mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
regenerate models
This commit is contained in:
parent
01e46f7531
commit
980db25b15
63 changed files with 1391 additions and 712 deletions
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -394,7 +394,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -403,7 +403,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -412,7 +412,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -421,7 +421,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel.""",
|
||||
json_schema_extra={
|
||||
|
@ -430,7 +430,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -439,7 +439,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering.""",
|
||||
json_schema_extra={
|
||||
|
@ -451,7 +451,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -460,7 +460,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -469,7 +469,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -478,7 +478,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -487,7 +487,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -501,7 +501,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -864,7 +864,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -893,7 +893,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -401,7 +401,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -410,7 +410,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -424,12 +424,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -439,7 +439,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -489,19 +489,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -530,16 +532,20 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
colnames: List[str] = Field(
|
||||
|
@ -547,7 +553,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -394,7 +394,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -403,7 +403,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -412,7 +412,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -421,7 +421,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel.""",
|
||||
json_schema_extra={
|
||||
|
@ -430,7 +430,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -439,7 +439,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering.""",
|
||||
json_schema_extra={
|
||||
|
@ -451,7 +451,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -460,7 +460,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -469,7 +469,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -478,7 +478,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -487,7 +487,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -501,7 +501,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -864,7 +864,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -893,7 +893,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -401,7 +401,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -410,7 +410,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -424,12 +424,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -439,7 +439,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -489,19 +489,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -530,16 +532,20 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
colnames: List[str] = Field(
|
||||
|
@ -547,7 +553,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -394,7 +394,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -403,7 +403,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -412,7 +412,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -421,7 +421,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel.""",
|
||||
json_schema_extra={
|
||||
|
@ -430,7 +430,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -439,7 +439,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering.""",
|
||||
json_schema_extra={
|
||||
|
@ -451,7 +451,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -460,7 +460,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -469,7 +469,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -478,7 +478,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -487,7 +487,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -501,7 +501,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -864,7 +864,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -893,7 +893,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -401,7 +401,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -410,7 +410,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -424,12 +424,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -439,7 +439,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -489,19 +489,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -530,16 +532,20 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
colnames: List[str] = Field(
|
||||
|
@ -547,7 +553,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -370,7 +370,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -379,7 +379,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -388,7 +388,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -397,7 +397,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel.""",
|
||||
json_schema_extra={
|
||||
|
@ -406,7 +406,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -415,7 +415,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering.""",
|
||||
json_schema_extra={
|
||||
|
@ -427,7 +427,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,7 +436,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -445,7 +445,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -454,7 +454,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -463,7 +463,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -477,7 +477,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -864,7 +864,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -893,7 +893,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -401,7 +401,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -410,7 +410,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -424,12 +424,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -439,7 +439,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -489,19 +489,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -530,16 +532,20 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
colnames: List[str] = Field(
|
||||
|
@ -547,7 +553,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -369,7 +369,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -370,7 +370,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -379,7 +379,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -388,7 +388,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -397,7 +397,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel.""",
|
||||
json_schema_extra={
|
||||
|
@ -406,7 +406,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -415,7 +415,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering.""",
|
||||
json_schema_extra={
|
||||
|
@ -427,7 +427,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,7 +436,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -445,7 +445,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -454,7 +454,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -463,7 +463,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -477,7 +477,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -864,7 +864,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -893,7 +893,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -401,7 +401,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -410,7 +410,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -424,12 +424,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -439,7 +439,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -489,19 +489,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -530,16 +532,20 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
colnames: List[str] = Field(
|
||||
|
@ -547,7 +553,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -371,7 +371,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -370,7 +370,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -379,7 +379,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -388,7 +388,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -397,7 +397,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel, in ohms.""",
|
||||
json_schema_extra={
|
||||
|
@ -406,7 +406,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -415,7 +415,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, float] = Field(
|
||||
filtering: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering, including the filter name and frequency cutoffs.""",
|
||||
json_schema_extra={
|
||||
|
@ -427,7 +427,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,7 +436,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -445,7 +445,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -454,7 +454,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -463,7 +463,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -477,7 +477,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -866,7 +866,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -895,7 +895,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -413,7 +413,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -422,7 +422,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,12 +436,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -451,7 +451,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -498,19 +498,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -539,26 +541,32 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
waveforms: Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]] = Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
waveforms: VectorData[Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
)
|
||||
)
|
||||
waveforms_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -589,7 +597,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -380,7 +380,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -5,7 +5,20 @@ from enum import Enum
|
|||
import re
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, overload, Iterable, Tuple
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator, model_validator
|
||||
from ...hdmf_common.v1_5_0.hdmf_common_base import Data, Container
|
||||
from numpydantic import NDArray, Shape
|
||||
|
@ -58,8 +71,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -67,7 +82,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -125,6 +140,9 @@ class TimeSeriesReferenceVectorDataMixin(VectorDataMixin):
|
|||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length(self) -> "TimeSeriesReferenceVectorDataMixin":
|
||||
"""
|
||||
Each of the three indexing columns must be the same length to work!
|
||||
"""
|
||||
assert len(self.idx_start) == len(self.timeseries) == len(self.count), (
|
||||
f"Columns have differing lengths: idx: {len(self.idx_start)}, count: {len(self.count)},"
|
||||
f" timeseries: {len(self.timeseries)}"
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -164,7 +164,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -378,7 +378,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: NDArray[Any, float] = Field(
|
||||
x: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -387,7 +387,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: NDArray[Any, float] = Field(
|
||||
y: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -396,7 +396,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: NDArray[Any, float] = Field(
|
||||
z: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -405,7 +405,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: NDArray[Any, float] = Field(
|
||||
imp: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Impedance of the channel, in ohms.""",
|
||||
json_schema_extra={
|
||||
|
@ -414,7 +414,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -423,7 +423,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: NDArray[Any, str] = Field(
|
||||
filtering: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Description of hardware filtering, including the filter name and frequency cutoffs.""",
|
||||
json_schema_extra={
|
||||
|
@ -435,7 +435,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -444,7 +444,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -453,7 +453,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -462,7 +462,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -471,7 +471,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference used for this electrode.""",
|
||||
json_schema_extra={
|
||||
|
@ -485,7 +485,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -873,7 +873,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -902,7 +902,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -939,7 +939,7 @@ class IntracellularElectrodesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -985,7 +985,7 @@ class IntracellularStimuliTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1031,7 +1031,7 @@ class IntracellularResponsesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1097,7 +1097,7 @@ class IntracellularRecordingsTable(AlignedDynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1146,7 +1146,7 @@ class SimultaneousRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1220,7 +1220,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stimulus_type: NDArray[Any, str] = Field(
|
||||
stimulus_type: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""The type of stimulus used for the sequential recording.""",
|
||||
json_schema_extra={
|
||||
|
@ -1234,7 +1234,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1313,7 +1313,7 @@ class RepetitionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1394,7 +1394,7 @@ class ExperimentalConditionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -413,7 +413,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -422,7 +422,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,12 +436,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -451,7 +451,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -498,19 +498,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -539,26 +541,32 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
waveforms: Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]] = Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
waveforms: VectorData[Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
)
|
||||
)
|
||||
waveforms_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -589,7 +597,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -380,7 +380,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -16,12 +16,13 @@ from typing import (
|
|||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
overload,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
Annotated,
|
||||
Type,
|
||||
TypeVar,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -81,8 +82,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -90,7 +93,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -148,6 +151,9 @@ class TimeSeriesReferenceVectorDataMixin(VectorDataMixin):
|
|||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length(self) -> "TimeSeriesReferenceVectorDataMixin":
|
||||
"""
|
||||
Each of the three indexing columns must be the same length to work!
|
||||
"""
|
||||
assert len(self.idx_start) == len(self.timeseries) == len(self.count), (
|
||||
f"Columns have differing lengths: idx: {len(self.idx_start)}, count: {len(self.count)},"
|
||||
f" timeseries: {len(self.timeseries)}"
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -173,7 +173,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -381,7 +381,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: Optional[NDArray[Any, float]] = Field(
|
||||
x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -390,7 +390,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: Optional[NDArray[Any, float]] = Field(
|
||||
y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -399,7 +399,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: Optional[NDArray[Any, float]] = Field(
|
||||
z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -408,7 +408,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: Optional[NDArray[Any, float]] = Field(
|
||||
imp: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""Impedance of the channel, in ohms.""",
|
||||
json_schema_extra={
|
||||
|
@ -417,7 +417,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -426,7 +426,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: Optional[NDArray[Any, str]] = Field(
|
||||
filtering: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of hardware filtering, including the filter name and frequency cutoffs.""",
|
||||
json_schema_extra={
|
||||
|
@ -438,7 +438,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -447,7 +447,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -456,7 +456,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -465,7 +465,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -474,7 +474,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference electrode and/or reference scheme used for this electrode, e.g., \"stainless steel skull screw\" or \"online common average referencing\".""",
|
||||
json_schema_extra={
|
||||
|
@ -488,7 +488,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -874,7 +874,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -903,7 +903,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -940,7 +940,7 @@ class IntracellularElectrodesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -986,7 +986,7 @@ class IntracellularStimuliTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1032,7 +1032,7 @@ class IntracellularResponsesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1098,7 +1098,7 @@ class IntracellularRecordingsTable(AlignedDynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1147,7 +1147,7 @@ class SimultaneousRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1221,7 +1221,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stimulus_type: NDArray[Any, str] = Field(
|
||||
stimulus_type: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""The type of stimulus used for the sequential recording.""",
|
||||
json_schema_extra={
|
||||
|
@ -1235,7 +1235,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1314,7 +1314,7 @@ class RepetitionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1395,7 +1395,7 @@ class ExperimentalConditionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -413,7 +413,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -422,7 +422,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,12 +436,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -451,7 +451,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -498,19 +498,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -539,26 +541,32 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
waveforms: Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]] = Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
waveforms: VectorData[Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
)
|
||||
)
|
||||
waveforms_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -589,7 +597,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -380,7 +380,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -16,12 +16,13 @@ from typing import (
|
|||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
overload,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
Annotated,
|
||||
Type,
|
||||
TypeVar,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -81,8 +82,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -90,7 +93,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -148,6 +151,9 @@ class TimeSeriesReferenceVectorDataMixin(VectorDataMixin):
|
|||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length(self) -> "TimeSeriesReferenceVectorDataMixin":
|
||||
"""
|
||||
Each of the three indexing columns must be the same length to work!
|
||||
"""
|
||||
assert len(self.idx_start) == len(self.timeseries) == len(self.count), (
|
||||
f"Columns have differing lengths: idx: {len(self.idx_start)}, count: {len(self.count)},"
|
||||
f" timeseries: {len(self.timeseries)}"
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -173,7 +173,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -381,7 +381,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: Optional[NDArray[Any, float]] = Field(
|
||||
x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -390,7 +390,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: Optional[NDArray[Any, float]] = Field(
|
||||
y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -399,7 +399,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: Optional[NDArray[Any, float]] = Field(
|
||||
z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -408,7 +408,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: Optional[NDArray[Any, float]] = Field(
|
||||
imp: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""Impedance of the channel, in ohms.""",
|
||||
json_schema_extra={
|
||||
|
@ -417,7 +417,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -426,7 +426,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: Optional[NDArray[Any, str]] = Field(
|
||||
filtering: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of hardware filtering, including the filter name and frequency cutoffs.""",
|
||||
json_schema_extra={
|
||||
|
@ -438,7 +438,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -447,7 +447,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -456,7 +456,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -465,7 +465,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -474,7 +474,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference electrode and/or reference scheme used for this electrode, e.g., \"stainless steel skull screw\" or \"online common average referencing\".""",
|
||||
json_schema_extra={
|
||||
|
@ -488,7 +488,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -874,7 +874,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -903,7 +903,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -940,7 +940,7 @@ class IntracellularElectrodesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -986,7 +986,7 @@ class IntracellularStimuliTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1032,7 +1032,7 @@ class IntracellularResponsesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1098,7 +1098,7 @@ class IntracellularRecordingsTable(AlignedDynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1147,7 +1147,7 @@ class SimultaneousRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1221,7 +1221,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stimulus_type: NDArray[Any, str] = Field(
|
||||
stimulus_type: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""The type of stimulus used for the sequential recording.""",
|
||||
json_schema_extra={
|
||||
|
@ -1235,7 +1235,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1314,7 +1314,7 @@ class RepetitionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1395,7 +1395,7 @@ class ExperimentalConditionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -413,7 +413,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -422,7 +422,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,12 +436,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -451,7 +451,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -498,19 +498,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -539,26 +541,32 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
waveforms: Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]] = Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
waveforms: VectorData[Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
)
|
||||
)
|
||||
waveforms_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -589,7 +597,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -479,7 +479,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -1,4 +1,9 @@
|
|||
from __future__ import annotations
|
||||
from datetime import datetime, date
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
import re
|
||||
import sys
|
||||
import numpy as np
|
||||
from ...hdmf_common.v1_8_0.hdmf_common_base import Data, Container
|
||||
from numpydantic import NDArray, Shape
|
||||
|
@ -11,18 +16,20 @@ from typing import (
|
|||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
overload,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
Annotated,
|
||||
Type,
|
||||
TypeVar,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
RootModel,
|
||||
field_validator,
|
||||
model_validator,
|
||||
ValidationInfo,
|
||||
BeforeValidator,
|
||||
|
@ -75,8 +82,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -84,7 +93,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -142,6 +151,9 @@ class TimeSeriesReferenceVectorDataMixin(VectorDataMixin):
|
|||
|
||||
@model_validator(mode="after")
|
||||
def ensure_equal_length(self) -> "TimeSeriesReferenceVectorDataMixin":
|
||||
"""
|
||||
Each of the three indexing columns must be the same length to work!
|
||||
"""
|
||||
assert len(self.idx_start) == len(self.timeseries) == len(self.count), (
|
||||
f"Columns have differing lengths: idx: {len(self.idx_start)}, count: {len(self.count)},"
|
||||
f" timeseries: {len(self.timeseries)}"
|
||||
|
|
|
@ -105,7 +105,7 @@ class TimeIntervals(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
start_time: NDArray[Any, float] = Field(
|
||||
start_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Start time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -114,7 +114,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stop_time: NDArray[Any, float] = Field(
|
||||
stop_time: VectorData[NDArray[Any, float]] = Field(
|
||||
...,
|
||||
description="""Stop time of epoch, in seconds.""",
|
||||
json_schema_extra={
|
||||
|
@ -123,7 +123,7 @@ class TimeIntervals(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
tags: Optional[NDArray[Any, str]] = Field(
|
||||
tags: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""User-defined tags that identify or categorize events.""",
|
||||
json_schema_extra={
|
||||
|
@ -173,7 +173,7 @@ class TimeIntervals(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -389,7 +389,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
"linkml_meta": {"equals_string": "electrodes", "ifabsent": "string(electrodes)"}
|
||||
},
|
||||
)
|
||||
x: Optional[NDArray[Any, float]] = Field(
|
||||
x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate of the channel location in the brain (+x is posterior).""",
|
||||
json_schema_extra={
|
||||
|
@ -398,7 +398,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
y: Optional[NDArray[Any, float]] = Field(
|
||||
y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate of the channel location in the brain (+y is inferior).""",
|
||||
json_schema_extra={
|
||||
|
@ -407,7 +407,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
z: Optional[NDArray[Any, float]] = Field(
|
||||
z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate of the channel location in the brain (+z is right).""",
|
||||
json_schema_extra={
|
||||
|
@ -416,7 +416,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
imp: Optional[NDArray[Any, float]] = Field(
|
||||
imp: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""Impedance of the channel, in ohms.""",
|
||||
json_schema_extra={
|
||||
|
@ -425,7 +425,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
location: NDArray[Any, str] = Field(
|
||||
location: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Location of the electrode (channel). Specify the area, layer, comments on estimation of area/layer, stereotaxic coordinates if in vivo, etc. Use standard atlas names for anatomical regions when possible.""",
|
||||
json_schema_extra={
|
||||
|
@ -434,7 +434,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
filtering: Optional[NDArray[Any, str]] = Field(
|
||||
filtering: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of hardware filtering, including the filter name and frequency cutoffs.""",
|
||||
json_schema_extra={
|
||||
|
@ -446,7 +446,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
group: List[ElectrodeGroup] = Field(
|
||||
..., description="""Reference to the ElectrodeGroup this electrode is a part of."""
|
||||
)
|
||||
group_name: NDArray[Any, str] = Field(
|
||||
group_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the ElectrodeGroup this electrode is a part of.""",
|
||||
json_schema_extra={
|
||||
|
@ -455,7 +455,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_x: Optional[NDArray[Any, float]] = Field(
|
||||
rel_x: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""x coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -464,7 +464,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_y: Optional[NDArray[Any, float]] = Field(
|
||||
rel_y: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""y coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -473,7 +473,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
rel_z: Optional[NDArray[Any, float]] = Field(
|
||||
rel_z: VectorData[Optional[NDArray[Any, float]]] = Field(
|
||||
None,
|
||||
description="""z coordinate in electrode group""",
|
||||
json_schema_extra={
|
||||
|
@ -482,7 +482,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
reference: Optional[NDArray[Any, str]] = Field(
|
||||
reference: VectorData[Optional[NDArray[Any, str]]] = Field(
|
||||
None,
|
||||
description="""Description of the reference electrode and/or reference scheme used for this electrode, e.g., \"stainless steel skull screw\" or \"online common average referencing\".""",
|
||||
json_schema_extra={
|
||||
|
@ -496,7 +496,7 @@ class ExtracellularEphysElectrodes(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -874,7 +874,7 @@ class SweepTable(DynamicTable):
|
|||
)
|
||||
|
||||
name: str = Field(...)
|
||||
sweep_number: NDArray[Any, int] = Field(
|
||||
sweep_number: VectorData[NDArray[Any, int]] = Field(
|
||||
...,
|
||||
description="""Sweep number of the PatchClampSeries in that row.""",
|
||||
json_schema_extra={
|
||||
|
@ -903,7 +903,7 @@ class SweepTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -940,7 +940,7 @@ class IntracellularElectrodesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -998,7 +998,7 @@ class IntracellularStimuliTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1044,7 +1044,7 @@ class IntracellularResponsesTable(DynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1110,7 +1110,7 @@ class IntracellularRecordingsTable(AlignedDynamicTable):
|
|||
...,
|
||||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1159,7 +1159,7 @@ class SimultaneousRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1233,7 +1233,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
stimulus_type: NDArray[Any, str] = Field(
|
||||
stimulus_type: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""The type of stimulus used for the sequential recording.""",
|
||||
json_schema_extra={
|
||||
|
@ -1247,7 +1247,7 @@ class SequentialRecordingsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1326,7 +1326,7 @@ class RepetitionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -1407,7 +1407,7 @@ class ExperimentalConditionsTable(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -413,7 +413,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
"bands",
|
||||
json_schema_extra={"linkml_meta": {"equals_string": "bands", "ifabsent": "string(bands)"}},
|
||||
)
|
||||
band_name: NDArray[Any, str] = Field(
|
||||
band_name: VectorData[NDArray[Any, str]] = Field(
|
||||
...,
|
||||
description="""Name of the band, e.g. theta.""",
|
||||
json_schema_extra={
|
||||
|
@ -422,7 +422,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_limits: NDArray[Shape["* num_bands, 2 low_high"], float] = Field(
|
||||
band_limits: VectorData[NDArray[Shape["* num_bands, 2 low_high"], float]] = Field(
|
||||
...,
|
||||
description="""Low and high limit of each band in Hz. If it is a Gaussian filter, use 2 SD on either side of the center.""",
|
||||
json_schema_extra={
|
||||
|
@ -436,12 +436,12 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
band_mean: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_mean: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The mean Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
)
|
||||
band_stdev: NDArray[Shape["* num_bands"], float] = Field(
|
||||
band_stdev: VectorData[NDArray[Shape["* num_bands"], float]] = Field(
|
||||
...,
|
||||
description="""The standard deviation of Gaussian filters, in Hz.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_bands"}]}}},
|
||||
|
@ -451,7 +451,7 @@ class DecompositionSeriesBands(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -498,19 +498,21 @@ class Units(DynamicTable):
|
|||
}
|
||||
},
|
||||
)
|
||||
obs_intervals: Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]] = Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
obs_intervals: VectorData[Optional[NDArray[Shape["* num_intervals, 2 start_end"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Observation intervals for each unit.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {
|
||||
"dimensions": [
|
||||
{"alias": "num_intervals"},
|
||||
{"alias": "start_end", "exact_cardinality": 2},
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
electrodes_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -539,26 +541,32 @@ class Units(DynamicTable):
|
|||
electrode_group: Optional[List[ElectrodeGroup]] = Field(
|
||||
None, description="""Electrode group that each spike unit came from."""
|
||||
)
|
||||
waveform_mean: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_mean: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform mean for each spike unit.""")
|
||||
waveform_sd: Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
waveform_sd: VectorData[
|
||||
Optional[
|
||||
Union[
|
||||
NDArray[Shape["* num_units, * num_samples"], float],
|
||||
NDArray[Shape["* num_units, * num_samples, * num_electrodes"], float],
|
||||
]
|
||||
]
|
||||
] = Field(None, description="""Spike waveform standard deviation for each spike unit.""")
|
||||
waveforms: Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]] = Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
waveforms: VectorData[Optional[NDArray[Shape["* num_waveforms, * num_samples"], float]]] = (
|
||||
Field(
|
||||
None,
|
||||
description="""Individual waveforms for each spike on each electrode. This is a doubly indexed column. The 'waveforms_index' column indexes which waveforms in this column belong to the same spike event for a given unit, where each waveform was recorded from a different electrode. The 'waveforms_index_index' column indexes the 'waveforms_index' column to indicate which spike events belong to a given unit. For example, if the 'waveforms_index_index' column has values [2, 5, 6], then the first 2 elements of the 'waveforms_index' column correspond to the 2 spike events of the first unit, the next 3 elements of the 'waveforms_index' column correspond to the 3 spike events of the second unit, and the next 1 element of the 'waveforms_index' column corresponds to the 1 spike event of the third unit. If the 'waveforms_index' column has values [3, 6, 8, 10, 12, 13], then the first 3 elements of the 'waveforms' column contain the 3 spike waveforms that were recorded from 3 different electrodes for the first spike time of the first unit. See https://nwb-schema.readthedocs.io/en/stable/format_description.html#doubly-ragged-arrays for a graphical representation of this example. When there is only one electrode for each unit (i.e., each spike time is associated with a single waveform), then the 'waveforms_index' column will have values 1, 2, ..., N, where N is the number of spike events. The number of electrodes for each spike event should be the same within a given unit. The 'electrodes' column should be used to indicate which electrodes are associated with each unit, and the order of the waveforms within a given unit x spike event should be in the same order as the electrodes referenced in the 'electrodes' column of this table. The number of samples for each waveform must be the same.""",
|
||||
json_schema_extra={
|
||||
"linkml_meta": {
|
||||
"array": {"dimensions": [{"alias": "num_waveforms"}, {"alias": "num_samples"}]}
|
||||
}
|
||||
},
|
||||
)
|
||||
)
|
||||
waveforms_index: Named[Optional[VectorIndex]] = Field(
|
||||
None,
|
||||
|
@ -589,7 +597,7 @@ class Units(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -479,7 +479,7 @@ class PlaneSegmentation(DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -5,7 +5,20 @@ from enum import Enum
|
|||
import re
|
||||
import sys
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -67,8 +80,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -76,7 +91,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -119,13 +134,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -406,20 +421,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -569,6 +592,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -698,7 +747,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -5,7 +5,20 @@ from enum import Enum
|
|||
import re
|
||||
import sys
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -67,8 +80,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -76,7 +91,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -119,13 +134,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -406,20 +421,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -569,6 +592,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -698,7 +747,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -5,7 +5,20 @@ from enum import Enum
|
|||
import re
|
||||
import sys
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -67,8 +80,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -76,7 +91,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -119,13 +134,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -406,20 +421,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -569,6 +592,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -717,7 +766,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_2_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -711,7 +760,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_2_1.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -711,7 +760,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_3_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -711,7 +760,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_4_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -685,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_5_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -685,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -713,7 +762,7 @@ class AlignedDynamicTable(AlignedDynamicTableMixin, DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_5_1.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -685,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -713,7 +762,7 @@ class AlignedDynamicTable(AlignedDynamicTableMixin, DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_6_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -685,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -713,7 +762,7 @@ class AlignedDynamicTable(AlignedDynamicTableMixin, DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -6,7 +6,20 @@ import re
|
|||
import sys
|
||||
from ...hdmf_common.v1_7_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
|
@ -68,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -77,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -120,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -407,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -570,6 +593,32 @@ class AlignedDynamicTableMixin(DynamicTableMixin):
|
|||
df.set_index((self.name, "id"), drop=True, inplace=True)
|
||||
return df
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def create_categories(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
Construct categories from arguments.
|
||||
|
||||
the model dict is ordered after python3.6, so we can use that minus
|
||||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "categories" not in model:
|
||||
categories = [
|
||||
k for k in model if k not in cls.NON_CATEGORY_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["categories"] = categories
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
categories = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["categories"]
|
||||
]
|
||||
model["categories"].extend(categories)
|
||||
return model
|
||||
|
||||
|
||||
linkml_meta = LinkMLMeta(
|
||||
{
|
||||
|
@ -685,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -713,7 +762,7 @@ class AlignedDynamicTable(AlignedDynamicTableMixin, DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
|
@ -1,7 +1,25 @@
|
|||
from __future__ import annotations
|
||||
from ...hdmf_common.v1_8_0.hdmf_common_base import Data
|
||||
from datetime import datetime, date
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
import re
|
||||
import sys
|
||||
from ...hdmf_common.v1_8_0.hdmf_common_base import Data, Container
|
||||
import pandas as pd
|
||||
from typing import Any, ClassVar, List, Dict, Optional, Union, Iterable, Tuple, overload
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
List,
|
||||
Literal,
|
||||
Dict,
|
||||
Optional,
|
||||
Union,
|
||||
Generic,
|
||||
Iterable,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
|
@ -63,8 +81,10 @@ class LinkMLMeta(RootModel):
|
|||
|
||||
NUMPYDANTIC_VERSION = "1.2.1"
|
||||
|
||||
T = TypeVar("T", bound=NDArray)
|
||||
|
||||
class VectorDataMixin(BaseModel):
|
||||
|
||||
class VectorDataMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorData indexing abilities
|
||||
"""
|
||||
|
@ -72,7 +92,7 @@ class VectorDataMixin(BaseModel):
|
|||
_index: Optional["VectorIndex"] = None
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
if value is not None and "value" not in kwargs:
|
||||
|
@ -115,13 +135,13 @@ class VectorDataMixin(BaseModel):
|
|||
return len(self.value)
|
||||
|
||||
|
||||
class VectorIndexMixin(BaseModel):
|
||||
class VectorIndexMixin(BaseModel, Generic[T]):
|
||||
"""
|
||||
Mixin class to give VectorIndex indexing abilities
|
||||
"""
|
||||
|
||||
# redefined in `VectorData`, but included here for testing and type checking
|
||||
value: Optional[NDArray] = None
|
||||
value: Optional[T] = None
|
||||
target: Optional["VectorData"] = None
|
||||
|
||||
def __init__(self, value: Optional[NDArray] = None, **kwargs):
|
||||
|
@ -402,20 +422,28 @@ class DynamicTableMixin(BaseModel):
|
|||
anything in :attr:`.NON_COLUMN_FIELDS` to determine order implied from passage order
|
||||
"""
|
||||
if "colnames" not in model:
|
||||
colnames = [
|
||||
k for k in model if k not in cls.NON_COLUMN_FIELDS and not k.endswith("_index")
|
||||
]
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = [
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
model["colnames"].extend(colnames)
|
||||
model["colnames"] = colnames
|
||||
else:
|
||||
# add any columns not explicitly given an order at the end
|
||||
colnames = model["colnames"].copy()
|
||||
colnames.extend(
|
||||
[
|
||||
k
|
||||
for k in model
|
||||
if k not in cls.NON_COLUMN_FIELDS
|
||||
and not k.endswith("_index")
|
||||
and k not in model["colnames"]
|
||||
and not isinstance(model[k], VectorIndexMixin)
|
||||
]
|
||||
)
|
||||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
@ -706,7 +734,7 @@ class DynamicTable(DynamicTableMixin):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
@ -734,7 +762,7 @@ class AlignedDynamicTable(AlignedDynamicTableMixin, DynamicTable):
|
|||
description="""The names of the columns in this table. This should be used to specify an order to the columns.""",
|
||||
)
|
||||
description: str = Field(..., description="""Description of what is in this dynamic table.""")
|
||||
id: NDArray[Shape["* num_rows"], int] = Field(
|
||||
id: VectorData[NDArray[Shape["* num_rows"], int]] = Field(
|
||||
...,
|
||||
description="""Array of unique identifiers for the rows of this dynamic table.""",
|
||||
json_schema_extra={"linkml_meta": {"array": {"dimensions": [{"alias": "num_rows"}]}}},
|
||||
|
|
Loading…
Reference in a new issue