mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
need 2 stop for the night but its sort of happening
This commit is contained in:
parent
40984a6582
commit
aac0c7abdd
3 changed files with 169 additions and 7 deletions
|
@ -54,9 +54,8 @@ class H5SourceItem(BaseModel):
|
||||||
"""What kind of hdf5 element this is"""
|
"""What kind of hdf5 element this is"""
|
||||||
depends: List[str] = Field(default_factory=list)
|
depends: List[str] = Field(default_factory=list)
|
||||||
"""Paths of other source items that this item depends on before it can be instantiated. eg. from softlinks"""
|
"""Paths of other source items that this item depends on before it can be instantiated. eg. from softlinks"""
|
||||||
|
attrs: dict = Field(default_factory=dict)
|
||||||
|
"""Any static attrs that can be had from the element"""
|
||||||
|
|
||||||
|
|
||||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||||
@property
|
@property
|
||||||
|
@ -64,16 +63,23 @@ class H5SourceItem(BaseModel):
|
||||||
"""path split by /"""
|
"""path split by /"""
|
||||||
return self.path.split('/')
|
return self.path.split('/')
|
||||||
|
|
||||||
|
FlatH5 = Dict[str, H5SourceItem]
|
||||||
|
|
||||||
class ReadQueue(BaseModel):
|
class ReadQueue(BaseModel):
|
||||||
"""Container model to store items as they are built """
|
"""Container model to store items as they are built """
|
||||||
|
h5f: h5py.File = Field(
|
||||||
|
description="Open hdf5 file used when resolving the queue!"
|
||||||
|
)
|
||||||
queue: Dict[str,H5SourceItem] = Field(
|
queue: Dict[str,H5SourceItem] = Field(
|
||||||
default_factory=dict,
|
default_factory=dict,
|
||||||
description="Items left to be instantiated, keyed by hdf5 path",
|
description="Items left to be instantiated, keyed by hdf5 path",
|
||||||
)
|
)
|
||||||
completed: Dict[str, BaseModel] = Field(
|
completed: Dict[str, Any] = Field(
|
||||||
default_factory=dict,
|
default_factory=dict,
|
||||||
description="Items that have already been instantiated, keyed by hdf5 path"
|
description="Items that have already been instantiated, keyed by hdf5 path"
|
||||||
)
|
)
|
||||||
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||||
|
|
||||||
|
|
||||||
class HDF5IO():
|
class HDF5IO():
|
||||||
|
|
||||||
|
@ -357,13 +363,36 @@ def flatten_hdf(h5f:h5py.File | h5py.Group, skip='specifications') -> Dict[str,
|
||||||
h5_type = 'group'
|
h5_type = 'group'
|
||||||
# dereference and get name of reference
|
# dereference and get name of reference
|
||||||
depends = list(set([h5f[i].name for i in refs]))
|
depends = list(set([h5f[i].name for i in refs]))
|
||||||
|
if not name.startswith('/'):
|
||||||
|
name = '/' + name
|
||||||
items[name] = H5SourceItem.model_construct(
|
items[name] = H5SourceItem.model_construct(
|
||||||
path = name,
|
path = name,
|
||||||
leaf = leaf,
|
leaf = leaf,
|
||||||
depends = depends
|
depends = depends,
|
||||||
|
h5_type=h5_type,
|
||||||
|
attrs = dict(obj.attrs.items())
|
||||||
)
|
)
|
||||||
|
|
||||||
h5f.visititems(_itemize)
|
h5f.visititems(_itemize)
|
||||||
return items
|
return items
|
||||||
|
|
||||||
|
def sort_flat_hdf(flat: Dict[str, H5SourceItem]) -> Dict[str, H5SourceItem]:
|
||||||
|
"""
|
||||||
|
Sort flat hdf5 file in a rough order of solvability
|
||||||
|
|
||||||
|
* First process any leaf items
|
||||||
|
|
||||||
|
* Put any items with dependencies at the end
|
||||||
|
|
||||||
|
Args:
|
||||||
|
flat:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
class Rank(NamedTuple):
|
||||||
|
has_depends: bool
|
||||||
|
not_leaf: bool
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
134
nwb_linkml/src/nwb_linkml/io/hdf5_scratch.py
Normal file
134
nwb_linkml/src/nwb_linkml/io/hdf5_scratch.py
Normal file
|
@ -0,0 +1,134 @@
|
||||||
|
"""
|
||||||
|
Just saving a scratch file temporarily where i was trying a different strategy,
|
||||||
|
rather than doing one big recursive pass through, try and solve subsections
|
||||||
|
of the tree and then piece them together once you have the others done.
|
||||||
|
|
||||||
|
sort of working. I think what i need to do is populate the 'depends'
|
||||||
|
field more so that at each pass i can work through the items whose dependencies
|
||||||
|
have been solved from the bottom up.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from nwb_linkml.io.hdf5 import HDF5IO, flatten_hdf
|
||||||
|
import h5py
|
||||||
|
from typing import NamedTuple, Tuple, Optional
|
||||||
|
from nwb_linkml.io.hdf5 import H5SourceItem, FlatH5, ReadQueue, HDF5IO
|
||||||
|
from nwb_linkml.providers.schema import SchemaProvider
|
||||||
|
from rich import print
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
class Rank(NamedTuple):
|
||||||
|
has_depends: bool
|
||||||
|
not_leaf: bool
|
||||||
|
not_dataset: bool
|
||||||
|
has_type: bool
|
||||||
|
|
||||||
|
def sort_flat(item:Tuple[str, H5SourceItem]):
|
||||||
|
|
||||||
|
return Rank(
|
||||||
|
has_depends=len(item[1].depends)>0,
|
||||||
|
not_leaf = ~item[1].leaf,
|
||||||
|
not_dataset = item[1].h5_type != 'dataset',
|
||||||
|
has_type = 'neurodata_type' in item[1].attrs
|
||||||
|
)
|
||||||
|
|
||||||
|
def prune_empty(flat: FlatH5) -> FlatH5:
|
||||||
|
"""
|
||||||
|
Groups without children or attrs can be removed
|
||||||
|
"""
|
||||||
|
deletes = []
|
||||||
|
for k,v in flat.items():
|
||||||
|
if v.leaf and v.h5_type == 'group' and len(v.attrs) == 0:
|
||||||
|
deletes.append(k)
|
||||||
|
|
||||||
|
for k in deletes:
|
||||||
|
del flat[k]
|
||||||
|
|
||||||
|
return flat
|
||||||
|
|
||||||
|
def resolve_scalars(res: ReadQueue) -> ReadQueue:
|
||||||
|
for path, item in res.queue.copy().items():
|
||||||
|
if item.h5_type == 'group':
|
||||||
|
continue
|
||||||
|
dset = res.h5f.get(path)
|
||||||
|
if dset.shape == ():
|
||||||
|
res.completed[path] = dset[()]
|
||||||
|
res.queue.pop(path)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def resolve_terminal_arrays(res:ReadQueue) -> ReadQueue:
|
||||||
|
"""Terminal arrays can just get loaded as a dict"""
|
||||||
|
for path, item in res.queue.copy().items():
|
||||||
|
if item.h5_type != 'dataset' or not item.leaf or len(item.depends) > 0:
|
||||||
|
continue
|
||||||
|
h5_object = res.h5f.get(path)
|
||||||
|
item_dict = {
|
||||||
|
'name': path.split('/')[-1],
|
||||||
|
'array': h5_object[:],
|
||||||
|
**h5_object.attrs,
|
||||||
|
}
|
||||||
|
res.completed[path] = item_dict
|
||||||
|
res.queue.pop(path)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def attempt_parentless(res:ReadQueue, provider:SchemaProvider) -> ReadQueue:
|
||||||
|
"""Try the groups whose parents have no neurodata type (ie. acquisition)"""
|
||||||
|
for path, item in res.queue.copy().items():
|
||||||
|
if item.h5_type == 'dataset':
|
||||||
|
continue
|
||||||
|
group = res.h5f.get(path)
|
||||||
|
if 'neurodata_type' in group.parent.attrs.keys() or 'neurodata_type' not in group.attrs.keys():
|
||||||
|
continue
|
||||||
|
model = provider.get_class(group.attrs['namespace'], group.attrs['neurodata_type'])
|
||||||
|
res = naive_instantiation(group, model, res)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def naive_instantiation(element: h5py.Group|h5py.Dataset, model:BaseModel, res:ReadQueue) -> Optional[BaseModel]:
|
||||||
|
"""
|
||||||
|
Try to instantiate model with just the attrs and any resolved children
|
||||||
|
"""
|
||||||
|
print(element)
|
||||||
|
kwargs = {}
|
||||||
|
kwargs['name'] = element.name.split('/')[-1]
|
||||||
|
for k in element.attrs.keys():
|
||||||
|
try:
|
||||||
|
kwargs[k] = element.attrs[k]
|
||||||
|
except Exception as e:
|
||||||
|
print(f'couldnt load attr: {e}')
|
||||||
|
for key, child in element.items():
|
||||||
|
if child.name in res.completed:
|
||||||
|
kwargs[child.name] = res.completed[child.name]
|
||||||
|
|
||||||
|
kwargs = {k:v for k,v in kwargs.items() if k in model.model_fields.keys()}
|
||||||
|
|
||||||
|
try:
|
||||||
|
instance = model(**kwargs)
|
||||||
|
res.queue.pop(element.name)
|
||||||
|
res.completed[element.name] = instance
|
||||||
|
print('succeeded')
|
||||||
|
return res
|
||||||
|
except Exception as e:
|
||||||
|
print(f'failed: {e}')
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------------
|
||||||
|
path = '/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773_probe-769322820_ecephys.nwb'
|
||||||
|
|
||||||
|
h5io = HDF5IO(path)
|
||||||
|
provider = h5io.make_provider()
|
||||||
|
|
||||||
|
h5f = h5py.File(path)
|
||||||
|
flat = flatten_hdf(h5f)
|
||||||
|
|
||||||
|
flat = prune_empty(flat)
|
||||||
|
flat_sorted = dict(sorted(flat.items(), key=sort_flat))
|
||||||
|
|
||||||
|
res = ReadQueue(h5f=h5f, queue=flat_sorted.copy())
|
||||||
|
|
||||||
|
res = resolve_scalars(res)
|
||||||
|
res = resolve_terminal_arrays(res)
|
||||||
|
res = attempt_parentless(res, provider)
|
||||||
|
|
|
@ -76,7 +76,6 @@ def test_truncate_file(tmp_output_dir):
|
||||||
assert target_h5f[target_h5f['link']['child'].attrs['reference_contig']].name == target_h5f['data']['dataset_contig'].name
|
assert target_h5f[target_h5f['link']['child'].attrs['reference_contig']].name == target_h5f['data']['dataset_contig'].name
|
||||||
assert target_h5f[target_h5f['link']['child'].attrs['reference_chunked']].name == target_h5f['data']['dataset_chunked'].name
|
assert target_h5f[target_h5f['link']['child'].attrs['reference_chunked']].name == target_h5f['data']['dataset_chunked'].name
|
||||||
assert target_h5f['data']['dataset_contig'].attrs['anattr'] == 1
|
assert target_h5f['data']['dataset_contig'].attrs['anattr'] == 1
|
||||||
|
|
||||||
@pytest.mark.skip()
|
@pytest.mark.skip()
|
||||||
def test_flatten_hdf():
|
def test_flatten_hdf():
|
||||||
from nwb_linkml.io.hdf5 import HDF5IO, flatten_hdf
|
from nwb_linkml.io.hdf5 import HDF5IO, flatten_hdf
|
||||||
|
@ -85,6 +84,6 @@ def test_flatten_hdf():
|
||||||
h5f = h5py.File(path)
|
h5f = h5py.File(path)
|
||||||
flat = flatten_hdf(h5f)
|
flat = flatten_hdf(h5f)
|
||||||
assert not any(['specifications' in v.path for v in flat.values()])
|
assert not any(['specifications' in v.path for v in flat.values()])
|
||||||
|
pdb.set_trace()
|
||||||
raise NotImplementedError('Just a stub for local testing for now, finish me!')
|
raise NotImplementedError('Just a stub for local testing for now, finish me!')
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue