mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
actually fix indexing
This commit is contained in:
parent
362965daf5
commit
cebb21993d
14 changed files with 134 additions and 148 deletions
|
@ -109,7 +109,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -127,10 +127,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -145,14 +147,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -258,7 +258,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -266,6 +266,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -286,7 +287,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -304,10 +305,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -322,14 +325,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -258,7 +258,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -266,6 +266,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -286,7 +287,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -304,10 +305,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -322,14 +325,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -258,7 +258,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -266,6 +266,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -286,7 +287,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -304,10 +305,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -322,14 +325,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -259,7 +259,7 @@ class DynamicTableMixin(BaseModel):
|
|||
]: ...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: slice) -> DataFrame: ...
|
||||
def __getitem__(self, item: Union[slice, "NDArray"]) -> DataFrame: ...
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
|
@ -267,6 +267,7 @@ class DynamicTableMixin(BaseModel):
|
|||
str,
|
||||
int,
|
||||
slice,
|
||||
"NDArray",
|
||||
Tuple[int, Union[int, str]],
|
||||
Tuple[Union[int, slice], ...],
|
||||
],
|
||||
|
@ -287,7 +288,7 @@ class DynamicTableMixin(BaseModel):
|
|||
if isinstance(item, str):
|
||||
return self._columns[item]
|
||||
if isinstance(item, (int, slice, np.integer, np.ndarray)):
|
||||
return DataFrame.from_dict(self._slice_range(item))
|
||||
data = self._slice_range(item)
|
||||
elif isinstance(item, tuple):
|
||||
if len(item) != 2:
|
||||
raise ValueError(
|
||||
|
@ -305,10 +306,12 @@ class DynamicTableMixin(BaseModel):
|
|||
return self._columns[cols][rows]
|
||||
|
||||
data = self._slice_range(rows, cols)
|
||||
return DataFrame.from_dict(data)
|
||||
else:
|
||||
raise ValueError(f"Unsure how to get item with key {item}")
|
||||
|
||||
# cast to DF
|
||||
return DataFrame(data)
|
||||
|
||||
def _slice_range(
|
||||
self, rows: Union[int, slice, np.ndarray], cols: Optional[Union[str, List[str]]] = None
|
||||
) -> Dict[str, Union[list, "NDArray", "VectorData"]]:
|
||||
|
@ -323,14 +326,10 @@ class DynamicTableMixin(BaseModel):
|
|||
else:
|
||||
val = self._columns[k][rows]
|
||||
|
||||
if isinstance(val, BaseModel):
|
||||
# special case where pandas will unpack a pydantic model
|
||||
# into {n_fields} rows, rather than keeping it in a dict
|
||||
val = Series([val])
|
||||
elif isinstance(rows, int) and hasattr(val, "shape") and val.shape and len(val) > 1:
|
||||
# special case where we are returning a row in a ragged array,
|
||||
# same as above - prevent pandas pivoting to long
|
||||
# scalars need to be wrapped in series for pandas
|
||||
if not isinstance(rows, (Iterable, slice)):
|
||||
val = Series([val])
|
||||
|
||||
data[k] = val
|
||||
return data
|
||||
|
||||
|
|
|
@ -150,6 +150,24 @@ def test_dynamictable_indexing(electrical_series):
|
|||
assert subsection.dtypes.values.tolist() == dtypes[0:3]
|
||||
|
||||
|
||||
def test_dynamictable_ragged(units):
|
||||
"""
|
||||
Should be able to index ragged arrays using an implicit _index column
|
||||
|
||||
Also tests:
|
||||
- passing arrays directly instead of wrapping in vectordata/index specifically,
|
||||
if the models in the fixture instantiate then this works
|
||||
"""
|
||||
units, spike_times, spike_idx = units
|
||||
|
||||
# ensure we don't pivot to long when indexing
|
||||
assert units[0].shape[0] == 1
|
||||
# check that we got the indexing boundaries corrunect
|
||||
# (and that we are forwarding attr calls to the dataframe by accessing shape
|
||||
for i in range(units.shape[0]):
|
||||
assert np.all(units.iloc[i, 0] == spike_times[i])
|
||||
|
||||
|
||||
def test_dynamictable_region_basic(electrical_series):
|
||||
"""
|
||||
DynamicTableRegion should be able to refer to a row or rows of another table
|
||||
|
@ -175,7 +193,7 @@ def test_dynamictable_region_basic(electrical_series):
|
|||
# getting a list of table rows is actually correct behavior here because
|
||||
# this list of table rows is actually the cell of another table
|
||||
rows = series.electrodes[0:3]
|
||||
assert all([row.id == idx for row, idx in zip(rows, [4, 3, 2])])
|
||||
assert all([all(row.id == idx) for row, idx in zip(rows, [4, 3, 2])])
|
||||
|
||||
|
||||
def test_dynamictable_region_ragged():
|
||||
|
@ -218,24 +236,6 @@ def test_dynamictable_region_ragged():
|
|||
assert all([all(row[1].timeseries == i) for i, row in zip([1, 2, 3], rows.iterrows())])
|
||||
|
||||
|
||||
def test_dynamictable_ragged(units):
|
||||
"""
|
||||
Should be able to index ragged arrays using an implicit _index column
|
||||
|
||||
Also tests:
|
||||
- passing arrays directly instead of wrapping in vectordata/index specifically,
|
||||
if the models in the fixture instantiate then this works
|
||||
"""
|
||||
units, spike_times, spike_idx = units
|
||||
|
||||
# ensure we don't pivot to long when indexing
|
||||
assert units[0].shape[0] == 1
|
||||
# check that we got the indexing boundaries corrunect
|
||||
# (and that we are forwarding attr calls to the dataframe by accessing shape
|
||||
for i in range(units.shape[0]):
|
||||
assert np.all(units.iloc[i, 0] == spike_times[i])
|
||||
|
||||
|
||||
def test_dynamictable_append_column():
|
||||
pass
|
||||
|
||||
|
|
Loading…
Reference in a new issue