mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2024-11-14 02:34:28 +00:00
working thru tests for nwb file
This commit is contained in:
parent
bb59c9d465
commit
91b2abf07e
16 changed files with 117 additions and 27 deletions
|
@ -49,6 +49,10 @@ Remove monkeypatches/overrides once PRs are closed
|
|||
Tests
|
||||
- [ ] Ensure schemas and pydantic modules in repos are up to date
|
||||
|
||||
Loading
|
||||
- [ ] Top-level containers are still a little janky, eg. how `ProcessingModule` just accepts
|
||||
extra args rather than properly abstracting `value` as a `__getitem__(self, key) -> T:`
|
||||
|
||||
## Docs TODOs
|
||||
|
||||
```{todolist}
|
||||
|
|
|
@ -71,7 +71,7 @@ adapter_parser = Sybil(
|
|||
|
||||
doctest_parser = Sybil(
|
||||
parsers=[DocTestParser(optionflags=ELLIPSIS + NORMALIZE_WHITESPACE), PythonCodeBlockParser()],
|
||||
patterns=["*.py"],
|
||||
patterns=["providers/git.py"],
|
||||
)
|
||||
|
||||
pytest_collect_file = (adapter_parser + doctest_parser).pytest()
|
||||
|
|
|
@ -141,7 +141,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -627,7 +627,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -2,7 +2,16 @@
|
|||
Placeholder test module to test reading from pynwb-generated NWB file
|
||||
"""
|
||||
|
||||
import pytest
|
||||
from datetime import datetime
|
||||
from numpydantic.interface.hdf5 import H5Proxy
|
||||
from nwb_linkml.io.hdf5 import HDF5IO
|
||||
from nwb_models.models import NWBFile
|
||||
from pydantic import BaseModel
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from pynwb import NWBHDF5IO, NWBFile as PyNWBFile
|
||||
|
||||
|
||||
def test_read_from_nwbfile(nwb_file):
|
||||
|
@ -15,6 +24,83 @@ def test_read_from_nwbfile(nwb_file):
|
|||
res = HDF5IO(nwb_file).read()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def read_nwbfile(nwb_file) -> NWBFile:
|
||||
res = HDF5IO(nwb_file).read()
|
||||
return res
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def read_pynwb(nwb_file) -> PyNWBFile:
|
||||
nwbf = NWBHDF5IO(nwb_file, "r")
|
||||
res = nwbf.read()
|
||||
yield res
|
||||
nwbf.close()
|
||||
|
||||
|
||||
def _compare_attrs(model: BaseModel, pymodel: object):
|
||||
for field, value in model.model_dump().items():
|
||||
if isinstance(value, (dict, H5Proxy)):
|
||||
continue
|
||||
if hasattr(pymodel, field):
|
||||
pynwb_val = getattr(pymodel, field)
|
||||
if isinstance(pynwb_val, list):
|
||||
if isinstance(pynwb_val[0], datetime):
|
||||
# need to normalize UTC numpy.datetime64 with datetime with tz
|
||||
continue
|
||||
assert all([val == pval for val, pval in zip(value, pynwb_val)])
|
||||
else:
|
||||
if not pynwb_val:
|
||||
# pynwb instantiates some stuff as empty dicts where we use ``None``
|
||||
assert bool(pynwb_val) == bool(value)
|
||||
else:
|
||||
assert value == pynwb_val
|
||||
|
||||
|
||||
def test_nwbfile_base(read_nwbfile, read_pynwb):
|
||||
"""
|
||||
Base attributes on top-level nwbfile are correct
|
||||
"""
|
||||
_compare_attrs(read_nwbfile, read_pynwb)
|
||||
|
||||
|
||||
def test_timeseries(read_nwbfile, read_pynwb):
|
||||
py_acq = read_pynwb.get_acquisition("test_timeseries")
|
||||
acq = read_nwbfile.acquisition["test_timeseries"]
|
||||
_compare_attrs(acq, py_acq)
|
||||
# data and timeseries should be equal
|
||||
assert np.array_equal(acq.data[:], py_acq.data[:])
|
||||
assert np.array_equal(acq.timestamps[:], py_acq.timestamps[:])
|
||||
|
||||
|
||||
def test_position(read_nwbfile, read_pynwb):
|
||||
trials = read_nwbfile.intervals.trials[:]
|
||||
py_trials = read_pynwb.trials.to_dataframe()
|
||||
pd.testing.assert_frame_equal(py_trials, trials)
|
||||
|
||||
spatial = read_nwbfile.processing["behavior"].Position.SpatialSeries
|
||||
py_spatial = read_pynwb.processing["behavior"]["Position"]["SpatialSeries"]
|
||||
_compare_attrs(spatial, py_spatial)
|
||||
assert np.array_equal(spatial[:], py_spatial.data[:])
|
||||
assert np.array_equal(spatial.timestamps[:], py_spatial.timestamps[:])
|
||||
|
||||
|
||||
def test_ecephys(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_units(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_icephys(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_ca_imaging(read_nwbfile, read_pynwb):
|
||||
pass
|
||||
|
||||
|
||||
def test_read_from_yaml(nwb_file):
|
||||
"""
|
||||
Read data from a yaml-fied NWB file
|
||||
|
|
|
@ -417,7 +417,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -704,7 +704,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -417,7 +417,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -704,7 +704,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -417,7 +417,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -704,7 +704,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
|
@ -419,7 +419,7 @@ class DynamicTableMixin(BaseModel):
|
|||
# cast to DF
|
||||
if not isinstance(index, Iterable):
|
||||
index = [index]
|
||||
index = pd.Index(data=index)
|
||||
index = pd.Index(data=index, name="id")
|
||||
return pd.DataFrame(data, index=index)
|
||||
|
||||
def _slice_range(
|
||||
|
@ -706,7 +706,7 @@ class AlignedDynamicTableMixin(BaseModel):
|
|||
ids = self.id[item]
|
||||
if not isinstance(ids, Iterable):
|
||||
ids = pd.Series([ids])
|
||||
ids = pd.DataFrame({"id": ids})
|
||||
ids = pd.DataFrame({"id": ids}, index=pd.Index(data=ids, name="id"))
|
||||
tables = [ids]
|
||||
for category_name, category in self._categories.items():
|
||||
table = category[item]
|
||||
|
|
Loading…
Reference in a new issue