mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 13:44:27 +00:00
Still working on docs!
Added ability to index datasets wtih arrays with getitem
This commit is contained in:
parent
a1d2924fd3
commit
dd956b35c3
15 changed files with 1352 additions and 17 deletions
|
@ -15,7 +15,8 @@ help:
|
|||
.PHONY: help Makefile
|
||||
|
||||
serve:
|
||||
sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) --watch ../nwb_linkml/src/nwb_linkml --watch ../nwb_schema_language/src/nwb_schema_language
|
||||
# env variable that makes it so we don't build all the models while in dev mode
|
||||
SPHINX_MINIMAL="True" sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) --watch ../nwb_linkml/src/nwb_linkml --watch ../nwb_schema_language/src/nwb_schema_language
|
||||
|
||||
serve_fast:
|
||||
sphinx-autobuild -a "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) --watch ../nwb_linkml/src/nwb_linkml --watch ../nwb_schema_language/src/nwb_schema_language
|
||||
|
|
7
docs/_static/css/custom.css
vendored
Normal file
7
docs/_static/css/custom.css
vendored
Normal file
|
@ -0,0 +1,7 @@
|
|||
.feature {
|
||||
background-color: var(--color-admonition-title--hint);
|
||||
padding: 2px 10px;
|
||||
color: #1a1c1e;
|
||||
font-style: italic;
|
||||
border-radius: 4px;
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
# NWB Schema Language
|
||||
# nwb_schema_language
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
|
23
docs/conf.py
23
docs/conf.py
|
@ -2,6 +2,7 @@
|
|||
#
|
||||
# For the full list of built-in configuration values, see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
import pdb
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
|
||||
|
@ -11,23 +12,34 @@ copyright = '2023, Jonny Saunders'
|
|||
author = 'Jonny Saunders'
|
||||
release = 'v0.1.0'
|
||||
|
||||
import os
|
||||
from sphinx.util.tags import Tags
|
||||
tags: Tags
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = [
|
||||
'sphinx.ext.graphviz',
|
||||
"myst_parser",
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinxcontrib.autodoc_pydantic',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.doctest',
|
||||
"sphinx_design"
|
||||
"sphinx_design",
|
||||
'myst_parser',
|
||||
'sphinx_togglebutton'
|
||||
]
|
||||
|
||||
|
||||
templates_path = ['_templates']
|
||||
# exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**/models']
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
||||
|
||||
if os.environ.get('SPHINX_MINIMAL', None) == 'True':
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**/models']
|
||||
tags.add('minimal')
|
||||
else:
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
||||
tags.add('full')
|
||||
|
||||
|
||||
|
||||
|
@ -36,6 +48,9 @@ exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
|||
|
||||
html_theme = 'furo'
|
||||
html_static_path = ['_static']
|
||||
html_css_files = [
|
||||
'css/custom.css'
|
||||
]
|
||||
|
||||
intersphinx_mapping = {
|
||||
'python': ('https://docs.python.org/3', None),
|
||||
|
|
1
docs/guide/overview.md
Normal file
1
docs/guide/overview.md
Normal file
|
@ -0,0 +1 @@
|
|||
# Overview
|
294
docs/index.md
294
docs/index.md
|
@ -1,37 +1,315 @@
|
|||
# nwb-linkml
|
||||
|
||||
```{role} feature
|
||||
```
|
||||
|
||||
A translation of the [Neurodata Without Borders](https://www.nwb.org/) standard
|
||||
to [LinkML](https://linkml.io/).
|
||||
|
||||
```{admonition} Quick Links
|
||||
* [Purpose](purpose) - Why this package exists
|
||||
* [Overview](overview) - Overview of how it works
|
||||
* [API Docs](api) - Ok *really* how it works
|
||||
```
|
||||
|
||||
`nwb-linkml` is an independent implementation of the standard capable of:
|
||||
|
||||
* Translating schemas written in the {index}`NWB Schema Language` to LinkML.
|
||||
* Manage multiple versions of NWB schemas with dependencies
|
||||
* Generating pydantic models from nwb-flavored LinkML
|
||||
* Read NWB files (including those that use custom, embedded schemas)
|
||||
* {feature}`Coming Soon` Write/edit NWB files
|
||||
* {feature}`Coming Soon` Export NWB to a Relational Database
|
||||
* {feature}`Coming Soon` Export NWB to a Triple Store
|
||||
|
||||
## Samples
|
||||
|
||||
### Reading
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
from rich import print
|
||||
from nwb_linkml.io import HDF5IO
|
||||
|
||||
# find sample data file and read
|
||||
nwb_file = Path('../nwb_linkml/tests/data/aibs.nwb')
|
||||
data = HDF5IO(nwb_file).read()
|
||||
print(data)
|
||||
```
|
||||
|
||||
````{admonition} Model Print Output
|
||||
:class: dropdown
|
||||
|
||||
```{literalinclude} read_output.txt
|
||||
:language: python
|
||||
```
|
||||
````
|
||||
|
||||
|
||||
### TimeSeries
|
||||
|
||||
(Abbreviated for clarity)
|
||||
|
||||
`````{tab-set}
|
||||
````{tab-item} NWB schema
|
||||
```yaml
|
||||
groups:
|
||||
- neurodata_type_def: TimeSeries
|
||||
neurodata_type_inc: NWBDataInterface
|
||||
doc: General purpose time series.
|
||||
attributes:
|
||||
- name: description
|
||||
dtype: text
|
||||
default_value: no description
|
||||
doc: Description of the time series.
|
||||
required: false
|
||||
- name: comments
|
||||
dtype: text
|
||||
default_value: no comments
|
||||
doc: Human-readable comments about the TimeSeries. This second descriptive field
|
||||
can be used to store additional information, or descriptive information if the
|
||||
primary description field is populated with a computer-readable string.
|
||||
required: false
|
||||
datasets:
|
||||
- name: data
|
||||
dims:
|
||||
- - num_times
|
||||
- - num_times
|
||||
- num_DIM2
|
||||
- - num_times
|
||||
- num_DIM2
|
||||
- num_DIM3
|
||||
- - num_times
|
||||
- num_DIM2
|
||||
- num_DIM3
|
||||
- num_DIM4
|
||||
shape:
|
||||
- - null
|
||||
- - null
|
||||
- null
|
||||
- - null
|
||||
- null
|
||||
- null
|
||||
- - null
|
||||
- null
|
||||
- null
|
||||
- null
|
||||
doc: Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension
|
||||
should always represent time. This can also be used to store binary data
|
||||
(e.g., image frames). This can also be a link to data stored in an external file.
|
||||
attributes:
|
||||
- name: conversion
|
||||
dtype: float32
|
||||
default_value: 1.0
|
||||
doc: Scalar to multiply each element in data (...)
|
||||
required: false
|
||||
- name: timestamps
|
||||
dtype: float64
|
||||
dims:
|
||||
- num_times
|
||||
shape:
|
||||
- null
|
||||
doc: Timestamps for samples stored in data, in seconds, relative to the
|
||||
common experiment master-clock stored in NWBFile.timestamps_reference_time.
|
||||
quantity: '?'
|
||||
attributes:
|
||||
- name: interval
|
||||
dtype: int32
|
||||
value: 1
|
||||
doc: Value is '1'
|
||||
- name: unit
|
||||
dtype: text
|
||||
value: seconds
|
||||
doc: Unit of measurement for timestamps, which is fixed to 'seconds'.
|
||||
```
|
||||
````
|
||||
````{tab-item} LinkML
|
||||
```yaml
|
||||
classes:
|
||||
TimeSeries:
|
||||
name: TimeSeries
|
||||
description: General purpose time series.
|
||||
is_a: NWBDataInterface
|
||||
attributes:
|
||||
name:
|
||||
name: name
|
||||
identifier: true
|
||||
range: string
|
||||
required: true
|
||||
description:
|
||||
name: description
|
||||
description: Description of the time series.
|
||||
range: text
|
||||
comments:
|
||||
name: comments
|
||||
description: Human-readable comments about the TimeSeries. This second descriptive
|
||||
field can be used to store additional information, or descriptive information
|
||||
if the primary description field is populated with a computer-readable string.
|
||||
range: text
|
||||
data:
|
||||
name: data
|
||||
description: Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first
|
||||
dimension should always represent time. This can also be used to store binary
|
||||
data (e.g., image frames). This can also be a link to data stored in an
|
||||
external file.
|
||||
multivalued: false
|
||||
range: TimeSeries__data
|
||||
required: true
|
||||
timestamps:
|
||||
name: timestamps
|
||||
description: Timestamps for samples stored in data, in seconds, relative to
|
||||
the common experiment master-clock stored in NWBFile.timestamps_reference_time.
|
||||
multivalued: false
|
||||
range: TimeSeries__timestamps__Array
|
||||
required: false
|
||||
tree_root: true
|
||||
|
||||
TimeSeries__data:
|
||||
name: TimeSeries__data
|
||||
description: Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension
|
||||
should always represent time. This can also be used to store binary data (e.g.,
|
||||
image frames). This can also be a link to data stored in an external file.
|
||||
attributes:
|
||||
name:
|
||||
name: name
|
||||
ifabsent: string(data)
|
||||
identifier: true
|
||||
range: string
|
||||
required: true
|
||||
equals_string: data
|
||||
conversion:
|
||||
name: conversion
|
||||
description: Scalar to multiply each element in data to convert it to the
|
||||
specified 'unit'. If the data are stored in acquisition system units or
|
||||
other units that require a conversion to be interpretable, multiply the
|
||||
data by 'conversion' to convert the data to the specified 'unit'. e.g. if
|
||||
the data acquisition system stores values in this object as signed 16-bit
|
||||
integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V
|
||||
to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion'
|
||||
multiplier to get from raw data acquisition values to recorded volts is
|
||||
2.5/32768/8000 = 9.5367e-9.
|
||||
range: float32
|
||||
array:
|
||||
name: array
|
||||
range: TimeSeries__data__Array
|
||||
|
||||
TimeSeries__data__Array:
|
||||
name: TimeSeries__data__Array
|
||||
is_a: Arraylike
|
||||
attributes:
|
||||
num_times:
|
||||
name: num_times
|
||||
range: AnyType
|
||||
required: true
|
||||
num_DIM2:
|
||||
name: num_DIM2
|
||||
range: AnyType
|
||||
required: false
|
||||
num_DIM3:
|
||||
name: num_DIM3
|
||||
range: AnyType
|
||||
required: false
|
||||
num_DIM4:
|
||||
name: num_DIM4
|
||||
range: AnyType
|
||||
required: false
|
||||
|
||||
TimeSeries__timestamps__Array:
|
||||
name: TimeSeries__timestamps__Array
|
||||
is_a: Arraylike
|
||||
attributes:
|
||||
num_times:
|
||||
name: num_times
|
||||
range: float64
|
||||
required: true
|
||||
```
|
||||
````
|
||||
````{tab-item} Pydantic
|
||||
```python
|
||||
class TimeSeries(NWBDataInterface):
|
||||
"""
|
||||
General purpose time series.
|
||||
"""
|
||||
linkml_meta: ClassVar[LinkML_Meta] = Field(LinkML_Meta(tree_root=True), frozen=True)
|
||||
name: str = Field(...)
|
||||
description: Optional[str] = Field(None, description="""Description of the time series.""")
|
||||
comments: Optional[str] = Field(None, description="""Human-readable comments about the TimeSeries. This second descriptive field can be used to store additional information, or descriptive information if the primary description field is populated with a computer-readable string.""")
|
||||
data: TimeSeriesData = Field(..., description="""Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.""")
|
||||
timestamps: Optional[NDArray[Shape["* num_times"], Float64]] = Field(None, description="""Timestamps for samples stored in data, in seconds, relative to the common experiment master-clock stored in NWBFile.timestamps_reference_time.""")
|
||||
|
||||
class TimeSeriesData(ConfiguredBaseModel):
|
||||
"""
|
||||
Data values. Data can be in 1-D, 2-D, 3-D, or 4-D. The first dimension should always represent time. This can also be used to store binary data (e.g., image frames). This can also be a link to data stored in an external file.
|
||||
"""
|
||||
linkml_meta: ClassVar[LinkML_Meta] = Field(LinkML_Meta(), frozen=True)
|
||||
name: Literal["data"] = Field("data")
|
||||
conversion: Optional[float] = Field(None, description="""Scalar to multiply each element in data to convert it to the specified 'unit'. If the data are stored in acquisition system units or other units that require a conversion to be interpretable, multiply the data by 'conversion' to convert the data to the specified 'unit'. e.g. if the data acquisition system stores values in this object as signed 16-bit integers (int16 range -32,768 to 32,767) that correspond to a 5V range (-2.5V to 2.5V), and the data acquisition system gain is 8000X, then the 'conversion' multiplier to get from raw data acquisition values to recorded volts is 2.5/32768/8000 = 9.5367e-9.""")
|
||||
array: Optional[Union[
|
||||
NDArray[Shape["* num_times"], Any],
|
||||
NDArray[Shape["* num_times, * num_DIM2"], Any],
|
||||
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3"], Any],
|
||||
NDArray[Shape["* num_times, * num_DIM2, * num_DIM3, * num_DIM4"], Any]
|
||||
]] = Field(None)
|
||||
|
||||
|
||||
```
|
||||
````
|
||||
|
||||
`````
|
||||
|
||||
|
||||
|
||||
```{toctree}
|
||||
:caption: Intro
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
intro/purpose
|
||||
intro/nwb
|
||||
intro/translation
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:caption: Guide
|
||||
:maxdepth: 1
|
||||
:hidden:
|
||||
|
||||
guide/overview
|
||||
```
|
||||
|
||||
````{only} minimal
|
||||
```{toctree}
|
||||
:caption: API
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
api/nwb_linkml/index
|
||||
api/nwb_schema_language/index
|
||||
api/nwb_linkml/schema/index
|
||||
```
|
||||
````
|
||||
|
||||
````{only} full
|
||||
```{toctree}
|
||||
:caption: API
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
api/nwb_linkml/index
|
||||
api/nwb_schema_language/index
|
||||
api/models/nwb_linkml.models
|
||||
api/nwb_linkml/schema/index
|
||||
```
|
||||
|
||||
[//]: # (api/models/nwb_linkml.models)
|
||||
````
|
||||
|
||||
```{toctree}
|
||||
:caption: Meta
|
||||
:hidden:
|
||||
|
||||
todo
|
||||
changelog
|
||||
meta/todo
|
||||
meta/changelog
|
||||
genindex
|
||||
```
|
||||
|
||||
|
||||
## Indices and tables
|
||||
|
||||
* {ref}`genindex`
|
||||
* {ref}`modindex`
|
||||
* {ref}`search`
|
||||
|
|
|
@ -3,8 +3,14 @@
|
|||
If [pynwb](https://pynwb.readthedocs.io/en/stable/) already exists,
|
||||
why `nwb_linkml`?
|
||||
|
||||
Two kinds of reasons:
|
||||
|
||||
- using NWB as a test case for a larger infrastructure project, and
|
||||
- potentially improving the state of NWB itself.
|
||||
|
||||
## A Stepping Stone...
|
||||
|
||||
In the
|
||||
(word on how and why we are focusing on NWB as part of a larger project)
|
||||
|
||||
## Interoperable Schema Language
|
||||
|
|
943
docs/read_output.txt
Normal file
943
docs/read_output.txt
Normal file
|
@ -0,0 +1,943 @@
|
|||
NWBFile(
|
||||
│ hdf5_path='/',
|
||||
│ name='root',
|
||||
│ nwb_version='2.2.2',
|
||||
│ file_create_date=array([datetime.datetime(2020, 5, 26, 0, 53, 26, 903120, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=61200)))],
|
||||
│ dtype=object),
|
||||
│ identifier='760693773',
|
||||
│ session_description='Data and metadata for an Ecephys session',
|
||||
│ session_start_time=datetime.datetime(2018, 10, 26, 12, 59, 23, tzinfo=TzInfo(-07:00)),
|
||||
│ timestamps_reference_time=datetime.datetime(2018, 10, 26, 12, 59, 23, tzinfo=TzInfo(-07:00)),
|
||||
│ acquisition={
|
||||
│ │ 'raw_running_wheel_rotation': TimeSeries(
|
||||
│ │ │ hdf5_path='/acquisition/raw_running_wheel_rotation',
|
||||
│ │ │ name='raw_running_wheel_rotation',
|
||||
│ │ │ description='no description',
|
||||
│ │ │ comments='no comments',
|
||||
│ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ hdf5_path='/acquisition/raw_running_wheel_rotation/data',
|
||||
│ │ │ │ object_id=None,
|
||||
│ │ │ │ name='data',
|
||||
│ │ │ │ conversion=1.0,
|
||||
│ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ unit='radians',
|
||||
│ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x120933210>
|
||||
│ │ │ ),
|
||||
│ │ │ starting_time=None,
|
||||
│ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x123abd2d0>,
|
||||
│ │ │ control=None,
|
||||
│ │ │ control_description=None,
|
||||
│ │ │ sync=None
|
||||
│ │ ),
|
||||
│ │ 'running_wheel_signal_voltage': TimeSeries(
|
||||
│ │ │ hdf5_path='/acquisition/running_wheel_signal_voltage',
|
||||
│ │ │ name='running_wheel_signal_voltage',
|
||||
│ │ │ description='no description',
|
||||
│ │ │ comments='no comments',
|
||||
│ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ hdf5_path='/acquisition/running_wheel_signal_voltage/data',
|
||||
│ │ │ │ object_id=None,
|
||||
│ │ │ │ name='data',
|
||||
│ │ │ │ conversion=1.0,
|
||||
│ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ unit='V',
|
||||
│ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124931e90>
|
||||
│ │ │ ),
|
||||
│ │ │ starting_time=None,
|
||||
│ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x123abd2d0>,
|
||||
│ │ │ control=None,
|
||||
│ │ │ control_description=None,
|
||||
│ │ │ sync=None
|
||||
│ │ ),
|
||||
│ │ 'running_wheel_supply_voltage': TimeSeries(
|
||||
│ │ │ hdf5_path='/acquisition/running_wheel_supply_voltage',
|
||||
│ │ │ name='running_wheel_supply_voltage',
|
||||
│ │ │ description='no description',
|
||||
│ │ │ comments='no comments',
|
||||
│ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ hdf5_path='/acquisition/running_wheel_supply_voltage/data',
|
||||
│ │ │ │ object_id=None,
|
||||
│ │ │ │ name='data',
|
||||
│ │ │ │ conversion=1.0,
|
||||
│ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ unit='V',
|
||||
│ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x1249310d0>
|
||||
│ │ │ ),
|
||||
│ │ │ starting_time=None,
|
||||
│ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x123abd2d0>,
|
||||
│ │ │ control=None,
|
||||
│ │ │ control_description=None,
|
||||
│ │ │ sync=None
|
||||
│ │ )
|
||||
│ },
|
||||
│ analysis={},
|
||||
│ scratch={},
|
||||
│ processing={
|
||||
│ │ 'eye_tracking': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/eye_tracking',
|
||||
│ │ │ name='eye_tracking',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'cr_ellipse_fits': cr_ellipse_fits(
|
||||
│ │ │ │ │ hdf5_path='/processing/eye_tracking/cr_ellipse_fits',
|
||||
│ │ │ │ │ name='cr_ellipse_fits',
|
||||
│ │ │ │ │ colnames=array(['center_x', 'center_y', 'height', 'phi', 'width', 'timestamps'],
|
||||
│ dtype=object),
|
||||
│ │ │ │ │ description='',
|
||||
│ │ │ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_x=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_y=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ height=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ phi=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ width=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ timestamps=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ vector_data=[],
|
||||
│ │ │ │ │ vector_index=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'eye_ellipse_fits': eye_ellipse_fits(
|
||||
│ │ │ │ │ hdf5_path='/processing/eye_tracking/eye_ellipse_fits',
|
||||
│ │ │ │ │ name='eye_ellipse_fits',
|
||||
│ │ │ │ │ colnames=array(['center_x', 'center_y', 'height', 'phi', 'width', 'timestamps'],
|
||||
│ dtype=object),
|
||||
│ │ │ │ │ description='',
|
||||
│ │ │ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_x=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_y=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ height=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ phi=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ width=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ timestamps=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ vector_data=[],
|
||||
│ │ │ │ │ vector_index=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'pupil_ellipse_fits': pupil_ellipse_fits(
|
||||
│ │ │ │ │ hdf5_path='/processing/eye_tracking/pupil_ellipse_fits',
|
||||
│ │ │ │ │ name='pupil_ellipse_fits',
|
||||
│ │ │ │ │ colnames=array(['center_x', 'center_y', 'height', 'phi', 'width', 'timestamps'],
|
||||
│ dtype=object),
|
||||
│ │ │ │ │ description='',
|
||||
│ │ │ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_x=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ center_y=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ height=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ phi=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ width=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ timestamps=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ vector_data=[],
|
||||
│ │ │ │ │ vector_index=[]
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'eye_tracking_rig_metadata': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/eye_tracking_rig_metadata',
|
||||
│ │ │ name='eye_tracking_rig_metadata',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'eye_tracking_rig_metadata': EcephysEyeTrackingRigMetadata(
|
||||
│ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata',
|
||||
│ │ │ │ │ name='eye_tracking_rig_metadata',
|
||||
│ │ │ │ │ equipment='NP.1',
|
||||
│ │ │ │ │ monitor_position=EcephysEyeTrackingRigMetadataMonitorPosition(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata/monitor_position',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='monitor_position',
|
||||
│ │ │ │ │ │ unit='mm',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c4f9d0>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ camera_position=EcephysEyeTrackingRigMetadataCameraPosition(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata/camera_position',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='camera_position',
|
||||
│ │ │ │ │ │ unit='mm',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c30c50>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ led_position=EcephysEyeTrackingRigMetadataLedPosition(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata/led_position',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='led_position',
|
||||
│ │ │ │ │ │ unit='mm',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c4c090>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ monitor_rotation=EcephysEyeTrackingRigMetadataMonitorRotation(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata/monitor_rotation',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='monitor_rotation',
|
||||
│ │ │ │ │ │ unit='deg',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c4fad0>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ camera_rotation=EcephysEyeTrackingRigMetadataCameraRotation(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/eye_tracking_rig_metadata/eye_tracking_rig_metadata/camera_rotation',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='camera_rotation',
|
||||
│ │ │ │ │ │ unit='deg',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c4cfd0>
|
||||
│ │ │ │ │ )
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'filtered_gaze_mapping': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/filtered_gaze_mapping',
|
||||
│ │ │ name='filtered_gaze_mapping',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'eye_area': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/eye_area',
|
||||
│ │ │ │ │ name='eye_area',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/eye_area/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Pixels ^ 2',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c4fd50>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c606d0>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'pupil_area': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/pupil_area',
|
||||
│ │ │ │ │ name='pupil_area',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/pupil_area/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Pixels ^ 2',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c60990>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c60d50>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'screen_coordinates': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/screen_coordinates',
|
||||
│ │ │ │ │ name='screen_coordinates',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/screen_coordinates/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Centimeters',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c612d0>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c615d0>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'screen_coordinates_spherical': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/screen_coordinates_spherical',
|
||||
│ │ │ │ │ name='screen_coordinates_spherical',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/filtered_gaze_mapping/screen_coordinates_spherical/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Degrees',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c61a10>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c61d10>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'optotagging': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/optotagging',
|
||||
│ │ │ name='optotagging',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'optogenetic_stimulation': optogenetic_stimulation(
|
||||
│ │ │ │ │ hdf5_path='/processing/optotagging/optogenetic_stimulation',
|
||||
│ │ │ │ │ name='optogenetic_stimulation',
|
||||
│ │ │ │ │ colnames=array(['start_time', 'condition', 'level', 'stop_time', 'stimulus_name',
|
||||
│ 'duration', 'tags', 'timeseries'], dtype=object),
|
||||
│ │ │ │ │ description='',
|
||||
│ │ │ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c72c50>,
|
||||
│ │ │ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c72490>,
|
||||
│ │ │ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ condition=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c71990>,
|
||||
│ │ │ │ │ level=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c70a90>,
|
||||
│ │ │ │ │ duration=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ │ │ vector_data=[],
|
||||
│ │ │ │ │ vector_index=[]
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'optotagging': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/optotagging/optotagging',
|
||||
│ │ │ │ │ name='optotagging',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/optotagging/optotagging/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='seconds',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c63710>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c7c3d0>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'raw_gaze_mapping': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/raw_gaze_mapping',
|
||||
│ │ │ name='raw_gaze_mapping',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'eye_area': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/eye_area',
|
||||
│ │ │ │ │ name='eye_area',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/eye_area/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Pixels ^ 2',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b6bb50>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c33850>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'pupil_area': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/pupil_area',
|
||||
│ │ │ │ │ name='pupil_area',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/pupil_area/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Pixels ^ 2',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a80150>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c40190>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'screen_coordinates': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/screen_coordinates',
|
||||
│ │ │ │ │ name='screen_coordinates',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/screen_coordinates/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Centimeters',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c41110>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b92390>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'screen_coordinates_spherical': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/screen_coordinates_spherical',
|
||||
│ │ │ │ │ name='screen_coordinates_spherical',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/raw_gaze_mapping/screen_coordinates_spherical/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='Degrees',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b91ed0>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b93d10>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'running': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/running',
|
||||
│ │ │ name='running',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'running_speed': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/running/running_speed',
|
||||
│ │ │ │ │ name='running_speed',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/running/running_speed/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='cm/s',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b91f50>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c96490>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'running_speed_end_times': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/running/running_speed_end_times',
|
||||
│ │ │ │ │ name='running_speed_end_times',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/running/running_speed_end_times/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='cm/s',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c95a50>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c95610>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ 'running_wheel_rotation': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/running/running_wheel_rotation',
|
||||
│ │ │ │ │ name='running_wheel_rotation',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/running/running_wheel_rotation/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='radians',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c94b10>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c96490>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ ),
|
||||
│ │ 'stimulus': ProcessingModule(
|
||||
│ │ │ hdf5_path='/processing/stimulus',
|
||||
│ │ │ name='stimulus',
|
||||
│ │ │ children={
|
||||
│ │ │ │ 'timestamps': TimeSeries(
|
||||
│ │ │ │ │ hdf5_path='/processing/stimulus/timestamps',
|
||||
│ │ │ │ │ name='timestamps',
|
||||
│ │ │ │ │ description='no description',
|
||||
│ │ │ │ │ comments='no comments',
|
||||
│ │ │ │ │ data=TimeSeriesData(
|
||||
│ │ │ │ │ │ hdf5_path='/processing/stimulus/timestamps/data',
|
||||
│ │ │ │ │ │ object_id=None,
|
||||
│ │ │ │ │ │ name='data',
|
||||
│ │ │ │ │ │ conversion=1.0,
|
||||
│ │ │ │ │ │ resolution=-1.0,
|
||||
│ │ │ │ │ │ unit='s',
|
||||
│ │ │ │ │ │ array=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c97d10>
|
||||
│ │ │ │ │ ),
|
||||
│ │ │ │ │ starting_time=None,
|
||||
│ │ │ │ │ timestamps=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124c96910>,
|
||||
│ │ │ │ │ control=None,
|
||||
│ │ │ │ │ control_description=None,
|
||||
│ │ │ │ │ sync=None
|
||||
│ │ │ │ )
|
||||
│ │ │ }
|
||||
│ │ )
|
||||
│ },
|
||||
│ stimulus=NWBFileStimulus(
|
||||
│ │ hdf5_path=None,
|
||||
│ │ object_id=None,
|
||||
│ │ name='stimulus',
|
||||
│ │ presentation={},
|
||||
│ │ templates={}
|
||||
│ ),
|
||||
│ general=NWBFileGeneral(
|
||||
│ │ hdf5_path=None,
|
||||
│ │ object_id=None,
|
||||
│ │ name='general',
|
||||
│ │ data_collection=None,
|
||||
│ │ experiment_description=None,
|
||||
│ │ experimenter=None,
|
||||
│ │ institution='Allen Institute for Brain Science',
|
||||
│ │ keywords=None,
|
||||
│ │ lab=None,
|
||||
│ │ notes=None,
|
||||
│ │ pharmacology=None,
|
||||
│ │ protocol=None,
|
||||
│ │ related_publications=None,
|
||||
│ │ session_id='760693773',
|
||||
│ │ slices=None,
|
||||
│ │ source_script=None,
|
||||
│ │ stimulus='brain_observatory_1.1',
|
||||
│ │ surgery=None,
|
||||
│ │ virus=None,
|
||||
│ │ nwb_container=[],
|
||||
│ │ devices={
|
||||
│ │ │ 'probeA': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeA',
|
||||
│ │ │ │ name='probeA',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=29999.9700560591,
|
||||
│ │ │ │ probe_id=769322820
|
||||
│ │ │ ),
|
||||
│ │ │ 'probeB': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeB',
|
||||
│ │ │ │ name='probeB',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=29999.9195957425,
|
||||
│ │ │ │ probe_id=769322824
|
||||
│ │ │ ),
|
||||
│ │ │ 'probeC': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeC',
|
||||
│ │ │ │ name='probeC',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=29999.9985048795,
|
||||
│ │ │ │ probe_id=769322827
|
||||
│ │ │ ),
|
||||
│ │ │ 'probeD': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeD',
|
||||
│ │ │ │ name='probeD',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=29999.9228144047,
|
||||
│ │ │ │ probe_id=769322829
|
||||
│ │ │ ),
|
||||
│ │ │ 'probeE': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeE',
|
||||
│ │ │ │ name='probeE',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=30000.0007890914,
|
||||
│ │ │ │ probe_id=769322831
|
||||
│ │ │ ),
|
||||
│ │ │ 'probeF': EcephysProbe(
|
||||
│ │ │ │ hdf5_path='/general/devices/probeF',
|
||||
│ │ │ │ name='probeF',
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ manufacturer=None,
|
||||
│ │ │ │ sampling_rate=30000.0428393552,
|
||||
│ │ │ │ probe_id=769322833
|
||||
│ │ │ )
|
||||
│ │ },
|
||||
│ │ subject=EcephysSpecimen(
|
||||
│ │ │ hdf5_path='/general/subject',
|
||||
│ │ │ name='subject',
|
||||
│ │ │ age='P110D',
|
||||
│ │ │ date_of_birth=None,
|
||||
│ │ │ description=None,
|
||||
│ │ │ genotype='Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt',
|
||||
│ │ │ sex='F',
|
||||
│ │ │ species='Mus musculus',
|
||||
│ │ │ subject_id='738651046',
|
||||
│ │ │ weight=None,
|
||||
│ │ │ specimen_name='Sst-IRES-Cre;Ai32-406808',
|
||||
│ │ │ age_in_days=110.0,
|
||||
│ │ │ strain='C57BL/6J'
|
||||
│ │ ),
|
||||
│ │ extracellular_ephys=NWBFileGeneralExtracellularEphys(
|
||||
│ │ │ hdf5_path=None,
|
||||
│ │ │ object_id=None,
|
||||
│ │ │ name='extracellular_ephys',
|
||||
│ │ │ electrode_group=[
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeA',
|
||||
│ │ │ │ │ name='probeA',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322820,
|
||||
│ │ │ │ │ lfp_sampling_rate=1249.998752335795
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeB',
|
||||
│ │ │ │ │ name='probeB',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322824,
|
||||
│ │ │ │ │ lfp_sampling_rate=1249.996649822605
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeC',
|
||||
│ │ │ │ │ name='probeC',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322827,
|
||||
│ │ │ │ │ lfp_sampling_rate=1249.999937703315
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeD',
|
||||
│ │ │ │ │ name='probeD',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322829,
|
||||
│ │ │ │ │ lfp_sampling_rate=1249.99678393353
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeE',
|
||||
│ │ │ │ │ name='probeE',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322831,
|
||||
│ │ │ │ │ lfp_sampling_rate=1250.000032878805
|
||||
│ │ │ │ ),
|
||||
│ │ │ │ EcephysElectrodeGroup(
|
||||
│ │ │ │ │ hdf5_path='/general/extracellular_ephys/probeF',
|
||||
│ │ │ │ │ name='probeF',
|
||||
│ │ │ │ │ description='Ecephys Electrode Group',
|
||||
│ │ │ │ │ location='See electrode locations',
|
||||
│ │ │ │ │ position=None,
|
||||
│ │ │ │ │ has_lfp_data=True,
|
||||
│ │ │ │ │ probe_id=769322833,
|
||||
│ │ │ │ │ lfp_sampling_rate=1250.00178497313
|
||||
│ │ │ │ )
|
||||
│ │ │ ],
|
||||
│ │ │ electrodes=NWBFileGeneralExtracellularEphysElectrodes(
|
||||
│ │ │ │ hdf5_path=None,
|
||||
│ │ │ │ name='electrodes',
|
||||
│ │ │ │ colnames=None,
|
||||
│ │ │ │ description=None,
|
||||
│ │ │ │ vector_data=[],
|
||||
│ │ │ │ vector_index=[],
|
||||
│ │ │ │ x=[],
|
||||
│ │ │ │ y=[],
|
||||
│ │ │ │ z=[],
|
||||
│ │ │ │ imp=[],
|
||||
│ │ │ │ location=[],
|
||||
│ │ │ │ filtering=[],
|
||||
│ │ │ │ group=[],
|
||||
│ │ │ │ group_name=[],
|
||||
│ │ │ │ rel_x=[],
|
||||
│ │ │ │ rel_y=[],
|
||||
│ │ │ │ rel_z=[],
|
||||
│ │ │ │ reference=[]
|
||||
│ │ │ )
|
||||
│ │ ),
|
||||
│ │ intracellular_ephys=None,
|
||||
│ │ optogenetics={},
|
||||
│ │ optophysiology={}
|
||||
│ ),
|
||||
│ intervals={
|
||||
│ │ 'drifting_gratings_presentations': drifting_gratings_presentations(
|
||||
│ │ │ hdf5_path='/intervals/drifting_gratings_presentations',
|
||||
│ │ │ name='drifting_gratings_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'temporal_frequency', 'color', 'mask', 'opacity', 'phase', 'size',
|
||||
│ 'units', 'stimulus_index', 'orientation', 'spatial_frequency',
|
||||
│ 'contrast', 'tags', 'timeseries'], dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'drifting_gratings' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a23950>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a23310>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a22d50>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ temporal_frequency=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a21bd0>,
|
||||
│ │ │ mask=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a21910>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ phase=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a20d10>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a20ad0>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a20cd0>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ spatial_frequency=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a0fd90>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'flashes_presentations': flashes_presentations(
|
||||
│ │ │ hdf5_path='/intervals/flashes_presentations',
|
||||
│ │ │ name='flashes_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'color', 'mask', 'opacity', 'phase', 'size', 'units',
|
||||
│ 'stimulus_index', 'orientation', 'spatial_frequency', 'contrast',
|
||||
│ 'tags', 'timeseries'], dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'flashes' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a7e490>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a7db50>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a7cf10>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a7c890>,
|
||||
│ │ │ mask=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a7c5d0>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ phase=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a563d0>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a56050>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a5da90>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ spatial_frequency=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124ac0b50>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'gabors_presentations': gabors_presentations(
|
||||
│ │ │ hdf5_path='/intervals/gabors_presentations',
|
||||
│ │ │ name='gabors_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'temporal_frequency', 'x_position', 'y_position', 'color', 'mask',
|
||||
│ 'opacity', 'phase', 'size', 'units', 'stimulus_index',
|
||||
│ 'orientation', 'spatial_frequency', 'contrast', 'tags',
|
||||
│ 'timeseries'], dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'gabors' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124adfb10>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124adead0>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124ade890>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ temporal_frequency=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ x_position=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ y_position=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124acb750>,
|
||||
│ │ │ mask=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124acb650>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ phase=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124aca6d0>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124aca410>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124aca150>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ spatial_frequency=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124ab7510>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'natural_movie_one_presentations': natural_movie_one_presentations(
|
||||
│ │ │ hdf5_path='/intervals/natural_movie_one_presentations',
|
||||
│ │ │ name='natural_movie_one_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'color', 'opacity', 'size', 'units', 'stimulus_index',
|
||||
│ 'orientation', 'frame', 'contrast', 'tags', 'timeseries'],
|
||||
│ dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'natural_movie_one' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b0cb50>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a23ed0>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b1aad0>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b1b090>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a82d50>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a83210>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ frame=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'natural_movie_three_presentations': natural_movie_three_presentations(
|
||||
│ │ │ hdf5_path='/intervals/natural_movie_three_presentations',
|
||||
│ │ │ name='natural_movie_three_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'color', 'opacity', 'size', 'units', 'stimulus_index',
|
||||
│ 'orientation', 'frame', 'contrast', 'tags', 'timeseries'],
|
||||
│ dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'natural_movie_three' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a29e50>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a28510>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a29c50>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a29450>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a2a7d0>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124a280d0>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ frame=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'natural_scenes_presentations': natural_scenes_presentations(
|
||||
│ │ │ hdf5_path='/intervals/natural_scenes_presentations',
|
||||
│ │ │ name='natural_scenes_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'stimulus_index', 'frame', 'tags', 'timeseries'], dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'natural_scenes' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b75550>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b75ed0>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124b53310>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ frame=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'spontaneous_presentations': spontaneous_presentations(
|
||||
│ │ │ hdf5_path='/intervals/spontaneous_presentations',
|
||||
│ │ │ name='spontaneous_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'tags', 'timeseries'],
|
||||
│ dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'spontaneous' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124ba7050>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbe290>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbcb10>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ ),
|
||||
│ │ 'static_gratings_presentations': static_gratings_presentations(
|
||||
│ │ │ hdf5_path='/intervals/static_gratings_presentations',
|
||||
│ │ │ name='static_gratings_presentations',
|
||||
│ │ │ colnames=array(['start_time', 'stop_time', 'stimulus_name', 'stimulus_block',
|
||||
│ 'color', 'mask', 'opacity', 'phase', 'size', 'units',
|
||||
│ 'stimulus_index', 'orientation', 'spatial_frequency', 'contrast',
|
||||
│ 'tags', 'timeseries'], dtype=object),
|
||||
│ │ │ description="Presentation times and stimuli details for 'static_gratings' stimuli",
|
||||
│ │ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ start_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stop_time=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ tags=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbef90>,
|
||||
│ │ │ tags_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ timeseries=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbf090>,
|
||||
│ │ │ timeseries_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ stimulus_name=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbf890>,
|
||||
│ │ │ stimulus_block=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ color=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbf510>,
|
||||
│ │ │ mask=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bbe790>,
|
||||
│ │ │ opacity=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ phase=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bc3290>,
|
||||
│ │ │ size=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bc0e50>,
|
||||
│ │ │ units=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124bc0b90>,
|
||||
│ │ │ stimulus_index=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ orientation=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ spatial_frequency=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ contrast=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ │ vector_data=[],
|
||||
│ │ │ vector_index=[]
|
||||
│ │ )
|
||||
│ },
|
||||
│ units=units(
|
||||
│ │ hdf5_path='/units',
|
||||
│ │ name='units',
|
||||
│ │ colnames=array(['quality', 'amplitude_cutoff', 'recovery_slope', 'cluster_id',
|
||||
│ 'spread', 'velocity_below', 'd_prime', 'nn_miss_rate',
|
||||
│ 'isolation_distance', 'silhouette_score', 'waveform_halfwidth',
|
||||
│ 'PT_ratio', 'cumulative_drift', 'isi_violations', 'presence_ratio',
|
||||
│ 'snr', 'l_ratio', 'amplitude', 'repolarization_slope',
|
||||
│ 'local_index', 'velocity_above', 'nn_hit_rate', 'peak_channel_id',
|
||||
│ 'waveform_duration', 'firing_rate', 'max_drift', 'spike_times',
|
||||
│ 'spike_amplitudes', 'waveform_mean'], dtype=object),
|
||||
│ │ description='',
|
||||
│ │ id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ spike_times_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ spike_times=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ waveform_mean=dask.array<array, shape=(10, 82), dtype=float64, chunksize=(10, 82), chunktype=numpy.ndarray>,
|
||||
│ │ quality=<nwb_linkml.types.ndarray.NDArrayProxy object at 0x124ce0250>,
|
||||
│ │ amplitude_cutoff=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ recovery_slope=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ cluster_id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ spread=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ velocity_below=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ d_prime=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ nn_miss_rate=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ isolation_distance=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ silhouette_score=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ waveform_halfwidth=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ PT_ratio=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ cumulative_drift=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ isi_violations=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ presence_ratio=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ snr=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ l_ratio=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ amplitude=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ repolarization_slope=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ local_index=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ velocity_above=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ nn_hit_rate=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ peak_channel_id=dask.array<array, shape=(10,), dtype=int64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ waveform_duration=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ firing_rate=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ max_drift=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ spike_amplitudes=dask.array<array, shape=(10,), dtype=float64, chunksize=(10,), chunktype=numpy.ndarray>,
|
||||
│ │ vector_data=[],
|
||||
│ │ vector_index=[],
|
||||
│ │ obs_intervals_index=None,
|
||||
│ │ obs_intervals=None,
|
||||
│ │ electrodes_index=None,
|
||||
│ │ electrodes=None,
|
||||
│ │ electrode_group=[],
|
||||
│ │ waveform_sd=None
|
||||
│ )
|
||||
)
|
|
@ -76,7 +76,7 @@ def default_template(pydantic_ver: str = "2", extra_classes:Optional[List[Type[B
|
|||
from __future__ import annotations
|
||||
from datetime import datetime, date
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional, Any, Union, ClassVar, Annotated, TypeVar, List
|
||||
from typing import Dict, Optional, Any, Union, ClassVar, Annotated, TypeVar, List, TYPE_CHECKING
|
||||
from pydantic import BaseModel as BaseModel, Field"""
|
||||
if pydantic_ver == '2':
|
||||
template += """
|
||||
|
@ -90,6 +90,8 @@ if sys.version_info >= (3, 8):
|
|||
from typing import Literal
|
||||
else:
|
||||
from typing_extensions import Literal
|
||||
if TYPE_CHECKING:
|
||||
import numpy as np
|
||||
|
||||
{% for import_module, import_classes in imports.items() %}
|
||||
from {{ import_module }} import (
|
||||
|
@ -137,6 +139,22 @@ class ConfiguredBaseModel(BaseModel):
|
|||
pass
|
||||
{%- endif -%}
|
||||
"""
|
||||
### Getitem
|
||||
template += """
|
||||
|
||||
def __getitem__(self, i: slice|int) -> 'np.ndarray':
|
||||
if hasattr(self, 'array'):
|
||||
return self.array[i]
|
||||
else:
|
||||
return super().__getitem__(i)
|
||||
|
||||
def __setitem__(self, i: slice|int, value: Any):
|
||||
if hasattr(self, 'array'):
|
||||
self.array[i] = value
|
||||
else:
|
||||
super().__setitem__(i, value)
|
||||
"""
|
||||
|
||||
### Extra classes
|
||||
if extra_classes is not None:
|
||||
template += """{{ '\n\n' }}"""
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
from nwb_linkml.io import schema
|
||||
from nwb_linkml.io.hdf5 import HDF5IO
|
|
@ -270,3 +270,17 @@ def test_namespace(imported_schema):
|
|||
assert hasattr(ns, classname)
|
||||
if imported_schema['split']:
|
||||
assert getattr(ns, classname).__module__ == modname
|
||||
|
||||
def test_get_set_item(imported_schema):
|
||||
"""We can get and set without explicitly addressing array"""
|
||||
cls = imported_schema['core'].MainTopLevel(
|
||||
array=np.array([[1,2,3],[4,5,6]])
|
||||
)
|
||||
cls[0] = 50
|
||||
assert (cls[0] == 50).all()
|
||||
assert (cls.array[0] == 50).all()
|
||||
|
||||
cls[1,1] = 100
|
||||
assert cls[1,1] == 100
|
||||
assert cls.array[1,1] == 100
|
||||
|
||||
|
|
52
poetry.lock
generated
52
poetry.lock
generated
|
@ -2075,6 +2075,22 @@ files = [
|
|||
{file = "ruamel.yaml.clib-0.2.8.tar.gz", hash = "sha256:beb2e0404003de9a4cab9753a8805a8fe9320ee6673136ed7f04255fe60bb512"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "68.2.2"
|
||||
description = "Easily download, build, install, upgrade, and uninstall Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "setuptools-68.2.2-py3-none-any.whl", hash = "sha256:b454a35605876da60632df1a60f736524eb73cc47bbc9f3f1ef1b644de74fd2a"},
|
||||
{file = "setuptools-68.2.2.tar.gz", hash = "sha256:4ac1475276d2f1c48684874089fefcd83bd7162ddaafb81fac866ba0db282a87"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
|
||||
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
|
||||
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
|
||||
|
||||
[[package]]
|
||||
name = "shexjsg"
|
||||
version = "0.8.2"
|
||||
|
@ -2262,6 +2278,26 @@ theme-pydata = ["pydata-sphinx-theme (>=0.13.0,<0.14.0)"]
|
|||
theme-rtd = ["sphinx-rtd-theme (>=1.0,<2.0)"]
|
||||
theme-sbt = ["sphinx-book-theme (>=1.0,<2.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "sphinx-togglebutton"
|
||||
version = "0.3.2"
|
||||
description = "Toggle page content and collapse admonitions in Sphinx."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "sphinx-togglebutton-0.3.2.tar.gz", hash = "sha256:ab0c8b366427b01e4c89802d5d078472c427fa6e9d12d521c34fa0442559dc7a"},
|
||||
{file = "sphinx_togglebutton-0.3.2-py3-none-any.whl", hash = "sha256:9647ba7874b7d1e2d43413d8497153a85edc6ac95a3fea9a75ef9c1e08aaae2b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
docutils = "*"
|
||||
setuptools = "*"
|
||||
sphinx = "*"
|
||||
wheel = "*"
|
||||
|
||||
[package.extras]
|
||||
sphinx = ["matplotlib", "myst-nb", "numpy", "sphinx-book-theme", "sphinx-design", "sphinx-examples"]
|
||||
|
||||
[[package]]
|
||||
name = "sphinxcontrib-applehelp"
|
||||
version = "1.0.7"
|
||||
|
@ -2610,6 +2646,20 @@ files = [
|
|||
docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"]
|
||||
tests = ["pytest", "pytest-cov"]
|
||||
|
||||
[[package]]
|
||||
name = "wheel"
|
||||
version = "0.41.2"
|
||||
description = "A built-package format for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "wheel-0.41.2-py3-none-any.whl", hash = "sha256:75909db2664838d015e3d9139004ee16711748a52c8f336b52882266540215d8"},
|
||||
{file = "wheel-0.41.2.tar.gz", hash = "sha256:0c5ac5ff2afb79ac23ab82bab027a0be7b5dbcf2e54dc50efe4bf507de1f7985"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
test = ["pytest (>=6.0.0)", "setuptools (>=65)"]
|
||||
|
||||
[[package]]
|
||||
name = "wrapt"
|
||||
version = "1.15.0"
|
||||
|
@ -2712,4 +2762,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.11,<3.13"
|
||||
content-hash = "5dc10e6c1e6ae285bc09c270d0e8015f5705dc53a259096a6b2054e37392da34"
|
||||
content-hash = "ff4389164e6c41667acfe292fb4898303c356cf07d1dfb0d3ac6d6a29da8a738"
|
||||
|
|
|
@ -21,6 +21,7 @@ sphinx-autobuild = "^2021.3.14"
|
|||
nwb-linkml = { path = './nwb_linkml', develop = true }
|
||||
nwb_schema_language = { path = './nwb_schema_language', develop = true }
|
||||
sphinx-design = "^0.5.0"
|
||||
sphinx-togglebutton = "^0.3.2"
|
||||
|
||||
|
||||
[build-system]
|
||||
|
|
Loading…
Reference in a new issue