mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-10 06:04:28 +00:00
correctly handle attributes
This commit is contained in:
parent
652ddb3b48
commit
da6d0d8608
6 changed files with 290 additions and 96 deletions
|
@ -26,7 +26,7 @@ from linkml_runtime.linkml_model import (
|
|||
)
|
||||
from pydantic import BaseModel
|
||||
|
||||
from nwb_schema_language import Attribute, Dataset, Group, Schema
|
||||
from nwb_schema_language import Attribute, Dataset, Group, Schema, CompoundDtype
|
||||
|
||||
if sys.version_info.minor >= 11:
|
||||
from typing import TypeVarTuple, Unpack
|
||||
|
@ -238,3 +238,36 @@ class Adapter(BaseModel):
|
|||
for item in self.walk(input):
|
||||
if any([type(item) is atype for atype in get_type]):
|
||||
yield item
|
||||
|
||||
|
||||
def is_1d(cls: Dataset | Attribute) -> bool:
|
||||
"""
|
||||
Check if the values of a dataset are 1-dimensional.
|
||||
|
||||
Specifically:
|
||||
* a single-layer dim/shape list of length 1, or
|
||||
* a nested dim/shape list where every nested spec is of length 1
|
||||
"""
|
||||
return (
|
||||
not any([isinstance(dim, list) for dim in cls.dims]) and len(cls.dims) == 1
|
||||
) or ( # nested list
|
||||
all([isinstance(dim, list) for dim in cls.dims])
|
||||
and len(cls.dims) == 1
|
||||
and len(cls.dims[0]) == 1
|
||||
)
|
||||
|
||||
|
||||
def is_compound(cls: Dataset) -> bool:
|
||||
"""Check if dataset has a compound dtype"""
|
||||
return (
|
||||
isinstance(cls.dtype, list)
|
||||
and len(cls.dtype) > 0
|
||||
and isinstance(cls.dtype[0], CompoundDtype)
|
||||
)
|
||||
|
||||
|
||||
def has_attrs(cls: Dataset) -> bool:
|
||||
"""
|
||||
Check if a dataset has any attributes at all without defaults
|
||||
"""
|
||||
return len(cls.attributes) > 0 and all([not a.value for a in cls.attributes])
|
||||
|
|
194
nwb_linkml/src/nwb_linkml/adapters/attribute.py
Normal file
194
nwb_linkml/src/nwb_linkml/adapters/attribute.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
"""
|
||||
Adapters for attribute types
|
||||
"""
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import ClassVar, Optional, TypedDict, Type
|
||||
|
||||
from linkml_runtime.linkml_model.meta import SlotDefinition
|
||||
|
||||
from nwb_linkml.adapters.array import ArrayAdapter
|
||||
from nwb_linkml.adapters.adapter import BuildResult, is_1d, Adapter
|
||||
from nwb_linkml.maps import Map
|
||||
from nwb_linkml.maps.dtype import handle_dtype
|
||||
from nwb_schema_language import Attribute
|
||||
|
||||
|
||||
def _make_ifabsent(val: str | int | float | None) -> str | None:
|
||||
if val is None:
|
||||
return None
|
||||
elif isinstance(val, str):
|
||||
return f"string({val})"
|
||||
elif isinstance(val, int):
|
||||
return f"integer({val})"
|
||||
elif isinstance(val, float):
|
||||
return f"float({val})"
|
||||
else:
|
||||
return str(value)
|
||||
|
||||
|
||||
class AttrDefaults(TypedDict):
|
||||
equals_string: str | None
|
||||
equals_number: float | int | None
|
||||
ifabsent: str | None
|
||||
|
||||
|
||||
class AttributeMap(Map):
|
||||
|
||||
@classmethod
|
||||
def handle_defaults(cls, attr: Attribute) -> AttrDefaults:
|
||||
"""
|
||||
Construct arguments for linkml slot default metaslots from nwb schema lang attribute props
|
||||
"""
|
||||
equals_string = None
|
||||
equals_number = None
|
||||
default_value = None
|
||||
if attr.value:
|
||||
if isinstance(attr.value, (int, float)):
|
||||
equals_number = attr.value
|
||||
elif attr.value:
|
||||
equals_string = str(attr.value)
|
||||
|
||||
if equals_number:
|
||||
default_value = _make_ifabsent(equals_number)
|
||||
elif equals_string:
|
||||
default_value = _make_ifabsent(equals_string)
|
||||
elif attr.default_value:
|
||||
default_value = _make_ifabsent(attr.default_value)
|
||||
|
||||
return AttrDefaults(
|
||||
equals_string=equals_string, equals_number=equals_number, ifabsent=default_value
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def check(cls, attr: Attribute) -> bool:
|
||||
"""
|
||||
Check if this map applies
|
||||
"""
|
||||
pass # pragma: no cover
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def apply(
|
||||
cls, attr: Attribute, res: Optional[BuildResult] = None, name: Optional[str] = None
|
||||
) -> BuildResult:
|
||||
"""
|
||||
Apply this mapping
|
||||
"""
|
||||
pass # pragma: no cover
|
||||
|
||||
|
||||
class MapScalar(AttributeMap):
|
||||
"""
|
||||
Map a simple scalar value
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def check(cls, attr: Attribute) -> bool:
|
||||
"""
|
||||
Check if we are a scalar value!
|
||||
"""
|
||||
return not attr.dims and not attr.shape
|
||||
|
||||
@classmethod
|
||||
def apply(cls, attr: Attribute, res: Optional[BuildResult] = None) -> BuildResult:
|
||||
"""
|
||||
Make a slot for us!
|
||||
"""
|
||||
slot = SlotDefinition(
|
||||
name=attr.name,
|
||||
range=handle_dtype(attr.dtype),
|
||||
description=attr.doc,
|
||||
required=attr.required,
|
||||
**cls.handle_defaults(attr),
|
||||
)
|
||||
return BuildResult(slots=[slot])
|
||||
|
||||
|
||||
class MapArray(AttributeMap):
|
||||
"""
|
||||
Map an array value!
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def check(cls, attr: Attribute) -> bool:
|
||||
"""
|
||||
Check that we have some array specification!
|
||||
"""
|
||||
return bool(attr.dims) or attr.shape
|
||||
|
||||
@classmethod
|
||||
def apply(cls, attr: Attribute, res: Optional[BuildResult] = None) -> BuildResult:
|
||||
"""
|
||||
Make a slot with an array expression!
|
||||
|
||||
If we're just a 1D array, use a list (set multivalued: true).
|
||||
If more than that, make an array descriptor
|
||||
"""
|
||||
expressions = {}
|
||||
multivalued = False
|
||||
if is_1d(attr):
|
||||
multivalued = True
|
||||
else:
|
||||
# ---------------------------------
|
||||
# SPECIAL CASE: Some old versions of HDMF don't have ``dims``, only shape
|
||||
# ---------------------------------
|
||||
shape = attr.shape
|
||||
dims = attr.dims
|
||||
if shape and not dims:
|
||||
dims = ["null"] * len(shape)
|
||||
|
||||
array_adapter = ArrayAdapter(dims, shape)
|
||||
expressions = array_adapter.make_slot()
|
||||
|
||||
slot = SlotDefinition(
|
||||
name=attr.name,
|
||||
range=handle_dtype(attr.dtype),
|
||||
multivalued=multivalued,
|
||||
description=attr.doc,
|
||||
required=attr.required,
|
||||
**expressions,
|
||||
**cls.handle_defaults(attr),
|
||||
)
|
||||
return BuildResult(slots=[slot])
|
||||
|
||||
|
||||
class AttributeAdapter(Adapter):
|
||||
"""
|
||||
Create slot definitions from nwb schema language attributes
|
||||
"""
|
||||
|
||||
TYPE: ClassVar[Type] = Attribute
|
||||
|
||||
cls: Attribute
|
||||
|
||||
def build(self) -> "BuildResult":
|
||||
"""
|
||||
Build the slot definitions, every attribute should have a map.
|
||||
"""
|
||||
map = self.match()
|
||||
return map.apply(self.cls)
|
||||
|
||||
def match(self) -> Optional[Type[AttributeMap]]:
|
||||
"""
|
||||
Find the map class that applies to this attribute
|
||||
|
||||
Returns:
|
||||
:class:`.AttributeMap`
|
||||
|
||||
Raises:
|
||||
RuntimeError - if more than one map matches
|
||||
"""
|
||||
# find a map to use
|
||||
matches = [m for m in AttributeMap.__subclasses__() if m.check(self.cls)]
|
||||
|
||||
if len(matches) > 1: # pragma: no cover
|
||||
raise RuntimeError(
|
||||
"Only one map should apply to a dataset, you need to refactor the maps! Got maps:"
|
||||
f" {matches}"
|
||||
)
|
||||
elif len(matches) == 0:
|
||||
return None
|
||||
else:
|
||||
return matches[0]
|
|
@ -9,9 +9,10 @@ from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition
|
|||
from pydantic import field_validator
|
||||
|
||||
from nwb_linkml.adapters.adapter import Adapter, BuildResult
|
||||
from nwb_linkml.adapters.attribute import AttributeAdapter
|
||||
from nwb_linkml.maps import QUANTITY_MAP
|
||||
from nwb_linkml.maps.naming import camel_to_snake
|
||||
from nwb_schema_language import CompoundDtype, Dataset, DTypeType, FlatDtype, Group, ReferenceDtype
|
||||
from nwb_schema_language import Dataset, Group
|
||||
|
||||
T = TypeVar("T", bound=Type[Dataset] | Type[Group])
|
||||
TI = TypeVar("TI", bound=Dataset | Group)
|
||||
|
@ -118,16 +119,9 @@ class ClassAdapter(Adapter):
|
|||
Returns:
|
||||
list[:class:`.SlotDefinition`]
|
||||
"""
|
||||
attrs = [
|
||||
SlotDefinition(
|
||||
name=attr.name,
|
||||
description=attr.doc,
|
||||
range=self.handle_dtype(attr.dtype),
|
||||
)
|
||||
for attr in cls.attributes
|
||||
]
|
||||
|
||||
return attrs
|
||||
results = [AttributeAdapter(cls=attr).build() for attr in cls.attributes]
|
||||
slots = [r.slots[0] for r in results]
|
||||
return slots
|
||||
|
||||
def _get_full_name(self) -> str:
|
||||
"""The full name of the object in the generated linkml
|
||||
|
@ -205,37 +199,6 @@ class ClassAdapter(Adapter):
|
|||
|
||||
return name
|
||||
|
||||
@classmethod
|
||||
def handle_dtype(cls, dtype: DTypeType | None) -> str:
|
||||
"""
|
||||
Get the string form of a dtype
|
||||
|
||||
Args:
|
||||
dtype (:class:`.DTypeType`): Dtype to stringify
|
||||
|
||||
Returns:
|
||||
str
|
||||
"""
|
||||
if isinstance(dtype, ReferenceDtype):
|
||||
return dtype.target_type
|
||||
elif dtype is None or dtype == []:
|
||||
# Some ill-defined datasets are "abstract" despite that not being in the schema language
|
||||
return "AnyType"
|
||||
elif isinstance(dtype, FlatDtype):
|
||||
return dtype.value
|
||||
elif isinstance(dtype, list) and isinstance(dtype[0], CompoundDtype):
|
||||
# there is precisely one class that uses compound dtypes:
|
||||
# TimeSeriesReferenceVectorData
|
||||
# compoundDtypes are able to define a ragged table according to the schema
|
||||
# but are used in this single case equivalently to attributes.
|
||||
# so we'll... uh... treat them as slots.
|
||||
# TODO
|
||||
return "AnyType"
|
||||
|
||||
else:
|
||||
# flat dtype
|
||||
return dtype
|
||||
|
||||
def build_name_slot(self) -> SlotDefinition:
|
||||
"""
|
||||
If a class has a name, then that name should be a slot with a
|
||||
|
|
|
@ -7,13 +7,13 @@ from typing import ClassVar, Optional, Type
|
|||
|
||||
from linkml_runtime.linkml_model.meta import ArrayExpression, SlotDefinition
|
||||
|
||||
from nwb_linkml.adapters.adapter import BuildResult
|
||||
from nwb_linkml.adapters.adapter import BuildResult, is_1d, is_compound, has_attrs
|
||||
from nwb_linkml.adapters.array import ArrayAdapter
|
||||
from nwb_linkml.adapters.classes import ClassAdapter
|
||||
from nwb_linkml.maps import QUANTITY_MAP, Map
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml
|
||||
from nwb_linkml.maps.dtype import flat_to_linkml, handle_dtype
|
||||
from nwb_linkml.maps.naming import camel_to_snake
|
||||
from nwb_schema_language import CompoundDtype, Dataset
|
||||
from nwb_schema_language import Dataset
|
||||
|
||||
|
||||
class DatasetMap(Map):
|
||||
|
@ -106,7 +106,7 @@ class MapScalar(DatasetMap):
|
|||
this_slot = SlotDefinition(
|
||||
name=cls.name,
|
||||
description=cls.doc,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
range=handle_dtype(cls.dtype),
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
res = BuildResult(slots=[this_slot])
|
||||
|
@ -203,9 +203,7 @@ class MapScalarAttributes(DatasetMap):
|
|||
"""
|
||||
Map to a scalar attribute with an adjoining "value" slot
|
||||
"""
|
||||
value_slot = SlotDefinition(
|
||||
name="value", range=ClassAdapter.handle_dtype(cls.dtype), required=True
|
||||
)
|
||||
value_slot = SlotDefinition(name="value", range=handle_dtype(cls.dtype), required=True)
|
||||
res.classes[0].attributes["value"] = value_slot
|
||||
return res
|
||||
|
||||
|
@ -271,7 +269,7 @@ class MapListlike(DatasetMap):
|
|||
* - ``dtype``
|
||||
- ``Class``
|
||||
"""
|
||||
dtype = ClassAdapter.handle_dtype(cls.dtype)
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
cls.neurodata_type_inc != "VectorData"
|
||||
and is_1d(cls)
|
||||
|
@ -289,7 +287,7 @@ class MapListlike(DatasetMap):
|
|||
slot = SlotDefinition(
|
||||
name="value",
|
||||
multivalued=True,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
range=handle_dtype(cls.dtype),
|
||||
description=cls.doc,
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
annotations=[{"source_type": "reference"}],
|
||||
|
@ -378,7 +376,7 @@ class MapArraylike(DatasetMap):
|
|||
- ``False``
|
||||
|
||||
"""
|
||||
dtype = ClassAdapter.handle_dtype(cls.dtype)
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
cls.name
|
||||
and (all([cls.dims, cls.shape]) or cls.neurodata_type_inc == "VectorData")
|
||||
|
@ -409,7 +407,7 @@ class MapArraylike(DatasetMap):
|
|||
SlotDefinition(
|
||||
name=name,
|
||||
multivalued=False,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
range=handle_dtype(cls.dtype),
|
||||
description=cls.doc,
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
**expressions,
|
||||
|
@ -513,7 +511,7 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
"""
|
||||
Check that we're an array with some additional metadata
|
||||
"""
|
||||
dtype = ClassAdapter.handle_dtype(cls.dtype)
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
all([cls.dims, cls.shape])
|
||||
and cls.neurodata_type_inc != "VectorData"
|
||||
|
@ -532,9 +530,7 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
array_adapter = ArrayAdapter(cls.dims, cls.shape)
|
||||
expressions = array_adapter.make_slot()
|
||||
# make a slot for the arraylike class
|
||||
array_slot = SlotDefinition(
|
||||
name="value", range=ClassAdapter.handle_dtype(cls.dtype), **expressions
|
||||
)
|
||||
array_slot = SlotDefinition(name="value", range=handle_dtype(cls.dtype), **expressions)
|
||||
res.classes[0].attributes.update({"value": array_slot})
|
||||
return res
|
||||
|
||||
|
@ -596,7 +592,7 @@ class MapVectorClassRange(DatasetMap):
|
|||
Check that we are a VectorData object without any additional attributes
|
||||
with a dtype that refers to another class
|
||||
"""
|
||||
dtype = ClassAdapter.handle_dtype(cls.dtype)
|
||||
dtype = handle_dtype(cls.dtype)
|
||||
return (
|
||||
cls.neurodata_type_inc == "VectorData"
|
||||
and cls.name
|
||||
|
@ -617,7 +613,7 @@ class MapVectorClassRange(DatasetMap):
|
|||
name=cls.name,
|
||||
description=cls.doc,
|
||||
multivalued=True,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
range=handle_dtype(cls.dtype),
|
||||
required=cls.quantity not in ("*", "?"),
|
||||
)
|
||||
res = BuildResult(slots=[this_slot])
|
||||
|
@ -672,7 +668,7 @@ class MapVectorClassRange(DatasetMap):
|
|||
# this_slot = SlotDefinition(
|
||||
# name=cls.name,
|
||||
# description=cls.doc,
|
||||
# range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
# range=handle_dtype(cls.dtype),
|
||||
# multivalued=True,
|
||||
# )
|
||||
# # No need to make a class for us, so we replace the existing build results
|
||||
|
@ -783,7 +779,7 @@ class MapCompoundDtype(DatasetMap):
|
|||
slots[a_dtype.name] = SlotDefinition(
|
||||
name=a_dtype.name,
|
||||
description=a_dtype.doc,
|
||||
range=ClassAdapter.handle_dtype(a_dtype.dtype),
|
||||
range=handle_dtype(a_dtype.dtype),
|
||||
**QUANTITY_MAP[cls.quantity],
|
||||
)
|
||||
res.classes[0].attributes.update(slots)
|
||||
|
@ -836,36 +832,3 @@ class DatasetAdapter(ClassAdapter):
|
|||
return None
|
||||
else:
|
||||
return matches[0]
|
||||
|
||||
|
||||
def is_1d(cls: Dataset) -> bool:
|
||||
"""
|
||||
Check if the values of a dataset are 1-dimensional.
|
||||
|
||||
Specifically:
|
||||
* a single-layer dim/shape list of length 1, or
|
||||
* a nested dim/shape list where every nested spec is of length 1
|
||||
"""
|
||||
return (
|
||||
not any([isinstance(dim, list) for dim in cls.dims]) and len(cls.dims) == 1
|
||||
) or ( # nested list
|
||||
all([isinstance(dim, list) for dim in cls.dims])
|
||||
and len(cls.dims) == 1
|
||||
and len(cls.dims[0]) == 1
|
||||
)
|
||||
|
||||
|
||||
def is_compound(cls: Dataset) -> bool:
|
||||
"""Check if dataset has a compound dtype"""
|
||||
return (
|
||||
isinstance(cls.dtype, list)
|
||||
and len(cls.dtype) > 0
|
||||
and isinstance(cls.dtype[0], CompoundDtype)
|
||||
)
|
||||
|
||||
|
||||
def has_attrs(cls: Dataset) -> bool:
|
||||
"""
|
||||
Check if a dataset has any attributes at all without defaults
|
||||
"""
|
||||
return len(cls.attributes) > 0 and all([not a.value for a in cls.attributes])
|
||||
|
|
|
@ -7,6 +7,7 @@ from typing import Any, Type
|
|||
|
||||
import nptyping
|
||||
import numpy as np
|
||||
from nwb_schema_language import CompoundDtype, DTypeType, FlatDtype, ReferenceDtype
|
||||
|
||||
flat_to_linkml = {
|
||||
"float": "float",
|
||||
|
@ -185,3 +186,34 @@ def struct_from_dtype(dtype: np.dtype) -> Type[nptyping.Structure]:
|
|||
struct_pieces = [f"{k}: {flat_to_nptyping[v[0].name]}" for k, v in dtype.fields.items()]
|
||||
struct_dtype = ", ".join(struct_pieces)
|
||||
return nptyping.Structure[struct_dtype]
|
||||
|
||||
|
||||
def handle_dtype(dtype: DTypeType | None) -> str:
|
||||
"""
|
||||
Get the string form of a dtype
|
||||
|
||||
Args:
|
||||
dtype (:class:`.DTypeType`): Dtype to stringify
|
||||
|
||||
Returns:
|
||||
str
|
||||
"""
|
||||
if isinstance(dtype, ReferenceDtype):
|
||||
return dtype.target_type
|
||||
elif dtype is None or dtype == []:
|
||||
# Some ill-defined datasets are "abstract" despite that not being in the schema language
|
||||
return "AnyType"
|
||||
elif isinstance(dtype, FlatDtype):
|
||||
return dtype.value
|
||||
elif isinstance(dtype, list) and isinstance(dtype[0], CompoundDtype):
|
||||
# there is precisely one class that uses compound dtypes:
|
||||
# TimeSeriesReferenceVectorData
|
||||
# compoundDtypes are able to define a ragged table according to the schema
|
||||
# but are used in this single case equivalently to attributes.
|
||||
# so we'll... uh... treat them as slots.
|
||||
# TODO
|
||||
return "AnyType"
|
||||
|
||||
else:
|
||||
# flat dtype
|
||||
return dtype
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
import shutil
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from pdb import post_mortem
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from pathlib import Path
|
||||
|
@ -53,6 +55,7 @@ def generate_versions(
|
|||
dry_run: bool = False,
|
||||
repo: GitRepo = NWB_CORE_REPO,
|
||||
hdmf_only=False,
|
||||
pdb=False,
|
||||
):
|
||||
"""
|
||||
Generate linkml models for all versions
|
||||
|
@ -128,6 +131,11 @@ def generate_versions(
|
|||
build_progress.update(pydantic_task, action="Built Pydantic")
|
||||
|
||||
except Exception as e:
|
||||
if pdb:
|
||||
live.stop()
|
||||
post_mortem()
|
||||
sys.exit(1)
|
||||
|
||||
build_progress.stop_task(linkml_task)
|
||||
if linkml_task is not None:
|
||||
build_progress.update(linkml_task, action="[bold red]LinkML Build Failed")
|
||||
|
@ -205,6 +213,7 @@ def parser() -> ArgumentParser:
|
|||
),
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument("--pdb", help="Launch debugger on an error", action="store_true")
|
||||
return parser
|
||||
|
||||
|
||||
|
@ -222,7 +231,7 @@ def main():
|
|||
generate_core_yaml(args.yaml, args.dry_run, args.hdmf)
|
||||
generate_core_pydantic(args.yaml, args.pydantic, args.dry_run)
|
||||
else:
|
||||
generate_versions(args.yaml, args.pydantic, args.dry_run, repo, args.hdmf)
|
||||
generate_versions(args.yaml, args.pydantic, args.dry_run, repo, args.hdmf, pdb=args.pdb)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in a new issue