retinotopy
default_prefix: core.nwb.retinotopy.include/
classes:
ImagingRetinotopy__axis_1_phase_map:
name: ImagingRetinotopy__axis_1_phase_map
description: Phase response to stimulus on the first measured axis.
attributes:
name:
name: name
ifabsent: string(axis_1_phase_map)
range: string
required: true
equals_string: axis_1_phase_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_1_phase_map__Array
ImagingRetinotopy__axis_1_phase_map__Array:
name: ImagingRetinotopy__axis_1_phase_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_1_power_map:
name: ImagingRetinotopy__axis_1_power_map
description: Power response on the first measured axis. Response is scaled so
0.0 is no power in the response and 1.0 is maximum relative power.
attributes:
name:
name: name
ifabsent: string(axis_1_power_map)
range: string
required: true
equals_string: axis_1_power_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_1_power_map__Array
ImagingRetinotopy__axis_1_power_map__Array:
name: ImagingRetinotopy__axis_1_power_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_2_phase_map:
name: ImagingRetinotopy__axis_2_phase_map
description: Phase response to stimulus on the second measured axis.
attributes:
name:
name: name
ifabsent: string(axis_2_phase_map)
range: string
required: true
equals_string: axis_2_phase_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_2_phase_map__Array
ImagingRetinotopy__axis_2_phase_map__Array:
name: ImagingRetinotopy__axis_2_phase_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_2_power_map:
name: ImagingRetinotopy__axis_2_power_map
description: Power response on the second measured axis. Response is scaled so
0.0 is no power in the response and 1.0 is maximum relative power.
attributes:
name:
name: name
ifabsent: string(axis_2_power_map)
range: string
required: true
equals_string: axis_2_power_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_2_power_map__Array
ImagingRetinotopy__axis_2_power_map__Array:
name: ImagingRetinotopy__axis_2_power_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__focal_depth_image:
name: ImagingRetinotopy__focal_depth_image
description: 'Gray-scale image taken with same settings/parameters (e.g., focal
depth, wavelength) as data collection. Array format: [rows][columns].'
attributes:
name:
name: name
ifabsent: string(focal_depth_image)
range: string
required: true
equals_string: focal_depth_image
bits_per_pixel:
name: bits_per_pixel
description: Number of bits used to represent each value. This is necessary
to determine maximum (white) pixel value.
range: int32
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
focal_depth:
name: focal_depth
description: Focal depth offset, in meters.
range: float32
format:
name: format
description: Format of image. Right now only 'raw' is supported.
range: text
array:
name: array
range: ImagingRetinotopy__focal_depth_image__Array
ImagingRetinotopy__focal_depth_image__Array:
name: ImagingRetinotopy__focal_depth_image__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: uint16
required: true
num_cols:
name: num_cols
range: uint16
required: true
ImagingRetinotopy__sign_map:
name: ImagingRetinotopy__sign_map
description: Sine of the angle between the direction of the gradient in axis_1
and axis_2.
attributes:
name:
name: name
ifabsent: string(sign_map)
range: string
required: true
equals_string: sign_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
array:
name: array
range: ImagingRetinotopy__sign_map__Array
ImagingRetinotopy__sign_map__Array:
name: ImagingRetinotopy__sign_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__vasculature_image:
name: ImagingRetinotopy__vasculature_image
description: 'Gray-scale anatomical image of cortical surface. Array structure:
[rows][columns]'
attributes:
name:
name: name
ifabsent: string(vasculature_image)
range: string
required: true
equals_string: vasculature_image
bits_per_pixel:
name: bits_per_pixel
description: Number of bits used to represent each value. This is necessary
to determine maximum (white) pixel value
range: int32
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
format:
name: format
description: Format of image. Right now only 'raw' is supported.
range: text
array:
name: array
range: ImagingRetinotopy__vasculature_image__Array
ImagingRetinotopy__vasculature_image__Array:
name: ImagingRetinotopy__vasculature_image__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: uint16
required: true
num_cols:
name: num_cols
range: uint16
required: true

View file

@ -3,8 +3,6 @@ id: core.nwb.retinotopy
imports: imports:
- core.nwb.base - core.nwb.base
- nwb.language - nwb.language
- core.nwb.retinotopy.include
- core.nwb.retinotopy
default_prefix: core.nwb.retinotopy/ default_prefix: core.nwb.retinotopy/
classes: classes:
ImagingRetinotopy: ImagingRetinotopy:
@ -80,3 +78,284 @@ classes:
range: ImagingRetinotopy__vasculature_image range: ImagingRetinotopy__vasculature_image
required: true required: true
tree_root: true tree_root: true
ImagingRetinotopy__axis_1_phase_map:
name: ImagingRetinotopy__axis_1_phase_map
description: Phase response to stimulus on the first measured axis.
attributes:
name:
name: name
ifabsent: string(axis_1_phase_map)
range: string
required: true
equals_string: axis_1_phase_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_1_phase_map__Array
ImagingRetinotopy__axis_1_phase_map__Array:
name: ImagingRetinotopy__axis_1_phase_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_1_power_map:
name: ImagingRetinotopy__axis_1_power_map
description: Power response on the first measured axis. Response is scaled so
0.0 is no power in the response and 1.0 is maximum relative power.
attributes:
name:
name: name
ifabsent: string(axis_1_power_map)
range: string
required: true
equals_string: axis_1_power_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_1_power_map__Array
ImagingRetinotopy__axis_1_power_map__Array:
name: ImagingRetinotopy__axis_1_power_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_2_phase_map:
name: ImagingRetinotopy__axis_2_phase_map
description: Phase response to stimulus on the second measured axis.
attributes:
name:
name: name
ifabsent: string(axis_2_phase_map)
range: string
required: true
equals_string: axis_2_phase_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_2_phase_map__Array
ImagingRetinotopy__axis_2_phase_map__Array:
name: ImagingRetinotopy__axis_2_phase_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__axis_2_power_map:
name: ImagingRetinotopy__axis_2_power_map
description: Power response on the second measured axis. Response is scaled so
0.0 is no power in the response and 1.0 is maximum relative power.
attributes:
name:
name: name
ifabsent: string(axis_2_power_map)
range: string
required: true
equals_string: axis_2_power_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
unit:
name: unit
description: Unit that axis data is stored in (e.g., degrees).
range: text
array:
name: array
range: ImagingRetinotopy__axis_2_power_map__Array
ImagingRetinotopy__axis_2_power_map__Array:
name: ImagingRetinotopy__axis_2_power_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__focal_depth_image:
name: ImagingRetinotopy__focal_depth_image
description: 'Gray-scale image taken with same settings/parameters (e.g., focal
depth, wavelength) as data collection. Array format: [rows][columns].'
attributes:
name:
name: name
ifabsent: string(focal_depth_image)
range: string
required: true
equals_string: focal_depth_image
bits_per_pixel:
name: bits_per_pixel
description: Number of bits used to represent each value. This is necessary
to determine maximum (white) pixel value.
range: int32
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
focal_depth:
name: focal_depth
description: Focal depth offset, in meters.
range: float32
format:
name: format
description: Format of image. Right now only 'raw' is supported.
range: text
array:
name: array
range: ImagingRetinotopy__focal_depth_image__Array
ImagingRetinotopy__focal_depth_image__Array:
name: ImagingRetinotopy__focal_depth_image__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: uint16
required: true
num_cols:
name: num_cols
range: uint16
required: true
ImagingRetinotopy__sign_map:
name: ImagingRetinotopy__sign_map
description: Sine of the angle between the direction of the gradient in axis_1
and axis_2.
attributes:
name:
name: name
ifabsent: string(sign_map)
range: string
required: true
equals_string: sign_map
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
array:
name: array
range: ImagingRetinotopy__sign_map__Array
ImagingRetinotopy__sign_map__Array:
name: ImagingRetinotopy__sign_map__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: float32
required: true
num_cols:
name: num_cols
range: float32
required: true
ImagingRetinotopy__vasculature_image:
name: ImagingRetinotopy__vasculature_image
description: 'Gray-scale anatomical image of cortical surface. Array structure:
[rows][columns]'
attributes:
name:
name: name
ifabsent: string(vasculature_image)
range: string
required: true
equals_string: vasculature_image
bits_per_pixel:
name: bits_per_pixel
description: Number of bits used to represent each value. This is necessary
to determine maximum (white) pixel value
range: int32
dimension:
name: dimension
description: 'Number of rows and columns in the image. NOTE: row, column representation
is equivalent to height, width.'
range: int32
field_of_view:
name: field_of_view
description: Size of viewing area, in meters.
range: float32
format:
name: format
description: Format of image. Right now only 'raw' is supported.
range: text
array:
name: array
range: ImagingRetinotopy__vasculature_image__Array
ImagingRetinotopy__vasculature_image__Array:
name: ImagingRetinotopy__vasculature_image__Array
is_a: Arraylike
attributes:
num_rows:
name: num_rows
range: uint16
required: true
num_cols:
name: num_cols
range: uint16
required: true

View file

@ -1,4 +1,8 @@
name: core name: core
annotations:
namespace:
tag: namespace
value: 'True'
description: NWB namespace description: NWB namespace
id: core id: core
version: 2.6.0-alpha version: 2.6.0-alpha

View file

@ -2,7 +2,6 @@ name: hdmf-common.base
id: hdmf-common.base id: hdmf-common.base
imports: imports:
- nwb.language - nwb.language
- hdmf-common.base
default_prefix: hdmf-common.base/ default_prefix: hdmf-common.base/
classes: classes:
Data: Data:

View file

@ -3,7 +3,6 @@ id: hdmf-common.sparse
imports: imports:
- hdmf-common.base - hdmf-common.base
- nwb.language - nwb.language
- hdmf-common.sparse
default_prefix: hdmf-common.sparse/ default_prefix: hdmf-common.sparse/
classes: classes:
CSRMatrix: CSRMatrix:

View file

@ -1,37 +0,0 @@
name: hdmf-common.table.include
id: hdmf-common.table.include
imports:
- hdmf-common.base
- nwb.language
- hdmf-common.table.include
- hdmf-common.table
default_prefix: hdmf-common.table.include/
classes:
VectorData__Array:
name: VectorData__Array
is_a: Arraylike
attributes:
dim0:
name: dim0
range: AnyType
required: true
dim1:
name: dim1
range: AnyType
required: false
dim2:
name: dim2
range: AnyType
required: false
dim3:
name: dim3
range: AnyType
required: false
ElementIdentifiers__Array:
name: ElementIdentifiers__Array
is_a: Arraylike
attributes:
num_elements:
name: num_elements
range: int
required: true

View file

@ -3,8 +3,6 @@ id: hdmf-common.table
imports: imports:
- hdmf-common.base - hdmf-common.base
- nwb.language - nwb.language
- hdmf-common.table.include
- hdmf-common.table
default_prefix: hdmf-common.table/ default_prefix: hdmf-common.table/
classes: classes:
VectorData: VectorData:
@ -31,6 +29,26 @@ classes:
name: array name: array
range: VectorData__Array range: VectorData__Array
tree_root: true tree_root: true
VectorData__Array:
name: VectorData__Array
is_a: Arraylike
attributes:
dim0:
name: dim0
range: AnyType
required: true
dim1:
name: dim1
range: AnyType
required: false
dim2:
name: dim2
range: AnyType
required: false
dim3:
name: dim3
range: AnyType
required: false
VectorIndex: VectorIndex:
name: VectorIndex name: VectorIndex
description: Used with VectorData to encode a ragged array. An array of indices description: Used with VectorData to encode a ragged array. An array of indices
@ -63,6 +81,14 @@ classes:
name: array name: array
range: ElementIdentifiers__Array range: ElementIdentifiers__Array
tree_root: true tree_root: true
ElementIdentifiers__Array:
name: ElementIdentifiers__Array
is_a: Arraylike
attributes:
num_elements:
name: num_elements
range: int
required: true
DynamicTableRegion: DynamicTableRegion:
name: DynamicTableRegion name: DynamicTableRegion
description: DynamicTableRegion provides a link from one table to an index or description: DynamicTableRegion provides a link from one table to an index or

View file

@ -1,4 +1,8 @@
name: hdmf-common name: hdmf-common
annotations:
namespace:
tag: namespace
value: 'True'
description: Common data structures provided by HDMF description: Common data structures provided by HDMF
id: hdmf-common id: hdmf-common
version: 1.8.0 version: 1.8.0

View file

@ -3,7 +3,6 @@ id: hdmf-experimental.experimental
imports: imports:
- hdmf-common.table - hdmf-common.table
- nwb.language - nwb.language
- hdmf-experimental.experimental
default_prefix: hdmf-experimental.experimental/ default_prefix: hdmf-experimental.experimental/
classes: classes:
EnumData: EnumData:

View file

@ -3,7 +3,6 @@ id: hdmf-experimental.resources
imports: imports:
- hdmf-common.base - hdmf-common.base
- nwb.language - nwb.language
- hdmf-experimental.resources
default_prefix: hdmf-experimental.resources/ default_prefix: hdmf-experimental.resources/
classes: classes:
HERD: HERD:

View file

@ -1,4 +1,8 @@
name: hdmf-experimental name: hdmf-experimental
annotations:
namespace:
tag: namespace
value: 'True'
description: Experimental data structures provided by HDMF. These are not guaranteed description: Experimental data structures provided by HDMF. These are not guaranteed
to be available in the future. to be available in the future.
id: hdmf-experimental id: hdmf-experimental

153
nwb_linkml/translate.py Normal file
View file

@ -0,0 +1,153 @@
"""
Convenience functions for translating NWB schema
"""
import pdb
import tempfile
from typing import List, Optional, Dict
from types import ModuleType
from pathlib import Path
import json
import h5py
from linkml_runtime import SchemaView
from linkml_runtime.linkml_model import SchemaDefinition
from linkml_runtime.dumpers import yaml_dumper
from linkml_runtime.utils.compile_python import compile_python
from nwb_schema_language import Namespaces
from nwb_linkml.io import load_schema_file
from nwb_linkml.generators.pydantic import NWBPydanticGenerator
from nwb_linkml.map import apply_preload
from nwb_linkml.adapters import SchemaAdapter, NamespacesAdapter
def make_namespace_adapter(schema: dict) -> NamespacesAdapter:
"""
Create a :class:`.NamespacesAdapter` from a dictionary of loaded schema + namespace as are commonly
serialized in nwbfiles under /specifications
Args:
schema:
Returns:
"""
namespace = Namespaces(**schema['namespace'])
schema_adapters = [] # type: List[SchemaAdapter]
for schema_name, schema_dict in schema.items():
if schema_name == 'namespace':
continue
path = Path(schema_name + '.yaml')
schema_adapters.append(load_schema_file(path, schema_dict))
ns_adapter = NamespacesAdapter(
namespaces=namespace,
schemas=schema_adapters
)
return ns_adapter
def populate_namespaces_imports(namespaces: List[NamespacesAdapter]) -> List[NamespacesAdapter]:
"""
Given a set of :class:`.NamespacesAdapter`s, populate their imports with the other namespaces, if necessary
"""
for ns in namespaces:
needed_imports = []
for imported_ns in ns.namespaces.namespaces:
for imported_sch in imported_ns.schema_:
if imported_sch.namespace and not imported_sch.source:
needed_imports.append(imported_sch.namespace)
# find the import among the namespaces we have
for other_ns in namespaces:
if any([imported_ns.name in needed_imports for imported_ns in other_ns.namespaces.namespaces]):
ns.imported.append(other_ns)
return namespaces
def translate_namespaces(namespaces: NamespacesAdapter, base_dir: Path) -> List[Path]:
"""
Write translated namespaces to disk
"""
built_schemas = namespaces.build().schemas
base_dir = Path(base_dir)
paths = []
for schema in built_schemas:
output_file = base_dir / (schema.name + '.yaml')
paths.append(output_file)
yaml_dumper.dump(schema, output_file)
return paths
def generate_pydantic(
namespaces: NamespacesAdapter,
schema_dir:Optional[Path]=None,
pydantic_dir:Optional[Path]=None
) -> ModuleType:
if schema_dir is None:
temp_schema_dir = tempfile.TemporaryDirectory()
schema_dir = Path(temp_schema_dir.name)
if pydantic_dir is None:
temp_pydantic_dir = tempfile.TemporaryDirectory()
pydantic_dir = Path(temp_pydantic_dir.name)
if any(schema_dir.glob('*.yaml')):
# read already generated schema, do nothing here
schema_paths = list(schema_dir.glob('*.yaml'))
else:
# generate schema files
schema_paths = translate_namespaces(namespaces, base_dir=schema_dir)
# just generate the namespace file, which should import everything
ns_file = [s_path for s_path in schema_paths if s_path.stem == namespaces.namespaces.namespaces[0].name]
if len(ns_file) == 0:
raise ValueError("Could not find main namespace file")
ns_file = ns_file[0]
generator = NWBPydanticGenerator(
str(ns_file),
split=False,
emit_metadata=True,
gen_classvars=True,
gen_slots=True,
pydantic_version='2'
)
serialized = generator.serialize()
with open(pydantic_dir / 'models.py', 'w') as mfile:
mfile.write(serialized)
module = generator.compile_module(pydantic_dir)
return module
def generate_from_nwbfile(path:Path) -> Dict[str, ModuleType]:
namespaces = []
h5f = h5py.File(path, 'r')
for ns_name, ns in h5f['specifications'].items():
ns_schema = {}
for version in ns.values():
for schema_name, schema in version.items():
# read the source json binary string
sch_str = schema[()]
sch_dict = json.loads(sch_str)
ns_schema[schema_name] = apply_preload(sch_dict)
namespaces.append(ns_schema)
adapters = [make_namespace_adapter(sch) for sch in namespaces]
adapters = populate_namespaces_imports(adapters)
pydantic_modules = {
adapter.namespaces.namespaces[0].name: generate_pydantic(adapter)
for adapter in adapters
}
return pydantic_modules

View file

@ -112,8 +112,8 @@ class Namespace(ConfiguredBaseModel):
full_name: Optional[str] = Field(None, description="""Optional string with extended full name for the namespace.""") full_name: Optional[str] = Field(None, description="""Optional string with extended full name for the namespace.""")
version: str = Field(...) version: str = Field(...)
date: Optional[datetime ] = Field(None, description="""Date that a namespace was last modified or released""") date: Optional[datetime ] = Field(None, description="""Date that a namespace was last modified or released""")
author: List[str] = Field(default_factory=list, description="""List of strings with the names of the authors of the namespace.""") author: List[str] | str = Field(default_factory=list, description="""List of strings with the names of the authors of the namespace.""")
contact: List[str] = Field(default_factory=list, description="""List of strings with the contact information for the authors. Ordering of the contacts should match the ordering of the authors.""") contact: List[str] | str = Field(default_factory=list, description="""List of strings with the contact information for the authors. Ordering of the contacts should match the ordering of the authors.""")
schema_: Optional[List[Schema]] = Field(alias="schema", default_factory=list, description="""List of the schema to be included in this namespace.""") schema_: Optional[List[Schema]] = Field(alias="schema", default_factory=list, description="""List of the schema to be included in this namespace.""")

35
poetry.lock generated
View file

@ -490,6 +490,39 @@ files = [
docs = ["Sphinx", "docutils (<0.18)"] docs = ["Sphinx", "docutils (<0.18)"]
test = ["faulthandler", "objgraph", "psutil"] test = ["faulthandler", "objgraph", "psutil"]
[[package]]
name = "h5py"
version = "3.9.0"
description = "Read and write HDF5 files from Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "h5py-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eb7bdd5e601dd1739698af383be03f3dad0465fe67184ebd5afca770f50df9d6"},
{file = "h5py-3.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:78e44686334cbbf2dd21d9df15823bc38663f27a3061f6a032c68a3e30c47bf7"},
{file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68b41efd110ce9af1cbe6fa8af9f4dcbadace6db972d30828b911949e28fadd"},
{file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12aa556d540f11a2cae53ea7cfb94017353bd271fb3962e1296b342f6550d1b8"},
{file = "h5py-3.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:d97409e17915798029e297a84124705c8080da901307ea58f29234e09b073ddc"},
{file = "h5py-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:551e358db05a874a0f827b22e95b30092f2303edc4b91bb62ad2f10e0236e1a0"},
{file = "h5py-3.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6822a814b9d8b8363ff102f76ea8d026f0ca25850bb579d85376029ee3e73b93"},
{file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54f01202cdea754ab4227dd27014bdbd561a4bbe4b631424fd812f7c2ce9c6ac"},
{file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64acceaf6aff92af091a4b83f6dee3cf8d3061f924a6bb3a33eb6c4658a8348b"},
{file = "h5py-3.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:804c7fb42a34c8ab3a3001901c977a5c24d2e9c586a0f3e7c0a389130b4276fc"},
{file = "h5py-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8d9492391ff5c3c80ec30ae2fe82a3f0efd1e750833739c25b0d090e3be1b095"},
{file = "h5py-3.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9da9e7e63376c32704e37ad4cea2dceae6964cee0d8515185b3ab9cbd6b947bc"},
{file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4e20897c88759cbcbd38fb45b507adc91af3e0f67722aa302d71f02dd44d286"},
{file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbf5225543ca35ce9f61c950b73899a82be7ba60d58340e76d0bd42bf659235a"},
{file = "h5py-3.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:36408f8c62f50007d14e000f9f3acf77e103b9e932c114cbe52a3089e50ebf94"},
{file = "h5py-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:23e74b878bbe1653ab34ca49b83cac85529cd0b36b9d625516c5830cc5ca2eac"},
{file = "h5py-3.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f457089c5d524b7998e3649bc63240679b8fb0a3859ea53bbb06841f3d755f1"},
{file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6284061f3214335e1eec883a6ee497dbe7a79f19e6a57fed2dd1f03acd5a8cb"},
{file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7a745efd0d56076999b52e8da5fad5d30823bac98b59c68ae75588d09991a"},
{file = "h5py-3.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:79bbca34696c6f9eeeb36a91776070c49a060b2879828e2c8fa6c58b8ed10dd1"},
{file = "h5py-3.9.0.tar.gz", hash = "sha256:e604db6521c1e367c6bd7fad239c847f53cc46646f2d2651372d05ae5e95f817"},
]
[package.dependencies]
numpy = ">=1.17.3"
[[package]] [[package]]
name = "hbreader" name = "hbreader"
version = "0.9.1" version = "0.9.1"
@ -2158,4 +2191,4 @@ tests = ["pytest", "pytest-depends"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "^3.11" python-versions = "^3.11"
content-hash = "b552d70308f5b757a624b3d0046e54af4297bfba994a8019f4b366cce2fbe06f" content-hash = "4b3073d732a5ddcc84db255baea64e2df0414967995d20bd902f83a39de0bc10"

View file

@ -23,6 +23,7 @@ dash = {version="^2.12.1", optional=true}
dash-cytoscape = {version="^0.3.0", optional=true} dash-cytoscape = {version="^0.3.0", optional=true}
nptyping = "^2.5.0" nptyping = "^2.5.0"
pydantic = "^2.3.0" pydantic = "^2.3.0"
h5py = "^3.9.0"
[tool.poetry.extras] [tool.poetry.extras]
dev = ["nwb_schema_language"] dev = ["nwb_schema_language"]

9
tests/test_translate.py Normal file
View file

@ -0,0 +1,9 @@
import pytest
from pathlib import Path
from nwb_linkml.translate import generate_from_nwbfile
def test_generate_pydantic():
#NWBFILE = Path('/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773.nwb')
#pydantic_module = generate_from_nwbfile(NWBFILE)