mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
continue removing nptyping, actually fix indexing
This commit is contained in:
parent
3ee7c68e15
commit
a993ee10f2
24 changed files with 863 additions and 813 deletions
|
@ -23,7 +23,7 @@ Cleanup
|
||||||
|
|
||||||
- [ ] Make a minimal pydanticgen-only package to slim linkml deps?
|
- [ ] Make a minimal pydanticgen-only package to slim linkml deps?
|
||||||
- [ ] Disambiguate "maps" terminology - split out simple maps from the eg. dataset mapping classes
|
- [ ] Disambiguate "maps" terminology - split out simple maps from the eg. dataset mapping classes
|
||||||
- [ ] Remove unnecessary imports
|
- [x] Remove unnecessary imports
|
||||||
- dask
|
- dask
|
||||||
- nptyping
|
- nptyping
|
||||||
- [ ] Adapt the split generation to the new split generator style
|
- [ ] Adapt the split generation to the new split generator style
|
||||||
|
|
1068
docs/pdm.lock
1068
docs/pdm.lock
File diff suppressed because it is too large
Load diff
|
@ -14,7 +14,6 @@ dependencies = [
|
||||||
"furo>=2023.8.19",
|
"furo>=2023.8.19",
|
||||||
"myst-parser>=2.0.0",
|
"myst-parser>=2.0.0",
|
||||||
"autodoc-pydantic>=2.0.1",
|
"autodoc-pydantic>=2.0.1",
|
||||||
"nptyping>=2.5.0",
|
|
||||||
"sphinx-autobuild>=2021.3.14",
|
"sphinx-autobuild>=2021.3.14",
|
||||||
"sphinx-design>=0.5.0",
|
"sphinx-design>=0.5.0",
|
||||||
"sphinx-togglebutton>=0.3.2",
|
"sphinx-togglebutton>=0.3.2",
|
||||||
|
|
|
@ -266,10 +266,7 @@ class NamespacesAdapter(Adapter):
|
||||||
else:
|
else:
|
||||||
ns = ns[0]
|
ns = ns[0]
|
||||||
|
|
||||||
schema_names = []
|
schema_names = [sch.source for sch in ns.schema_ if sch.source is not None]
|
||||||
for sch in ns.schema_:
|
|
||||||
if sch.source is not None:
|
|
||||||
schema_names.append(sch.source)
|
|
||||||
return schema_names
|
return schema_names
|
||||||
|
|
||||||
def schema_namespace(self, name: str) -> Optional[str]:
|
def schema_namespace(self, name: str) -> Optional[str]:
|
||||||
|
|
|
@ -133,7 +133,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
@ -382,6 +382,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
DYNAMIC_TABLE_IMPORTS = Imports(
|
DYNAMIC_TABLE_IMPORTS = Imports(
|
||||||
imports=[
|
imports=[
|
||||||
Import(
|
Import(
|
||||||
|
@ -417,7 +431,9 @@ Imports required for the dynamic table mixin
|
||||||
VectorData is purposefully excluded as an import or an inject so that it will be
|
VectorData is purposefully excluded as an import or an inject so that it will be
|
||||||
resolved to the VectorData definition in the generated module
|
resolved to the VectorData definition in the generated module
|
||||||
"""
|
"""
|
||||||
DYNAMIC_TABLE_INJECTS = [VectorDataMixin, VectorIndexMixin, DynamicTableMixin]
|
DYNAMIC_TABLE_INJECTS = [
|
||||||
|
VectorDataMixin,
|
||||||
# class VectorDataMixin(BaseModel):
|
VectorIndexMixin,
|
||||||
# index: Optional[BaseModel] = None
|
DynamicTableRegionMixin,
|
||||||
|
DynamicTableMixin,
|
||||||
|
]
|
||||||
|
|
|
@ -242,10 +242,7 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
||||||
|
|
||||||
def _find_references(name: str, obj: h5py.Group | h5py.Dataset) -> None:
|
def _find_references(name: str, obj: h5py.Group | h5py.Dataset) -> None:
|
||||||
pbar.update()
|
pbar.update()
|
||||||
refs = []
|
refs = [attr for attr in obj.attrs.values() if isinstance(attr, h5py.h5r.Reference)]
|
||||||
for attr in obj.attrs.values():
|
|
||||||
if isinstance(attr, h5py.h5r.Reference):
|
|
||||||
refs.append(attr)
|
|
||||||
|
|
||||||
if isinstance(obj, h5py.Dataset):
|
if isinstance(obj, h5py.Dataset):
|
||||||
# dataset is all references
|
# dataset is all references
|
||||||
|
|
|
@ -100,10 +100,9 @@ np_to_python = {
|
||||||
np.float64,
|
np.float64,
|
||||||
np.single,
|
np.single,
|
||||||
np.double,
|
np.double,
|
||||||
np.float_,
|
|
||||||
)
|
)
|
||||||
},
|
},
|
||||||
**{n: str for n in (np.character, np.str_, np.string_, np.unicode_)},
|
**{n: str for n in (np.character, np.str_)},
|
||||||
}
|
}
|
||||||
|
|
||||||
allowed_precisions = {
|
allowed_precisions = {
|
||||||
|
|
|
@ -171,6 +171,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -281,7 +295,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -171,6 +171,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -281,7 +295,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -171,6 +171,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -281,7 +295,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -172,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -282,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and len(val) > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -1,7 +1,12 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from ...hdmf_common.v1_8_0.hdmf_common_base import Data
|
from datetime import datetime, date
|
||||||
|
from decimal import Decimal
|
||||||
|
from enum import Enum
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from ...hdmf_common.v1_8_0.hdmf_common_base import Data, Container
|
||||||
from pandas import DataFrame, Series
|
from pandas import DataFrame, Series
|
||||||
from typing import Any, ClassVar, List, Dict, Optional, Union, overload, Tuple
|
from typing import Any, ClassVar, List, Literal, Dict, Optional, Union, overload, Tuple
|
||||||
from pydantic import (
|
from pydantic import (
|
||||||
BaseModel,
|
BaseModel,
|
||||||
ConfigDict,
|
ConfigDict,
|
||||||
|
@ -167,6 +172,20 @@ class VectorIndexMixin(BaseModel):
|
||||||
return len(self.value)
|
return len(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
class DynamicTableRegionMixin(BaseModel):
|
||||||
|
"""
|
||||||
|
Mixin to allow indexing references to regions of dynamictables
|
||||||
|
"""
|
||||||
|
|
||||||
|
table: "DynamicTableMixin"
|
||||||
|
|
||||||
|
def __getitem__(self, item: Union[str, int, slice, Tuple[Union[str, int, slice], ...]]) -> Any:
|
||||||
|
return self.table[item]
|
||||||
|
|
||||||
|
def __setitem__(self, key: Union[int, str, slice], value: Any) -> None:
|
||||||
|
self.table[key] = value
|
||||||
|
|
||||||
|
|
||||||
class DynamicTableMixin(BaseModel):
|
class DynamicTableMixin(BaseModel):
|
||||||
"""
|
"""
|
||||||
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
Mixin to make DynamicTable subclasses behave like tables/dataframes
|
||||||
|
@ -277,7 +296,7 @@ class DynamicTableMixin(BaseModel):
|
||||||
# special case where pandas will unpack a pydantic model
|
# special case where pandas will unpack a pydantic model
|
||||||
# into {n_fields} rows, rather than keeping it in a dict
|
# into {n_fields} rows, rather than keeping it in a dict
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and val.shape[0] > 1:
|
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||||
# special case where we are returning a row in a ragged array,
|
# special case where we are returning a row in a ragged array,
|
||||||
# same as above - prevent pandas pivoting to long
|
# same as above - prevent pandas pivoting to long
|
||||||
val = Series([val])
|
val = Series([val])
|
||||||
|
|
|
@ -14,180 +14,163 @@ Pydantic models that behave like pandas dataframes
|
||||||
left in this module since it is necessary for it to make sense.
|
left in this module since it is necessary for it to make sense.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import ast
|
#
|
||||||
from typing import Any, Dict, Optional, Type
|
# class DataFrame(BaseModel, pd.DataFrame):
|
||||||
|
# """
|
||||||
|
# Pydantic model root class that mimics a pandas dataframe.
|
||||||
|
#
|
||||||
|
# Notes:
|
||||||
|
#
|
||||||
|
# The synchronization between the underlying lists in the pydantic model
|
||||||
|
# and the derived dataframe is partial, and at the moment unidirectional.
|
||||||
|
# This class is primarily intended for reading from tables stored in
|
||||||
|
# NWB files rather than being able to manipulate them.
|
||||||
|
#
|
||||||
|
# The dataframe IS updated when new values are *assigned* to a field.
|
||||||
|
#
|
||||||
|
# eg.::
|
||||||
|
#
|
||||||
|
# MyModel.fieldval = [1,2,3]
|
||||||
|
#
|
||||||
|
# But the dataframe is NOT updated when existing values are updated.
|
||||||
|
#
|
||||||
|
# eg.::
|
||||||
|
#
|
||||||
|
# MyModel.fieldval.append(4)
|
||||||
|
#
|
||||||
|
# In that case you need to call :meth:`.update_df` manually.
|
||||||
|
#
|
||||||
|
# Additionally, if the dataframe is modified, the underlying lists are NOT updated,
|
||||||
|
# but when the model is dumped to a dictionary or serialized, the dataframe IS used,
|
||||||
|
# so changes will be reflected then.
|
||||||
|
#
|
||||||
|
# Fields that shadow pandas methods WILL prevent them from being usable, except
|
||||||
|
# by directly accessing the dataframe like ``mymodel._df``
|
||||||
|
#
|
||||||
|
# """
|
||||||
|
#
|
||||||
|
# _df: pd.DataFrame = None
|
||||||
|
# model_config = ConfigDict(validate_assignment=True)
|
||||||
|
#
|
||||||
|
# def __init__(self, **kwargs):
|
||||||
|
# # pdb.set_trace()
|
||||||
|
# super().__init__(**kwargs)
|
||||||
|
#
|
||||||
|
# self._df = self.__make_df()
|
||||||
|
#
|
||||||
|
# def __make_df(self) -> pd.DataFrame:
|
||||||
|
# # make dict that can handle ragged arrays and NoneTypes
|
||||||
|
# items = {k: v for k, v in self.__dict__.items() if k in self.model_fields}
|
||||||
|
#
|
||||||
|
# df_dict = {
|
||||||
|
# k: (pd.Series(v) if isinstance(v, list) else pd.Series([v])) for k, v in items.items()
|
||||||
|
# }
|
||||||
|
# df = pd.DataFrame(df_dict)
|
||||||
|
# # replace Nans with None
|
||||||
|
# df = df.fillna(np.nan).replace([np.nan], [None])
|
||||||
|
# return df
|
||||||
|
#
|
||||||
|
# def update_df(self) -> None:
|
||||||
|
# """
|
||||||
|
# Update the internal dataframe in the case that the model values are changed
|
||||||
|
# in a way that we can't detect, like appending to one of the lists.
|
||||||
|
#
|
||||||
|
# """
|
||||||
|
# self._df = self.__make_df()
|
||||||
|
#
|
||||||
|
# def __getattr__(self, item: str):
|
||||||
|
# """
|
||||||
|
# Mimic pandas dataframe and pydantic model behavior
|
||||||
|
# """
|
||||||
|
# if item in ("df", "_df"):
|
||||||
|
# return self.__pydantic_private__["_df"]
|
||||||
|
# elif item in self.model_fields:
|
||||||
|
# return self._df[item]
|
||||||
|
# else:
|
||||||
|
# try:
|
||||||
|
# return object.__getattribute__(self._df, item)
|
||||||
|
# except AttributeError:
|
||||||
|
# return object.__getattribute__(self, item)
|
||||||
|
#
|
||||||
|
# @model_validator(mode="after")
|
||||||
|
# def recreate_df(self) -> None:
|
||||||
|
# """
|
||||||
|
# Remake DF when validating (eg. when updating values on assignment)
|
||||||
|
# """
|
||||||
|
# self.update_df()
|
||||||
|
#
|
||||||
|
# @model_serializer(mode="wrap", when_used="always")
|
||||||
|
# def serialize_model(self, nxt: SerializerFunctionWrapHandler) -> Dict[str, Any]:
|
||||||
|
# """
|
||||||
|
# We don't handle values that are changed on the dataframe by directly
|
||||||
|
# updating the underlying model lists, but we implicitly handle them
|
||||||
|
# by using the dataframe as the source when serializing
|
||||||
|
# """
|
||||||
|
# if self._df is None:
|
||||||
|
# return nxt(self)
|
||||||
|
# else:
|
||||||
|
# out = self._df.to_dict("list")
|
||||||
|
# # remove Nones
|
||||||
|
# out = {k: [inner_v for inner_v in v if inner_v is not None] for k, v in out.items()}
|
||||||
|
# return nxt(self.__class__(**out))
|
||||||
|
|
||||||
import h5py
|
#
|
||||||
import numpy as np
|
# def dynamictable_to_df(
|
||||||
import pandas as pd
|
# group: h5py.Group, model: Optional[Type[DataFrame]] = None, base: Optional[BaseModel] = None
|
||||||
from pydantic import (
|
# ) -> DataFrame:
|
||||||
BaseModel,
|
# """Generate a dataframe from an NDB DynamicTable"""
|
||||||
ConfigDict,
|
# if model is None:
|
||||||
SerializerFunctionWrapHandler,
|
# model = model_from_dynamictable(group, base)
|
||||||
model_serializer,
|
#
|
||||||
model_validator,
|
# items = {}
|
||||||
)
|
# for col, _col_type in model.model_fields.items():
|
||||||
|
# if col not in group:
|
||||||
from nwb_linkml.maps.hdmf import dereference_reference_vector, model_from_dynamictable
|
# continue
|
||||||
from nwb_linkml.types.hdf5 import HDF5_Path
|
# idxname = col + "_index"
|
||||||
|
# if idxname in group:
|
||||||
|
# idx = group.get(idxname)[:]
|
||||||
class DataFrame(BaseModel, pd.DataFrame):
|
# data = group.get(col)[idx - 1]
|
||||||
"""
|
# else:
|
||||||
Pydantic model root class that mimics a pandas dataframe.
|
# data = group.get(col)[:]
|
||||||
|
#
|
||||||
Notes:
|
# # Handle typing inside of list
|
||||||
|
# if isinstance(data[0], bytes):
|
||||||
The synchronization between the underlying lists in the pydantic model
|
# data = data.astype("unicode")
|
||||||
and the derived dataframe is partial, and at the moment unidirectional.
|
# if isinstance(data[0], str):
|
||||||
This class is primarily intended for reading from tables stored in
|
# # lists and other compound data types can get flattened out to strings when stored
|
||||||
NWB files rather than being able to manipulate them.
|
# # so we try and literal eval and recover them
|
||||||
|
# try:
|
||||||
The dataframe IS updated when new values are *assigned* to a field.
|
# eval_type = type(ast.literal_eval(data[0]))
|
||||||
|
# except (ValueError, SyntaxError):
|
||||||
eg.::
|
# eval_type = str
|
||||||
|
#
|
||||||
MyModel.fieldval = [1,2,3]
|
# # if we've found one of those, get the data type within it.
|
||||||
|
# if eval_type is not str:
|
||||||
But the dataframe is NOT updated when existing values are updated.
|
# eval_list = []
|
||||||
|
# for item in data.tolist():
|
||||||
eg.::
|
# try:
|
||||||
|
# eval_list.append(ast.literal_eval(item))
|
||||||
MyModel.fieldval.append(4)
|
# except ValueError:
|
||||||
|
# eval_list.append(None)
|
||||||
In that case you need to call :meth:`.update_df` manually.
|
# data = eval_list
|
||||||
|
# elif isinstance(data[0], h5py.h5r.Reference):
|
||||||
Additionally, if the dataframe is modified, the underlying lists are NOT updated,
|
# data = [HDF5_Path(group[d].name) for d in data]
|
||||||
but when the model is dumped to a dictionary or serialized, the dataframe IS used,
|
# elif isinstance(data[0], tuple) and any(
|
||||||
so changes will be reflected then.
|
# [isinstance(d, h5py.h5r.Reference) for d in data[0]]
|
||||||
|
# ):
|
||||||
Fields that shadow pandas methods WILL prevent them from being usable, except
|
# # references stored inside a tuple, reference + location.
|
||||||
by directly accessing the dataframe like ``mymodel._df``
|
# # dereference them!?
|
||||||
|
# dset = group.get(col)
|
||||||
"""
|
# names = dset.dtype.names
|
||||||
|
# if names is not None and names[0] == "idx_start" and names[1] == "count":
|
||||||
_df: pd.DataFrame = None
|
# data = dereference_reference_vector(dset, data)
|
||||||
model_config = ConfigDict(validate_assignment=True)
|
#
|
||||||
|
# else:
|
||||||
def __init__(self, **kwargs):
|
# data = data.tolist()
|
||||||
# pdb.set_trace()
|
#
|
||||||
super().__init__(**kwargs)
|
# # After list, check if we need to put this thing inside of
|
||||||
|
# # another class, as indicated by the enclosing model
|
||||||
self._df = self.__make_df()
|
#
|
||||||
|
# items[col] = data
|
||||||
def __make_df(self) -> pd.DataFrame:
|
#
|
||||||
# make dict that can handle ragged arrays and NoneTypes
|
# return model(hdf5_path=group.name, name=group.name.split("/")[-1], **items)
|
||||||
items = {k: v for k, v in self.__dict__.items() if k in self.model_fields}
|
|
||||||
|
|
||||||
df_dict = {
|
|
||||||
k: (pd.Series(v) if isinstance(v, list) else pd.Series([v])) for k, v in items.items()
|
|
||||||
}
|
|
||||||
df = pd.DataFrame(df_dict)
|
|
||||||
# replace Nans with None
|
|
||||||
df = df.fillna(np.nan).replace([np.nan], [None])
|
|
||||||
return df
|
|
||||||
|
|
||||||
def update_df(self) -> None:
|
|
||||||
"""
|
|
||||||
Update the internal dataframe in the case that the model values are changed
|
|
||||||
in a way that we can't detect, like appending to one of the lists.
|
|
||||||
|
|
||||||
"""
|
|
||||||
self._df = self.__make_df()
|
|
||||||
|
|
||||||
def __getattr__(self, item: str):
|
|
||||||
"""
|
|
||||||
Mimic pandas dataframe and pydantic model behavior
|
|
||||||
"""
|
|
||||||
if item in ("df", "_df"):
|
|
||||||
return self.__pydantic_private__["_df"]
|
|
||||||
elif item in self.model_fields:
|
|
||||||
return self._df[item]
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
return object.__getattribute__(self._df, item)
|
|
||||||
except AttributeError:
|
|
||||||
return object.__getattribute__(self, item)
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def recreate_df(self) -> None:
|
|
||||||
"""
|
|
||||||
Remake DF when validating (eg. when updating values on assignment)
|
|
||||||
"""
|
|
||||||
self.update_df()
|
|
||||||
|
|
||||||
@model_serializer(mode="wrap", when_used="always")
|
|
||||||
def serialize_model(self, nxt: SerializerFunctionWrapHandler) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
We don't handle values that are changed on the dataframe by directly
|
|
||||||
updating the underlying model lists, but we implicitly handle them
|
|
||||||
by using the dataframe as the source when serializing
|
|
||||||
"""
|
|
||||||
if self._df is None:
|
|
||||||
return nxt(self)
|
|
||||||
else:
|
|
||||||
out = self._df.to_dict("list")
|
|
||||||
# remove Nones
|
|
||||||
out = {k: [inner_v for inner_v in v if inner_v is not None] for k, v in out.items()}
|
|
||||||
return nxt(self.__class__(**out))
|
|
||||||
|
|
||||||
|
|
||||||
def dynamictable_to_df(
|
|
||||||
group: h5py.Group, model: Optional[Type[DataFrame]] = None, base: Optional[BaseModel] = None
|
|
||||||
) -> DataFrame:
|
|
||||||
"""Generate a dataframe from an NDB DynamicTable"""
|
|
||||||
if model is None:
|
|
||||||
model = model_from_dynamictable(group, base)
|
|
||||||
|
|
||||||
items = {}
|
|
||||||
for col, _col_type in model.model_fields.items():
|
|
||||||
if col not in group:
|
|
||||||
continue
|
|
||||||
idxname = col + "_index"
|
|
||||||
if idxname in group:
|
|
||||||
idx = group.get(idxname)[:]
|
|
||||||
data = group.get(col)[idx - 1]
|
|
||||||
else:
|
|
||||||
data = group.get(col)[:]
|
|
||||||
|
|
||||||
# Handle typing inside of list
|
|
||||||
if isinstance(data[0], bytes):
|
|
||||||
data = data.astype("unicode")
|
|
||||||
if isinstance(data[0], str):
|
|
||||||
# lists and other compound data types can get flattened out to strings when stored
|
|
||||||
# so we try and literal eval and recover them
|
|
||||||
try:
|
|
||||||
eval_type = type(ast.literal_eval(data[0]))
|
|
||||||
except (ValueError, SyntaxError):
|
|
||||||
eval_type = str
|
|
||||||
|
|
||||||
# if we've found one of those, get the data type within it.
|
|
||||||
if eval_type is not str:
|
|
||||||
eval_list = []
|
|
||||||
for item in data.tolist():
|
|
||||||
try:
|
|
||||||
eval_list.append(ast.literal_eval(item))
|
|
||||||
except ValueError:
|
|
||||||
eval_list.append(None)
|
|
||||||
data = eval_list
|
|
||||||
elif isinstance(data[0], h5py.h5r.Reference):
|
|
||||||
data = [HDF5_Path(group[d].name) for d in data]
|
|
||||||
elif isinstance(data[0], tuple) and any(
|
|
||||||
[isinstance(d, h5py.h5r.Reference) for d in data[0]]
|
|
||||||
):
|
|
||||||
# references stored inside a tuple, reference + location.
|
|
||||||
# dereference them!?
|
|
||||||
dset = group.get(col)
|
|
||||||
names = dset.dtype.names
|
|
||||||
if names is not None and names[0] == "idx_start" and names[1] == "count":
|
|
||||||
data = dereference_reference_vector(dset, data)
|
|
||||||
|
|
||||||
else:
|
|
||||||
data = data.tolist()
|
|
||||||
|
|
||||||
# After list, check if we need to put this thing inside of
|
|
||||||
# another class, as indicated by the enclosing model
|
|
||||||
|
|
||||||
items[col] = data
|
|
||||||
|
|
||||||
return model(hdf5_path=group.name, name=group.name.split("/")[-1], **items)
|
|
||||||
|
|
|
@ -67,8 +67,9 @@ def units(request) -> Tuple[Units, list[np.ndarray], np.ndarray]:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
n_units = 24
|
n_units = 24
|
||||||
|
generator = np.random.default_rng()
|
||||||
spike_times = [
|
spike_times = [
|
||||||
np.full(shape=np.random.randint(10, 50), fill_value=i, dtype=float) for i in range(n_units)
|
np.full(shape=generator.integers(10, 50), fill_value=i, dtype=float) for i in range(n_units)
|
||||||
]
|
]
|
||||||
spike_idx = []
|
spike_idx = []
|
||||||
for i in range(n_units):
|
for i in range(n_units):
|
||||||
|
@ -141,6 +142,19 @@ def test_dynamictable_indexing(electrical_series):
|
||||||
assert subsection.dtypes.values.tolist() == dtypes[0:3]
|
assert subsection.dtypes.values.tolist() == dtypes[0:3]
|
||||||
|
|
||||||
|
|
||||||
|
def test_dynamictable_region(electrical_series):
|
||||||
|
"""
|
||||||
|
Dynamictableregion should
|
||||||
|
Args:
|
||||||
|
electrical_series:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
series, electrodes = electrical_series
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test_dynamictable_ragged_arrays(units):
|
def test_dynamictable_ragged_arrays(units):
|
||||||
"""
|
"""
|
||||||
Should be able to index ragged arrays using an implicit _index column
|
Should be able to index ragged arrays using an implicit _index column
|
||||||
|
|
|
@ -4,8 +4,9 @@ from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from nptyping import Shape, UByte
|
from numpydantic import NDArray, Shape
|
||||||
from numpydantic import NDArray
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
import nwb_linkml
|
import nwb_linkml
|
||||||
from nwb_linkml.maps.naming import version_module_case
|
from nwb_linkml.maps.naming import version_module_case
|
||||||
|
@ -77,7 +78,7 @@ def test_linkml_build_from_yaml(tmp_output_dir):
|
||||||
"comments": Optional[str],
|
"comments": Optional[str],
|
||||||
"data": "TimeSeriesData",
|
"data": "TimeSeriesData",
|
||||||
"timestamps": "Optional", # __name__ just gets the first part of Optional[TimeSeriesTimestamps]
|
"timestamps": "Optional", # __name__ just gets the first part of Optional[TimeSeriesTimestamps]
|
||||||
"control": Optional[NDArray[Shape["* num_times"], UByte]],
|
"control": Optional[NDArray[Shape["* num_times"], np.uint8]],
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
|
|
|
@ -58,6 +58,10 @@ select = [
|
||||||
"D210", "D211",
|
"D210", "D211",
|
||||||
# emptiness
|
# emptiness
|
||||||
"D419",
|
"D419",
|
||||||
|
# perf
|
||||||
|
"PERF",
|
||||||
|
# numpy
|
||||||
|
"NPY",
|
||||||
]
|
]
|
||||||
ignore = [
|
ignore = [
|
||||||
# annotations for *args and **kwargs
|
# annotations for *args and **kwargs
|
||||||
|
|
|
@ -3,6 +3,7 @@ import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
from pdb import post_mortem
|
from pdb import post_mortem
|
||||||
|
import subprocess
|
||||||
|
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
@ -179,6 +180,8 @@ def generate_versions(
|
||||||
with open(pydantic_path / "__init__.py", "w") as initfile:
|
with open(pydantic_path / "__init__.py", "w") as initfile:
|
||||||
initfile.write(f"from .pydantic.core.{latest_version.name}.namespace import *")
|
initfile.write(f"from .pydantic.core.{latest_version.name}.namespace import *")
|
||||||
|
|
||||||
|
subprocess.run(["black", "."])
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
if len(failed_versions) > 0:
|
if len(failed_versions) > 0:
|
||||||
print("Failed Building Versions:")
|
print("Failed Building Versions:")
|
||||||
|
|
Loading…
Reference in a new issue