mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
regenerate models
This commit is contained in:
parent
43ff3503dc
commit
d61d1ecf22
12 changed files with 300 additions and 216 deletions
|
@ -245,7 +245,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -445,8 +445,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -454,22 +455,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -481,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -519,17 +520,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -245,7 +245,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -445,8 +445,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -454,22 +455,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -481,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -519,17 +520,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -245,7 +245,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -445,8 +445,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -454,22 +455,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -481,6 +480,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -519,17 +520,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
|
@ -246,7 +246,7 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
__pydantic_extra__: Dict[str, Union[list, "NDArray", "VectorDataMixin"]]
|
||||
__pydantic_extra__: Dict[str, Union["VectorDataMixin", "VectorIndexMixin", "NDArray", list]]
|
||||
NON_COLUMN_FIELDS: ClassVar[tuple[str]] = (
|
||||
"name",
|
||||
"colnames",
|
||||
|
@ -446,8 +446,9 @@ class DynamicTableMixin(BaseModel):
|
|||
model["colnames"] = colnames
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def cast_extra_columns(self) -> "DynamicTableMixin":
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def cast_extra_columns(cls, model: Dict[str, Any]) -> Dict:
|
||||
"""
|
||||
If extra columns are passed as just lists or arrays, cast to VectorData
|
||||
before we resolve targets for VectorData and VectorIndex pairs.
|
||||
|
@ -455,22 +456,20 @@ class DynamicTableMixin(BaseModel):
|
|||
See :meth:`.cast_specified_columns` for handling columns in the class specification
|
||||
"""
|
||||
# if columns are not in the specification, cast to a generic VectorData
|
||||
for key, val in self.__pydantic_extra__.items():
|
||||
for key, val in model.items():
|
||||
if key in cls.model_fields:
|
||||
continue
|
||||
if not isinstance(val, (VectorData, VectorIndex)):
|
||||
try:
|
||||
if key.endswith("_index"):
|
||||
self.__pydantic_extra__[key] = VectorIndex(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorIndex(name=key, description="", value=val)
|
||||
else:
|
||||
self.__pydantic_extra__[key] = VectorData(
|
||||
name=key, description="", value=val
|
||||
)
|
||||
model[key] = VectorData(name=key, description="", value=val)
|
||||
except ValidationError as e:
|
||||
raise ValidationError(
|
||||
f"field {key} cannot be cast to VectorData from {val}"
|
||||
) from e
|
||||
return self
|
||||
return model
|
||||
|
||||
@model_validator(mode="after")
|
||||
def resolve_targets(self) -> "DynamicTableMixin":
|
||||
|
@ -482,6 +481,8 @@ class DynamicTableMixin(BaseModel):
|
|||
# find an index
|
||||
idx = None
|
||||
for field_name in self.model_fields_set:
|
||||
if field_name in self.NON_COLUMN_FIELDS or field_name == key:
|
||||
continue
|
||||
# implicit name-based index
|
||||
field = getattr(self, field_name)
|
||||
if isinstance(field, VectorIndex) and (
|
||||
|
@ -520,17 +521,23 @@ class DynamicTableMixin(BaseModel):
|
|||
"""
|
||||
try:
|
||||
return handler(val)
|
||||
except ValidationError:
|
||||
except ValidationError as e:
|
||||
annotation = cls.model_fields[info.field_name].annotation
|
||||
if type(annotation).__name__ == "_UnionGenericAlias":
|
||||
annotation = annotation.__args__[0]
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
try:
|
||||
# should pass if we're supposed to be a VectorData column
|
||||
# don't want to override intention here by insisting that it is
|
||||
# *actually* a VectorData column in case an NDArray has been specified for now
|
||||
return handler(
|
||||
annotation(
|
||||
val,
|
||||
name=info.field_name,
|
||||
description=cls.model_fields[info.field_name].description,
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
|
||||
class AlignedDynamicTableMixin(DynamicTableMixin):
|
||||
|
|
Loading…
Reference in a new issue