mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
ruff unsafe fixes
This commit is contained in:
parent
084bceaa2e
commit
7c6e69c87e
16 changed files with 87 additions and 158 deletions
|
@ -27,7 +27,7 @@ import subprocess
|
||||||
import warnings
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from types import ModuleType
|
from types import ModuleType
|
||||||
from typing import TYPE_CHECKING, Dict, List, Optional, Union, overload
|
from typing import TYPE_CHECKING, Dict, List, Never, Optional, Union, overload
|
||||||
|
|
||||||
import h5py
|
import h5py
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -100,10 +100,7 @@ class HDF5IO:
|
||||||
provider = self.make_provider()
|
provider = self.make_provider()
|
||||||
|
|
||||||
h5f = h5py.File(str(self.path))
|
h5f = h5py.File(str(self.path))
|
||||||
if path:
|
src = h5f.get(path) if path else h5f
|
||||||
src = h5f.get(path)
|
|
||||||
else:
|
|
||||||
src = h5f
|
|
||||||
|
|
||||||
# get all children of selected item
|
# get all children of selected item
|
||||||
if isinstance(src, (h5py.File, h5py.Group)):
|
if isinstance(src, (h5py.File, h5py.Group)):
|
||||||
|
@ -127,7 +124,7 @@ class HDF5IO:
|
||||||
else:
|
else:
|
||||||
return queue.completed[path].result
|
return queue.completed[path].result
|
||||||
|
|
||||||
def write(self, path: Path):
|
def write(self, path: Path) -> Never:
|
||||||
"""
|
"""
|
||||||
Write to NWB file
|
Write to NWB file
|
||||||
|
|
||||||
|
@ -193,7 +190,7 @@ def read_specs_as_dicts(group: h5py.Group) -> dict:
|
||||||
"""
|
"""
|
||||||
spec_dict = {}
|
spec_dict = {}
|
||||||
|
|
||||||
def _read_spec(name, node):
|
def _read_spec(name, node) -> None:
|
||||||
|
|
||||||
if isinstance(node, h5py.Dataset):
|
if isinstance(node, h5py.Dataset):
|
||||||
# make containing dict if they dont exist
|
# make containing dict if they dont exist
|
||||||
|
@ -233,7 +230,7 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
||||||
"""
|
"""
|
||||||
references = []
|
references = []
|
||||||
|
|
||||||
def _find_references(name, obj: h5py.Group | h5py.Dataset):
|
def _find_references(name, obj: h5py.Group | h5py.Dataset) -> None:
|
||||||
pbar.update()
|
pbar.update()
|
||||||
refs = []
|
refs = []
|
||||||
for attr in obj.attrs.values():
|
for attr in obj.attrs.values():
|
||||||
|
@ -254,7 +251,6 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
||||||
|
|
||||||
for ref in refs:
|
for ref in refs:
|
||||||
assert isinstance(ref, h5py.h5r.Reference)
|
assert isinstance(ref, h5py.h5r.Reference)
|
||||||
refname = h5f[ref].name
|
|
||||||
if name == path:
|
if name == path:
|
||||||
references.append(name)
|
references.append(name)
|
||||||
return
|
return
|
||||||
|
@ -281,10 +277,7 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
||||||
Returns:
|
Returns:
|
||||||
:class:`pathlib.Path` path of the truncated file
|
:class:`pathlib.Path` path of the truncated file
|
||||||
"""
|
"""
|
||||||
if target is None:
|
target = source.parent / (source.stem + "_truncated.hdf5") if target is None else Path(target)
|
||||||
target = source.parent / (source.stem + "_truncated.hdf5")
|
|
||||||
else:
|
|
||||||
target = Path(target)
|
|
||||||
|
|
||||||
source = Path(source)
|
source = Path(source)
|
||||||
|
|
||||||
|
@ -300,9 +293,8 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
||||||
|
|
||||||
to_resize = []
|
to_resize = []
|
||||||
|
|
||||||
def _need_resizing(name: str, obj: h5py.Dataset | h5py.Group):
|
def _need_resizing(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||||
if isinstance(obj, h5py.Dataset):
|
if isinstance(obj, h5py.Dataset) and obj.size > n:
|
||||||
if obj.size > n:
|
|
||||||
to_resize.append(name)
|
to_resize.append(name)
|
||||||
|
|
||||||
print("Resizing datasets...")
|
print("Resizing datasets...")
|
||||||
|
|
|
@ -17,7 +17,7 @@ from nwb_schema_language.datamodel.nwb_schema_pydantic import FlatDtype as FlatD
|
||||||
|
|
||||||
FlatDType = EnumDefinition(
|
FlatDType = EnumDefinition(
|
||||||
name="FlatDType",
|
name="FlatDType",
|
||||||
permissible_values=[PermissibleValue(p) for p in FlatDtype_source.__members__.keys()],
|
permissible_values=[PermissibleValue(p) for p in FlatDtype_source.__members__],
|
||||||
)
|
)
|
||||||
|
|
||||||
DTypeTypes = []
|
DTypeTypes = []
|
||||||
|
|
|
@ -5,6 +5,7 @@ We have sort of diverged from the initial idea of a generalized map as in :class
|
||||||
so we will make our own mapping class here and re-evaluate whether they should be unified later
|
so we will make our own mapping class here and re-evaluate whether they should be unified later
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import contextlib
|
||||||
import datetime
|
import datetime
|
||||||
import inspect
|
import inspect
|
||||||
from abc import abstractmethod
|
from abc import abstractmethod
|
||||||
|
@ -187,10 +188,7 @@ def check_empty(obj: h5py.Group) -> bool:
|
||||||
children_empty = True
|
children_empty = True
|
||||||
|
|
||||||
# if we have no attrs and we are a leaf OR our children are empty, remove us
|
# if we have no attrs and we are a leaf OR our children are empty, remove us
|
||||||
if no_attrs and (no_children or children_empty):
|
return bool(no_attrs and (no_children or children_empty))
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
class PruneEmpty(HDF5Map):
|
class PruneEmpty(HDF5Map):
|
||||||
|
@ -244,10 +242,7 @@ class ResolveDynamicTable(HDF5Map):
|
||||||
# we might replace DynamicTable in the future, and there isn't a stable DynamicTable
|
# we might replace DynamicTable in the future, and there isn't a stable DynamicTable
|
||||||
# class to inherit from anyway because of the whole multiple versions thing
|
# class to inherit from anyway because of the whole multiple versions thing
|
||||||
parents = [parent.__name__ for parent in model.__mro__]
|
parents = [parent.__name__ for parent in model.__mro__]
|
||||||
if "DynamicTable" in parents:
|
return "DynamicTable" in parents
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
@ -322,10 +317,7 @@ class ResolveModelGroup(HDF5Map):
|
||||||
def check(
|
def check(
|
||||||
cls, src: H5SourceItem, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
cls, src: H5SourceItem, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if "neurodata_type" in src.attrs and src.h5_type == "group":
|
return bool("neurodata_type" in src.attrs and src.h5_type == "group")
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def apply(
|
def apply(
|
||||||
|
@ -336,14 +328,14 @@ class ResolveModelGroup(HDF5Map):
|
||||||
depends = []
|
depends = []
|
||||||
with h5py.File(src.h5f_path, "r") as h5f:
|
with h5py.File(src.h5f_path, "r") as h5f:
|
||||||
obj = h5f.get(src.path)
|
obj = h5f.get(src.path)
|
||||||
for key, type in model.model_fields.items():
|
for key in model.model_fields.keys():
|
||||||
if key == "children":
|
if key == "children":
|
||||||
res[key] = {name: resolve_hardlink(child) for name, child in obj.items()}
|
res[key] = {name: resolve_hardlink(child) for name, child in obj.items()}
|
||||||
depends.extend([resolve_hardlink(child) for child in obj.values()])
|
depends.extend([resolve_hardlink(child) for child in obj.values()])
|
||||||
elif key in obj.attrs:
|
elif key in obj.attrs:
|
||||||
res[key] = obj.attrs[key]
|
res[key] = obj.attrs[key]
|
||||||
continue
|
continue
|
||||||
elif key in obj.keys():
|
elif key in obj:
|
||||||
# make sure it's not empty
|
# make sure it's not empty
|
||||||
if check_empty(obj[key]):
|
if check_empty(obj[key]):
|
||||||
continue
|
continue
|
||||||
|
@ -386,10 +378,7 @@ class ResolveDatasetAsDict(HDF5Map):
|
||||||
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
||||||
with h5py.File(src.h5f_path, "r") as h5f:
|
with h5py.File(src.h5f_path, "r") as h5f:
|
||||||
obj = h5f.get(src.path)
|
obj = h5f.get(src.path)
|
||||||
if obj.shape != ():
|
return obj.shape != ()
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
@ -420,10 +409,7 @@ class ResolveScalars(HDF5Map):
|
||||||
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
if src.h5_type == "dataset" and "neurodata_type" not in src.attrs:
|
||||||
with h5py.File(src.h5f_path, "r") as h5f:
|
with h5py.File(src.h5f_path, "r") as h5f:
|
||||||
obj = h5f.get(src.path)
|
obj = h5f.get(src.path)
|
||||||
if obj.shape == ():
|
return obj.shape == ()
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
@ -456,10 +442,7 @@ class ResolveContainerGroups(HDF5Map):
|
||||||
if src.h5_type == "group" and "neurodata_type" not in src.attrs and len(src.attrs) == 0:
|
if src.h5_type == "group" and "neurodata_type" not in src.attrs and len(src.attrs) == 0:
|
||||||
with h5py.File(src.h5f_path, "r") as h5f:
|
with h5py.File(src.h5f_path, "r") as h5f:
|
||||||
obj = h5f.get(src.path)
|
obj = h5f.get(src.path)
|
||||||
if len(obj.keys()) > 0:
|
return len(obj.keys()) > 0
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
@ -515,10 +498,7 @@ class CompletePassThrough(HDF5Map):
|
||||||
) -> bool:
|
) -> bool:
|
||||||
passthrough_ops = ("ResolveDynamicTable", "ResolveDatasetAsDict", "ResolveScalars")
|
passthrough_ops = ("ResolveDynamicTable", "ResolveDatasetAsDict", "ResolveScalars")
|
||||||
|
|
||||||
for op in passthrough_ops:
|
return any(hasattr(src, "applied") and op in src.applied for op in passthrough_ops)
|
||||||
if hasattr(src, "applied") and op in src.applied:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def apply(
|
def apply(
|
||||||
|
@ -542,15 +522,7 @@ class CompleteContainerGroups(HDF5Map):
|
||||||
def check(
|
def check(
|
||||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if (
|
return (src.model is None and src.neurodata_type is None and src.source.h5_type == "group" and all([depend in completed for depend in src.depends]))
|
||||||
src.model is None
|
|
||||||
and src.neurodata_type is None
|
|
||||||
and src.source.h5_type == "group"
|
|
||||||
and all([depend in completed for depend in src.depends])
|
|
||||||
):
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def apply(
|
def apply(
|
||||||
|
@ -574,15 +546,7 @@ class CompleteModelGroups(HDF5Map):
|
||||||
def check(
|
def check(
|
||||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if (
|
return (src.model is not None and src.source.h5_type == "group" and src.neurodata_type != "NWBFile" and all([depend in completed for depend in src.depends]))
|
||||||
src.model is not None
|
|
||||||
and src.source.h5_type == "group"
|
|
||||||
and src.neurodata_type != "NWBFile"
|
|
||||||
and all([depend in completed for depend in src.depends])
|
|
||||||
):
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def apply(
|
def apply(
|
||||||
|
@ -639,10 +603,7 @@ class CompleteNWBFile(HDF5Map):
|
||||||
def check(
|
def check(
|
||||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if src.neurodata_type == "NWBFile" and all([depend in completed for depend in src.depends]):
|
return (src.neurodata_type == "NWBFile" and all([depend in completed for depend in src.depends]))
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def apply(
|
def apply(
|
||||||
|
@ -724,14 +685,14 @@ class ReadQueue(BaseModel):
|
||||||
default_factory=list, description="Phases that have already been completed"
|
default_factory=list, description="Phases that have already been completed"
|
||||||
)
|
)
|
||||||
|
|
||||||
def apply_phase(self, phase: ReadPhases, max_passes=5):
|
def apply_phase(self, phase: ReadPhases, max_passes=5) -> None:
|
||||||
phase_maps = [m for m in HDF5Map.__subclasses__() if m.phase == phase]
|
phase_maps = [m for m in HDF5Map.__subclasses__() if m.phase == phase]
|
||||||
phase_maps = sorted(phase_maps, key=lambda x: x.priority)
|
phase_maps = sorted(phase_maps, key=lambda x: x.priority)
|
||||||
|
|
||||||
results = []
|
results = []
|
||||||
|
|
||||||
# TODO: Thread/multiprocess this
|
# TODO: Thread/multiprocess this
|
||||||
for name, item in self.queue.items():
|
for item in self.queue.values():
|
||||||
for op in phase_maps:
|
for op in phase_maps:
|
||||||
if op.check(item, self.provider, self.completed):
|
if op.check(item, self.provider, self.completed):
|
||||||
# Formerly there was an "exclusive" property in the maps which let potentially multiple
|
# Formerly there was an "exclusive" property in the maps which let potentially multiple
|
||||||
|
@ -768,10 +729,8 @@ class ReadQueue(BaseModel):
|
||||||
# delete the ones that were already completed but might have been
|
# delete the ones that were already completed but might have been
|
||||||
# incorrectly added back in the pile
|
# incorrectly added back in the pile
|
||||||
for c in completes:
|
for c in completes:
|
||||||
try:
|
with contextlib.suppress(KeyError):
|
||||||
del self.queue[c]
|
del self.queue[c]
|
||||||
except KeyError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
# if we have nothing left in our queue, we have completed this phase
|
# if we have nothing left in our queue, we have completed this phase
|
||||||
# and prepare only ever has one pass
|
# and prepare only ever has one pass
|
||||||
|
@ -798,7 +757,7 @@ def flatten_hdf(h5f: h5py.File | h5py.Group, skip="specifications") -> Dict[str,
|
||||||
"""
|
"""
|
||||||
items = {}
|
items = {}
|
||||||
|
|
||||||
def _itemize(name: str, obj: h5py.Dataset | h5py.Group):
|
def _itemize(name: str, obj: h5py.Dataset | h5py.Group) -> None:
|
||||||
if skip in name:
|
if skip in name:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
|
@ -23,10 +23,7 @@ def model_from_dynamictable(group: h5py.Group, base: Optional[BaseModel] = None)
|
||||||
for col in colnames:
|
for col in colnames:
|
||||||
|
|
||||||
nptype = group[col].dtype
|
nptype = group[col].dtype
|
||||||
if nptype.type == np.void:
|
nptype = struct_from_dtype(nptype) if nptype.type == np.void else nptype.type
|
||||||
nptype = struct_from_dtype(nptype)
|
|
||||||
else:
|
|
||||||
nptype = nptype.type
|
|
||||||
|
|
||||||
type_ = Optional[NDArray[Any, nptype]]
|
type_ = Optional[NDArray[Any, nptype]]
|
||||||
|
|
||||||
|
@ -53,7 +50,7 @@ def dynamictable_to_model(
|
||||||
|
|
||||||
items = {}
|
items = {}
|
||||||
for col, col_type in model.model_fields.items():
|
for col, col_type in model.model_fields.items():
|
||||||
if col not in group.keys():
|
if col not in group:
|
||||||
if col in group.attrs:
|
if col in group.attrs:
|
||||||
items[col] = group.attrs[col]
|
items[col] = group.attrs[col]
|
||||||
continue
|
continue
|
||||||
|
|
|
@ -3,7 +3,7 @@ Monkeypatches to external modules
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def patch_npytyping_perf():
|
def patch_npytyping_perf() -> None:
|
||||||
"""
|
"""
|
||||||
npytyping makes an expensive call to inspect.stack()
|
npytyping makes an expensive call to inspect.stack()
|
||||||
that makes imports of pydantic models take ~200x longer than
|
that makes imports of pydantic models take ~200x longer than
|
||||||
|
@ -43,7 +43,7 @@ def patch_npytyping_perf():
|
||||||
base_meta_classes.SubscriptableMeta._get_module = new_get_module
|
base_meta_classes.SubscriptableMeta._get_module = new_get_module
|
||||||
|
|
||||||
|
|
||||||
def patch_nptyping_warnings():
|
def patch_nptyping_warnings() -> None:
|
||||||
"""
|
"""
|
||||||
nptyping shits out a bunch of numpy deprecation warnings from using
|
nptyping shits out a bunch of numpy deprecation warnings from using
|
||||||
olde aliases
|
olde aliases
|
||||||
|
@ -53,7 +53,7 @@ def patch_nptyping_warnings():
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning, module="nptyping.*")
|
warnings.filterwarnings("ignore", category=DeprecationWarning, module="nptyping.*")
|
||||||
|
|
||||||
|
|
||||||
def patch_schemaview():
|
def patch_schemaview() -> None:
|
||||||
"""
|
"""
|
||||||
Patch schemaview to correctly resolve multiple layers of relative imports.
|
Patch schemaview to correctly resolve multiple layers of relative imports.
|
||||||
|
|
||||||
|
@ -114,7 +114,7 @@ def patch_schemaview():
|
||||||
SchemaView.imports_closure = imports_closure
|
SchemaView.imports_closure = imports_closure
|
||||||
|
|
||||||
|
|
||||||
def apply_patches():
|
def apply_patches() -> None:
|
||||||
patch_npytyping_perf()
|
patch_npytyping_perf()
|
||||||
patch_nptyping_warnings()
|
patch_nptyping_warnings()
|
||||||
patch_schemaview()
|
patch_schemaview()
|
||||||
|
|
|
@ -55,10 +55,7 @@ class Node:
|
||||||
def make_node(element: Group | Dataset, parent=None, recurse: bool = True) -> List[Node]:
|
def make_node(element: Group | Dataset, parent=None, recurse: bool = True) -> List[Node]:
|
||||||
if element.neurodata_type_def is None:
|
if element.neurodata_type_def is None:
|
||||||
if element.name is None:
|
if element.name is None:
|
||||||
if element.neurodata_type_inc is None:
|
name = "anonymous" if element.neurodata_type_inc is None else element.neurodata_type_inc
|
||||||
name = "anonymous"
|
|
||||||
else:
|
|
||||||
name = element.neurodata_type_inc
|
|
||||||
else:
|
else:
|
||||||
name = element.name
|
name = element.name
|
||||||
id = name + "-" + str(random.randint(0, 1000))
|
id = name + "-" + str(random.randint(0, 1000))
|
||||||
|
@ -88,7 +85,6 @@ def make_graph(namespaces: "NamespacesAdapter", recurse: bool = True) -> List[Cy
|
||||||
nodes = []
|
nodes = []
|
||||||
element: Namespace | Group | Dataset
|
element: Namespace | Group | Dataset
|
||||||
print("walking graph")
|
print("walking graph")
|
||||||
i = 0
|
|
||||||
for element in namespaces.walk_types(namespaces, (Group, Dataset)):
|
for element in namespaces.walk_types(namespaces, (Group, Dataset)):
|
||||||
if element.neurodata_type_def is None:
|
if element.neurodata_type_def is None:
|
||||||
# skip child nodes at top level, we'll get them in recursion
|
# skip child nodes at top level, we'll get them in recursion
|
||||||
|
|
|
@ -157,7 +157,7 @@ class GitRepo:
|
||||||
return self._commit
|
return self._commit
|
||||||
|
|
||||||
@commit.setter
|
@commit.setter
|
||||||
def commit(self, commit: str | None):
|
def commit(self, commit: str | None) -> None:
|
||||||
# setting commit as None should do nothing if we have already cloned,
|
# setting commit as None should do nothing if we have already cloned,
|
||||||
# and if we are just cloning we will always be at the most recent commit anyway
|
# and if we are just cloning we will always be at the most recent commit anyway
|
||||||
if commit is not None:
|
if commit is not None:
|
||||||
|
@ -199,7 +199,7 @@ class GitRepo:
|
||||||
return res.stdout.decode("utf-8").strip()
|
return res.stdout.decode("utf-8").strip()
|
||||||
|
|
||||||
@tag.setter
|
@tag.setter
|
||||||
def tag(self, tag: str):
|
def tag(self, tag: str) -> None:
|
||||||
# first check that we have the most recent tags
|
# first check that we have the most recent tags
|
||||||
self._git_call("fetch", "--all", "--tags")
|
self._git_call("fetch", "--all", "--tags")
|
||||||
self._git_call("checkout", f"tags/{tag}")
|
self._git_call("checkout", f"tags/{tag}")
|
||||||
|
@ -227,10 +227,7 @@ class GitRepo:
|
||||||
"""
|
"""
|
||||||
res = self._git_call("branch", "--show-current")
|
res = self._git_call("branch", "--show-current")
|
||||||
branch = res.stdout.decode("utf-8").strip()
|
branch = res.stdout.decode("utf-8").strip()
|
||||||
if not branch:
|
return not branch
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
def check(self) -> bool:
|
def check(self) -> bool:
|
||||||
"""
|
"""
|
||||||
|
@ -262,7 +259,7 @@ class GitRepo:
|
||||||
# otherwise we're good
|
# otherwise we're good
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def cleanup(self, force: bool = False):
|
def cleanup(self, force: bool = False) -> None:
|
||||||
"""
|
"""
|
||||||
Delete contents of temporary directory
|
Delete contents of temporary directory
|
||||||
|
|
||||||
|
@ -285,7 +282,7 @@ class GitRepo:
|
||||||
shutil.rmtree(str(self.temp_directory))
|
shutil.rmtree(str(self.temp_directory))
|
||||||
self._temp_directory = None
|
self._temp_directory = None
|
||||||
|
|
||||||
def clone(self, force: bool = False):
|
def clone(self, force: bool = False) -> None:
|
||||||
"""
|
"""
|
||||||
Clone the repository into the temporary directory
|
Clone the repository into the temporary directory
|
||||||
|
|
||||||
|
|
|
@ -94,10 +94,7 @@ class Provider(ABC):
|
||||||
PROVIDES_CLASS: P = None
|
PROVIDES_CLASS: P = None
|
||||||
|
|
||||||
def __init__(self, path: Optional[Path] = None, allow_repo: bool = True, verbose: bool = True):
|
def __init__(self, path: Optional[Path] = None, allow_repo: bool = True, verbose: bool = True):
|
||||||
if path is not None:
|
config = Config(cache_dir=path) if path is not None else Config()
|
||||||
config = Config(cache_dir=path)
|
|
||||||
else:
|
|
||||||
config = Config()
|
|
||||||
self.config = config
|
self.config = config
|
||||||
self.cache_dir = config.cache_dir
|
self.cache_dir = config.cache_dir
|
||||||
self.allow_repo = allow_repo
|
self.allow_repo = allow_repo
|
||||||
|
@ -352,8 +349,7 @@ class LinkMLProvider(Provider):
|
||||||
of the build. If ``force == False`` and the schema already exist, it will be ``None``
|
of the build. If ``force == False`` and the schema already exist, it will be ``None``
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not force:
|
if not force and all(
|
||||||
if all(
|
|
||||||
[
|
[
|
||||||
(self.namespace_path(ns, version) / "namespace.yaml").exists()
|
(self.namespace_path(ns, version) / "namespace.yaml").exists()
|
||||||
for ns, version in ns_adapter.versions.items()
|
for ns, version in ns_adapter.versions.items()
|
||||||
|
@ -427,7 +423,7 @@ class LinkMLProvider(Provider):
|
||||||
self, sch: SchemaDefinition, ns_adapter: adapters.NamespacesAdapter, output_file: Path
|
self, sch: SchemaDefinition, ns_adapter: adapters.NamespacesAdapter, output_file: Path
|
||||||
) -> SchemaDefinition:
|
) -> SchemaDefinition:
|
||||||
for animport in sch.imports:
|
for animport in sch.imports:
|
||||||
if animport.split(".")[0] in ns_adapter.versions.keys():
|
if animport.split(".")[0] in ns_adapter.versions:
|
||||||
imported_path = (
|
imported_path = (
|
||||||
self.namespace_path(
|
self.namespace_path(
|
||||||
animport.split(".")[0], ns_adapter.versions[animport.split(".")[0]]
|
animport.split(".")[0], ns_adapter.versions[animport.split(".")[0]]
|
||||||
|
@ -485,7 +481,7 @@ class PydanticProvider(Provider):
|
||||||
PROVIDES = "pydantic"
|
PROVIDES = "pydantic"
|
||||||
|
|
||||||
def __init__(self, path: Optional[Path] = None, verbose: bool = True):
|
def __init__(self, path: Optional[Path] = None, verbose: bool = True):
|
||||||
super(PydanticProvider, self).__init__(path, verbose)
|
super().__init__(path, verbose)
|
||||||
# create a metapathfinder to find module we might create
|
# create a metapathfinder to find module we might create
|
||||||
pathfinder = EctopicModelFinder(self.path)
|
pathfinder = EctopicModelFinder(self.path)
|
||||||
sys.meta_path.append(pathfinder)
|
sys.meta_path.append(pathfinder)
|
||||||
|
@ -771,7 +767,7 @@ class PydanticProvider(Provider):
|
||||||
return module
|
return module
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _clear_package_imports():
|
def _clear_package_imports() -> None:
|
||||||
"""
|
"""
|
||||||
When using allow_repo=False, delete any already-imported
|
When using allow_repo=False, delete any already-imported
|
||||||
namespaces from sys.modules that are within the nwb_linkml package
|
namespaces from sys.modules that are within the nwb_linkml package
|
||||||
|
@ -826,7 +822,7 @@ class EctopicModelFinder(MetaPathFinder):
|
||||||
MODEL_STEM = "nwb_linkml.models.pydantic"
|
MODEL_STEM = "nwb_linkml.models.pydantic"
|
||||||
|
|
||||||
def __init__(self, path: Path, *args, **kwargs):
|
def __init__(self, path: Path, *args, **kwargs):
|
||||||
super(EctopicModelFinder, self).__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
self.path = path
|
self.path = path
|
||||||
|
|
||||||
def find_spec(self, fullname, path, target=None):
|
def find_spec(self, fullname, path, target=None):
|
||||||
|
@ -883,7 +879,7 @@ class SchemaProvider(Provider):
|
||||||
**kwargs: passed to superclass __init__ (see :class:`.Provider` )
|
**kwargs: passed to superclass __init__ (see :class:`.Provider` )
|
||||||
"""
|
"""
|
||||||
self.versions = versions
|
self.versions = versions
|
||||||
super(SchemaProvider, self).__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def path(self) -> Path:
|
def path(self) -> Path:
|
||||||
|
|
|
@ -85,7 +85,7 @@ class DataFrame(BaseModel, pd.DataFrame):
|
||||||
df = df.fillna(np.nan).replace([np.nan], [None])
|
df = df.fillna(np.nan).replace([np.nan], [None])
|
||||||
return df
|
return df
|
||||||
|
|
||||||
def update_df(self):
|
def update_df(self) -> None:
|
||||||
"""
|
"""
|
||||||
Update the internal dataframe in the case that the model values are changed
|
Update the internal dataframe in the case that the model values are changed
|
||||||
in a way that we can't detect, like appending to one of the lists.
|
in a way that we can't detect, like appending to one of the lists.
|
||||||
|
@ -99,7 +99,7 @@ class DataFrame(BaseModel, pd.DataFrame):
|
||||||
"""
|
"""
|
||||||
if item in ("df", "_df"):
|
if item in ("df", "_df"):
|
||||||
return self.__pydantic_private__["_df"]
|
return self.__pydantic_private__["_df"]
|
||||||
elif item in self.model_fields.keys():
|
elif item in self.model_fields:
|
||||||
return self._df[item]
|
return self._df[item]
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
|
@ -108,7 +108,7 @@ class DataFrame(BaseModel, pd.DataFrame):
|
||||||
return object.__getattribute__(self, item)
|
return object.__getattribute__(self, item)
|
||||||
|
|
||||||
@model_validator(mode="after")
|
@model_validator(mode="after")
|
||||||
def recreate_df(self):
|
def recreate_df(self) -> None:
|
||||||
"""
|
"""
|
||||||
Remake DF when validating (eg. when updating values on assignment)
|
Remake DF when validating (eg. when updating values on assignment)
|
||||||
"""
|
"""
|
||||||
|
@ -137,11 +137,11 @@ def dynamictable_to_df(
|
||||||
model = model_from_dynamictable(group, base)
|
model = model_from_dynamictable(group, base)
|
||||||
|
|
||||||
items = {}
|
items = {}
|
||||||
for col, col_type in model.model_fields.items():
|
for col, _col_type in model.model_fields.items():
|
||||||
if col not in group.keys():
|
if col not in group:
|
||||||
continue
|
continue
|
||||||
idxname = col + "_index"
|
idxname = col + "_index"
|
||||||
if idxname in group.keys():
|
if idxname in group:
|
||||||
idx = group.get(idxname)[:]
|
idx = group.get(idxname)[:]
|
||||||
data = group.get(col)[idx - 1]
|
data = group.get(col)[idx - 1]
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -40,16 +40,10 @@ def _list_of_lists_schema(shape, array_type_handler):
|
||||||
for arg, label in zip(shape_args, shape_labels):
|
for arg, label in zip(shape_args, shape_labels):
|
||||||
# which handler to use? for the first we use the actual type
|
# which handler to use? for the first we use the actual type
|
||||||
# handler, everywhere else we use the prior list handler
|
# handler, everywhere else we use the prior list handler
|
||||||
if list_schema is None:
|
inner_schema = array_type_handler if list_schema is None else list_schema
|
||||||
inner_schema = array_type_handler
|
|
||||||
else:
|
|
||||||
inner_schema = list_schema
|
|
||||||
|
|
||||||
# make a label annotation, if we have one
|
# make a label annotation, if we have one
|
||||||
if label is not None:
|
metadata = {"name": label} if label is not None else None
|
||||||
metadata = {"name": label}
|
|
||||||
else:
|
|
||||||
metadata = None
|
|
||||||
|
|
||||||
# make the current level list schema, accounting for shape
|
# make the current level list schema, accounting for shape
|
||||||
if arg == "*":
|
if arg == "*":
|
||||||
|
@ -66,7 +60,8 @@ class NDArrayMeta(_NDArrayMeta, implementation="NDArray"):
|
||||||
"""
|
"""
|
||||||
Kept here to allow for hooking into metaclass, which has
|
Kept here to allow for hooking into metaclass, which has
|
||||||
been necessary on and off as we work this class into a stable
|
been necessary on and off as we work this class into a stable
|
||||||
state"""
|
state
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
class NDArray(NPTypingType, metaclass=NDArrayMeta):
|
||||||
|
|
|
@ -45,13 +45,13 @@ class AdapterProgress:
|
||||||
self.progress, title="Building Namespaces", border_style="green", padding=(2, 2)
|
self.progress, title="Building Namespaces", border_style="green", padding=(2, 2)
|
||||||
)
|
)
|
||||||
|
|
||||||
def update(self, namespace: str, **kwargs):
|
def update(self, namespace: str, **kwargs) -> None:
|
||||||
self.progress.update(self.task_ids[namespace], **kwargs)
|
self.progress.update(self.task_ids[namespace], **kwargs)
|
||||||
|
|
||||||
def start(self):
|
def start(self) -> None:
|
||||||
self.progress.start()
|
self.progress.start()
|
||||||
|
|
||||||
def stop(self):
|
def stop(self) -> None:
|
||||||
self.progress.stop()
|
self.progress.stop()
|
||||||
|
|
||||||
def __enter__(self) -> Live:
|
def __enter__(self) -> Live:
|
||||||
|
|
|
@ -10,7 +10,7 @@ def test_nothing(nwb_core_fixture):
|
||||||
|
|
||||||
def _compare_dicts(dict1, dict2) -> bool:
|
def _compare_dicts(dict1, dict2) -> bool:
|
||||||
"""just in one direction - that all the entries in dict1 are in dict2"""
|
"""just in one direction - that all the entries in dict1 are in dict2"""
|
||||||
assert all([dict1[k] == dict2[k] for k in dict1.keys()])
|
assert all([dict1[k] == dict2[k] for k in dict1])
|
||||||
# assert all([dict1[k] == dict2[k] for k in dict2.keys()])
|
# assert all([dict1[k] == dict2[k] for k in dict2.keys()])
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -84,10 +84,7 @@ def imported_schema(linkml_schema, request) -> TestModules:
|
||||||
Convenience fixture for testing non-core generator features without needing to re-generate and
|
Convenience fixture for testing non-core generator features without needing to re-generate and
|
||||||
import every time.
|
import every time.
|
||||||
"""
|
"""
|
||||||
if request.param == "split":
|
split = request.param == "split"
|
||||||
split = True
|
|
||||||
else:
|
|
||||||
split = False
|
|
||||||
|
|
||||||
yield generate_and_import(linkml_schema, split)
|
yield generate_and_import(linkml_schema, split)
|
||||||
|
|
||||||
|
@ -188,7 +185,7 @@ def test_arraylike(imported_schema):
|
||||||
# check that we have gotten an NDArray annotation and its shape is correct
|
# check that we have gotten an NDArray annotation and its shape is correct
|
||||||
array = imported_schema["core"].MainTopLevel.model_fields["array"].annotation
|
array = imported_schema["core"].MainTopLevel.model_fields["array"].annotation
|
||||||
args = typing.get_args(array)
|
args = typing.get_args(array)
|
||||||
for i, shape in enumerate(("* x, * y", "* x, * y, 3 z", "* x, * y, 3 z, 4 a")):
|
for i, _ in enumerate(("* x, * y", "* x, * y, 3 z", "* x, * y, 3 z, 4 a")):
|
||||||
assert isinstance(args[i], NDArrayMeta)
|
assert isinstance(args[i], NDArrayMeta)
|
||||||
assert args[i].__args__[0].__args__
|
assert args[i].__args__[0].__args__
|
||||||
assert args[i].__args__[1] == np.number
|
assert args[i].__args__[1] == np.number
|
||||||
|
@ -213,8 +210,8 @@ def test_linkml_meta(imported_schema):
|
||||||
"""
|
"""
|
||||||
meta = imported_schema["core"].LinkML_Meta
|
meta = imported_schema["core"].LinkML_Meta
|
||||||
assert "tree_root" in meta.model_fields
|
assert "tree_root" in meta.model_fields
|
||||||
assert imported_schema["core"].MainTopLevel.linkml_meta.default.tree_root == True
|
assert imported_schema["core"].MainTopLevel.linkml_meta.default.tree_root
|
||||||
assert imported_schema["core"].OtherClass.linkml_meta.default.tree_root == False
|
assert not imported_schema["core"].OtherClass.linkml_meta.default.tree_root
|
||||||
|
|
||||||
|
|
||||||
def test_skip(linkml_schema):
|
def test_skip(linkml_schema):
|
||||||
|
|
|
@ -26,11 +26,11 @@ def test_preload_maps():
|
||||||
yaml.dump(hdmf_style_naming, temp_f, Dumper=Dumper)
|
yaml.dump(hdmf_style_naming, temp_f, Dumper=Dumper)
|
||||||
loaded = load_yaml(Path(temp_name))
|
loaded = load_yaml(Path(temp_name))
|
||||||
|
|
||||||
assert "neurodata_type_def" in loaded["groups"][0].keys()
|
assert "neurodata_type_def" in loaded["groups"][0]
|
||||||
assert "data_type_def" not in loaded["groups"][0].keys()
|
assert "data_type_def" not in loaded["groups"][0]
|
||||||
assert "neurodata_type_inc" in loaded["groups"][0].keys()
|
assert "neurodata_type_inc" in loaded["groups"][0]
|
||||||
assert "data_type_inc" not in loaded["groups"][0].keys()
|
assert "data_type_inc" not in loaded["groups"][0]
|
||||||
assert "neurodata_type_inc" in loaded["groups"][0]["datasets"][0].keys()
|
assert "neurodata_type_inc" in loaded["groups"][0]["datasets"][0]
|
||||||
assert "data_type_inc" not in loaded["groups"][0]["datasets"][0].keys()
|
assert "data_type_inc" not in loaded["groups"][0]["datasets"][0]
|
||||||
|
|
||||||
os.remove(temp_name)
|
os.remove(temp_name)
|
||||||
|
|
|
@ -88,7 +88,7 @@ def test_ndarray_serialize():
|
||||||
mod_str = mod.model_dump_json()
|
mod_str = mod.model_dump_json()
|
||||||
mod_json = json.loads(mod_str)
|
mod_json = json.loads(mod_str)
|
||||||
for a in ("array", "shape", "dtype", "unpack_fns"):
|
for a in ("array", "shape", "dtype", "unpack_fns"):
|
||||||
assert a in mod_json["large_array"].keys()
|
assert a in mod_json["large_array"]
|
||||||
assert isinstance(mod_json["large_array"]["array"], str)
|
assert isinstance(mod_json["large_array"]["array"], str)
|
||||||
assert isinstance(mod_json["small_array"], list)
|
assert isinstance(mod_json["small_array"], list)
|
||||||
|
|
||||||
|
|
|
@ -83,7 +83,7 @@ patch_contact_single_multiple = Patch(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def run_patches(phase: Phases, verbose: bool = False):
|
def run_patches(phase: Phases, verbose: bool = False) -> None:
|
||||||
patches = [p for p in Patch.instances if p.phase == phase]
|
patches = [p for p in Patch.instances if p.phase == phase]
|
||||||
for patch in patches:
|
for patch in patches:
|
||||||
if verbose:
|
if verbose:
|
||||||
|
@ -96,7 +96,7 @@ def run_patches(phase: Phases, verbose: bool = False):
|
||||||
pfile.write(string)
|
pfile.write(string)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main() -> None:
|
||||||
parser = argparse.ArgumentParser(description="Run patches for a given phase of code generation")
|
parser = argparse.ArgumentParser(description="Run patches for a given phase of code generation")
|
||||||
parser.add_argument("--phase", choices=list(Phases.__members__.keys()), type=Phases)
|
parser.add_argument("--phase", choices=list(Phases.__members__.keys()), type=Phases)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
Loading…
Reference in a new issue