mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
actually no that's stupid, linkml handles inheritance except for the one special case of compound dtypes which aren't a thing in linkml and are here used exclusively for 1d vectors.
This commit is contained in:
parent
0452a4359f
commit
994b79e0f2
3 changed files with 16 additions and 53 deletions
|
@ -742,6 +742,10 @@ class MapCompoundDtype(DatasetMap):
|
|||
We render them just as a class with each of the dtypes as slots - they are
|
||||
typically used by other datasets to create a table.
|
||||
|
||||
Since there is exactly one class (``TimeSeriesReferenceVectorData``) that uses compound dtypes
|
||||
meaningfully, we just hardcode the behavior of inheriting the array shape from the VectorData
|
||||
parent classes. Otherwise, linkml schemas correctly propagate the ``value`` property.
|
||||
|
||||
Eg. ``base.TimeSeriesReferenceVectorData``
|
||||
|
||||
.. code-block:: yaml
|
||||
|
@ -784,24 +788,17 @@ class MapCompoundDtype(DatasetMap):
|
|||
Make a new class for this dtype, using its sub-dtypes as fields,
|
||||
and use it as the range for the parent class
|
||||
"""
|
||||
# all the slots share the same ndarray spec if there is one
|
||||
array = {}
|
||||
if cls.dims or cls.shape:
|
||||
array_adapter = ArrayAdapter(cls.dims, cls.shape)
|
||||
array = array_adapter.make_slot()
|
||||
|
||||
slots = {}
|
||||
for a_dtype in cls.dtype:
|
||||
slots[a_dtype.name] = SlotDefinition(
|
||||
name=a_dtype.name,
|
||||
description=a_dtype.doc,
|
||||
range=handle_dtype(a_dtype.dtype),
|
||||
array=ArrayExpression(exact_number_dimensions=1),
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
**array,
|
||||
)
|
||||
res.classes[0].attributes.update(slots)
|
||||
|
||||
# the compound dtype replaces the ``value`` slot, if present
|
||||
if "value" in res.classes[0].attributes:
|
||||
del res.classes[0].attributes["value"]
|
||||
return res
|
||||
|
|
|
@ -19,7 +19,7 @@ from nwb_linkml.adapters.adapter import Adapter, BuildResult
|
|||
from nwb_linkml.adapters.schema import SchemaAdapter
|
||||
from nwb_linkml.lang_elements import NwbLangSchema
|
||||
from nwb_linkml.ui import AdapterProgress
|
||||
from nwb_schema_language import Namespaces, Group, Dataset
|
||||
from nwb_schema_language import Namespaces
|
||||
|
||||
|
||||
class NamespacesAdapter(Adapter):
|
||||
|
@ -196,45 +196,6 @@ class NamespacesAdapter(Adapter):
|
|||
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def _populate_inheritance(self):
|
||||
"""
|
||||
ensure properties from `neurodata_type_inc` are propaged through to inheriting classes.
|
||||
|
||||
This seems super expensive but we'll optimize for perf later if that proves to be the case
|
||||
"""
|
||||
# don't use walk_types here so we can replace the objects as we mutate them
|
||||
for sch in self.schemas:
|
||||
for i, group in enumerate(sch.groups):
|
||||
if getattr(group, "neurodata_type_inc", None) is not None:
|
||||
merged_attrs = self._merge_inheritance(group)
|
||||
sch.groups[i] = Group(**merged_attrs)
|
||||
for i, dataset in enumerate(sch.datasets):
|
||||
if getattr(dataset, "neurodata_type_inc", None) is not None:
|
||||
merged_attrs = self._merge_inheritance(dataset)
|
||||
sch.datasets[i] = Dataset(**merged_attrs)
|
||||
return self
|
||||
|
||||
def _merge_inheritance(self, obj: Group | Dataset) -> dict:
|
||||
obj_dict = obj.model_dump(exclude_none=True)
|
||||
if obj.neurodata_type_inc:
|
||||
name = obj.neurodata_type_def if obj.neurodata_type_def else obj.name
|
||||
self.logger.debug(f"Merging {name} with {obj.neurodata_type_inc}")
|
||||
# there must be only one type with this name
|
||||
parent: Group | Dataset = next(
|
||||
self.walk_field_values(self, "neurodata_type_def", obj.neurodata_type_inc)
|
||||
)
|
||||
if obj.neurodata_type_def == "TimeSeriesReferenceVectorData":
|
||||
pdb.set_trace()
|
||||
parent_dict = copy(self._merge_inheritance(parent))
|
||||
# children don't inherit the type_def
|
||||
del parent_dict["neurodata_type_def"]
|
||||
# overwrite with child values
|
||||
parent_dict.update(obj_dict)
|
||||
return parent_dict
|
||||
|
||||
return obj_dict
|
||||
|
||||
def to_yaml(self, base_dir: Path) -> None:
|
||||
"""
|
||||
Build the schemas, saving them to ``yaml`` files according to
|
||||
|
|
|
@ -104,14 +104,19 @@ def generate_versions(
|
|||
repo.tag = version
|
||||
build_progress.update(linkml_task, advance=1, action="Load Namespaces")
|
||||
|
||||
# first load the core namespace
|
||||
core_ns = io.load_namespace_adapter(repo.namespace_file)
|
||||
if repo.namespace == NWB_CORE_REPO:
|
||||
# then the hdmf-common namespace
|
||||
# first load HDMF common
|
||||
hdmf_common_ns = io.load_namespace_adapter(
|
||||
repo.temp_directory / "hdmf-common-schema" / "common" / "namespace.yaml"
|
||||
)
|
||||
core_ns.imported.append(hdmf_common_ns)
|
||||
# then load nwb core
|
||||
core_ns = io.load_namespace_adapter(
|
||||
repo.namespace_file, imported=[hdmf_common_ns]
|
||||
)
|
||||
|
||||
else:
|
||||
# otherwise just load HDMF
|
||||
core_ns = io.load_namespace_adapter(repo.namespace_file)
|
||||
|
||||
build_progress.update(linkml_task, advance=1, action="Build LinkML")
|
||||
|
||||
|
@ -169,7 +174,7 @@ def generate_versions(
|
|||
|
||||
# import the most recent version of the schemaz we built
|
||||
latest_version = sorted(
|
||||
(pydantic_path / "pydantic" / "core").iterdir(), key=os.path.getmtime
|
||||
(pydantic_path / "pydantic" / "core").glob('v*'), key=os.path.getmtime
|
||||
)[-1]
|
||||
|
||||
# make inits to use the schema! we don't usually do this in the
|
||||
|
|
Loading…
Reference in a new issue