regenerate models

This commit is contained in:
sneakers-the-rat 2024-08-12 19:25:48 -07:00
parent 994b79e0f2
commit dd99ac24eb
Signed by untrusted user who does not match committer: jonny
GPG key ID: 6DCB96EF1E4D232D
109 changed files with 1182 additions and 273 deletions

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -411,9 +411,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -15,9 +15,9 @@ from pydantic import (
ValidationInfo, ValidationInfo,
BeforeValidator, BeforeValidator,
) )
from numpydantic import NDArray, Shape
from ...hdmf_common.v1_1_0.hdmf_common_table import DynamicTable, VectorIndex, VectorData from ...hdmf_common.v1_1_0.hdmf_common_table import DynamicTable, VectorIndex, VectorData
from ...core.v2_2_0.core_nwb_base import TimeSeries from ...core.v2_2_0.core_nwb_base import TimeSeries
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "2.2.0" version = "2.2.0"
@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -181,16 +181,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -70,7 +70,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -411,9 +411,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -15,9 +15,9 @@ from pydantic import (
ValidationInfo, ValidationInfo,
BeforeValidator, BeforeValidator,
) )
from numpydantic import NDArray, Shape
from ...hdmf_common.v1_1_2.hdmf_common_table import DynamicTable, VectorIndex, VectorData from ...hdmf_common.v1_1_2.hdmf_common_table import DynamicTable, VectorIndex, VectorData
from ...core.v2_2_1.core_nwb_base import TimeSeries from ...core.v2_2_1.core_nwb_base import TimeSeries
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "2.2.1" version = "2.2.1"
@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -181,16 +181,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -70,7 +70,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -411,9 +411,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -181,16 +181,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -70,7 +70,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -411,9 +411,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -181,16 +181,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -410,9 +410,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -437,10 +449,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -411,9 +411,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -181,16 +181,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -412,9 +412,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -439,10 +451,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -419,9 +419,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -178,16 +178,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -418,9 +418,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -445,10 +457,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -90,15 +90,21 @@ class TimeSeriesReferenceVectorData(VectorData):
name: str = Field( name: str = Field(
"timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}} "timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}}
) )
idx_start: int = Field( idx_start: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: int = Field( count: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Number of data samples available in this time series, during this epoch""", description="""Number of data samples available in this time series, during this epoch""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
timeseries: NDArray[Shape["*"], TimeSeries] = Field(
...,
description="""The TimeSeries that this index applies to""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: TimeSeries = Field(..., description="""The TimeSeries that this index applies to""")
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -419,9 +419,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -178,16 +178,20 @@ class TimeIntervalsTimeseries(VectorData):
"linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"} "linkml_meta": {"equals_string": "timeseries", "ifabsent": "string(timeseries)"}
}, },
) )
idx_start: Optional[int] = Field( idx_start: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: Optional[int] = Field( count: Optional[NDArray[Shape["*"], int]] = Field(
None, None,
description="""Number of data samples available in this time series, during this epoch.""", description="""Number of data samples available in this time series, during this epoch.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: Optional[TimeSeries] = Field( timeseries: Optional[NDArray[Shape["*"], TimeSeries]] = Field(
None, description="""the TimeSeries that this index applies to.""" None,
description="""the TimeSeries that this index applies to.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -418,9 +418,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -445,10 +457,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -114,15 +114,21 @@ class TimeSeriesReferenceVectorData(VectorData):
name: str = Field( name: str = Field(
"timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}} "timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}}
) )
idx_start: int = Field( idx_start: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: int = Field( count: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Number of data samples available in this time series, during this epoch""", description="""Number of data samples available in this time series, during this epoch""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
timeseries: NDArray[Shape["*"], TimeSeries] = Field(
...,
description="""The TimeSeries that this index applies to""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: TimeSeries = Field(..., description="""The TimeSeries that this index applies to""")
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -419,9 +419,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -418,9 +418,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -445,10 +457,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -114,15 +114,21 @@ class TimeSeriesReferenceVectorData(VectorData):
name: str = Field( name: str = Field(
"timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}} "timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}}
) )
idx_start: int = Field( idx_start: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: int = Field( count: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Number of data samples available in this time series, during this epoch""", description="""Number of data samples available in this time series, during this epoch""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
timeseries: NDArray[Shape["*"], TimeSeries] = Field(
...,
description="""The TimeSeries that this index applies to""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: TimeSeries = Field(..., description="""The TimeSeries that this index applies to""")
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -419,9 +419,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -517,9 +517,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -544,10 +556,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -114,15 +114,21 @@ class TimeSeriesReferenceVectorData(VectorData):
name: str = Field( name: str = Field(
"timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}} "timeseries", json_schema_extra={"linkml_meta": {"ifabsent": "string(timeseries)"}}
) )
idx_start: int = Field( idx_start: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""", description="""Start index into the TimeSeries 'data' and 'timestamp' datasets of the referenced TimeSeries. The first dimension of those arrays is always time.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
count: int = Field( count: NDArray[Shape["*"], int] = Field(
..., ...,
description="""Number of data samples available in this time series, during this epoch""", description="""Number of data samples available in this time series, during this epoch""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
timeseries: NDArray[Shape["*"], TimeSeries] = Field(
...,
description="""The TimeSeries that this index applies to""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
timeseries: TimeSeries = Field(..., description="""The TimeSeries that this index applies to""")
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -69,7 +69,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -419,9 +419,21 @@ class ElectrodeGroupPosition(ConfiguredBaseModel):
"linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"} "linkml_meta": {"equals_string": "position", "ifabsent": "string(position)"}
}, },
) )
x: Optional[float] = Field(None, description="""x coordinate""") x: Optional[NDArray[Shape["*"], float]] = Field(
y: Optional[float] = Field(None, description="""y coordinate""") None,
z: Optional[float] = Field(None, description="""z coordinate""") description="""x coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""y coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""z coordinate""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
class ClusterWaveforms(NWBDataInterface): class ClusterWaveforms(NWBDataInterface):

View file

@ -62,7 +62,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -68,7 +68,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name

View file

@ -75,7 +75,7 @@ ModelType = TypeVar("ModelType", bound=Type[BaseModel])
def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]: def _get_name(item: ModelType | dict, info: ValidationInfo) -> Union[ModelType, dict]:
"""Get the name of the slot that refers to this object""" """Get the name of the slot that refers to this object"""
assert isinstance(item, (BaseModel, dict)) assert isinstance(item, (BaseModel, dict)), f"{item} was not a BaseModel or a dict!"
name = info.field_name name = info.field_name
if isinstance(item, BaseModel): if isinstance(item, BaseModel):
item.name = name item.name = name
@ -517,9 +517,21 @@ class PlaneSegmentationPixelMask(VectorData):
"linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"} "linkml_meta": {"equals_string": "pixel_mask", "ifabsent": "string(pixel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Pixel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Pixel y-coordinate.""") None,
weight: Optional[float] = Field(None, description="""Weight of the pixel.""") description="""Pixel x-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Pixel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the pixel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[
@ -544,10 +556,26 @@ class PlaneSegmentationVoxelMask(VectorData):
"linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"} "linkml_meta": {"equals_string": "voxel_mask", "ifabsent": "string(voxel_mask)"}
}, },
) )
x: Optional[int] = Field(None, description="""Voxel x-coordinate.""") x: Optional[NDArray[Shape["*"], int]] = Field(
y: Optional[int] = Field(None, description="""Voxel y-coordinate.""") None,
z: Optional[int] = Field(None, description="""Voxel z-coordinate.""") description="""Voxel x-coordinate.""",
weight: Optional[float] = Field(None, description="""Weight of the voxel.""") json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
y: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel y-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
z: Optional[NDArray[Shape["*"], int]] = Field(
None,
description="""Voxel z-coordinate.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
weight: Optional[NDArray[Shape["*"], float]] = Field(
None,
description="""Weight of the voxel.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
description: str = Field(..., description="""Description of what these vectors represent.""") description: str = Field(..., description="""Description of what these vectors represent.""")
value: Optional[ value: Optional[
Union[ Union[

View file

@ -414,7 +414,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -414,7 +414,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -414,7 +414,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_3_0.hdmf_common_base import Container, Data from ...hdmf_common.v1_3_0.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "1.3.0" version = "1.3.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -96,9 +98,10 @@ class ExternalResourcesKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key_name: str = Field( key_name: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the 'resources' table.""", description="""The user term that maps to one or more resources in the 'resources' table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -115,17 +118,25 @@ class ExternalResourcesResources(Data):
"linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"} "linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"}
}, },
) )
keytable_idx: int = Field(..., description="""The index to the key in the 'keys' table.""") keytable_idx: NDArray[Shape["*"], int] = Field(
resource_name: str = Field( ...,
description="""The index to the key in the 'keys' table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
resource_name: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The name of the online resource (e.g., website, database) that has the entity.""", description="""The name of the online resource (e.g., website, database) that has the entity.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
resource_id: str = Field( resource_id: NDArray[Shape["*"], str] = Field(
..., description="""The unique identifier for the resource entity at the resource.""" ...,
description="""The unique identifier for the resource entity at the resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
uri: str = Field( uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the resource entity this reference applies to. This can be an empty string.""", description="""The URI for the resource entity this reference applies to. This can be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -142,10 +153,15 @@ class ExternalResourcesObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
object_id: str = Field(..., description="""The UUID for the object.""") object_id: NDArray[Shape["*"], str] = Field(
field: str = Field( ...,
description="""The UUID for the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field of the object. This can be an empty string if the object is a dataset and the field is the dataset values.""", description="""The field of the object. This can be an empty string if the object is a dataset and the field is the dataset values.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -162,10 +178,16 @@ class ExternalResourcesObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objecttable_idx: int = Field( objecttable_idx: NDArray[Shape["*"], int] = Field(
..., description="""The index to the 'objects' table for the object that holds the key.""" ...,
description="""The index to the 'objects' table for the object that holds the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keytable_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The index to the 'keys' table for the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keytable_idx: int = Field(..., description="""The index to the 'keys' table for the key.""")
# Model rebuild # Model rebuild

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -415,7 +415,7 @@ class DynamicTableMixin(BaseModel):
return model return model
@model_validator(mode="after") @model_validator(mode="after")
def cast_extra_columns(self): def cast_extra_columns(self) -> "DynamicTableMixin":
""" """
If extra columns are passed as just lists or arrays, cast to VectorData If extra columns are passed as just lists or arrays, cast to VectorData
before we resolve targets for VectorData and VectorIndex pairs. before we resolve targets for VectorData and VectorIndex pairs.

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_4_0.hdmf_common_base import Container, Data from ...hdmf_common.v1_4_0.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "0.1.0" version = "0.1.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -99,9 +101,10 @@ class ExternalResourcesKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key: str = Field( key: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the 'resources' table.""", description="""The user term that maps to one or more resources in the 'resources' table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -118,12 +121,25 @@ class ExternalResourcesEntities(Data):
"linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"} "linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"}
}, },
) )
keys_idx: int = Field(..., description="""The index to the key in the 'keys' table.""") keys_idx: NDArray[Shape["*"], int] = Field(
resources_idx: int = Field(..., description="""The index into the 'resources' table""") ...,
entity_id: str = Field(..., description="""The unique identifier entity.""") description="""The index to the key in the 'keys' table.""",
entity_uri: str = Field( json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
resources_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The index into the 'resources' table""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
entity_id: NDArray[Shape["*"], str] = Field(
...,
description="""The unique identifier entity.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
entity_uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the entity this reference applies to. This can be an empty string.""", description="""The URI for the entity this reference applies to. This can be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -140,9 +156,15 @@ class ExternalResourcesResources(Data):
"linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"} "linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"}
}, },
) )
resource: str = Field(..., description="""The name of the resource.""") resource: NDArray[Shape["*"], str] = Field(
resource_uri: str = Field( ...,
..., description="""The URI for the resource. This can be an empty string.""" description="""The name of the resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
resource_uri: NDArray[Shape["*"], str] = Field(
...,
description="""The URI for the resource. This can be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -159,10 +181,15 @@ class ExternalResourcesObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
object_id: str = Field(..., description="""The UUID for the object.""") object_id: NDArray[Shape["*"], str] = Field(
field: str = Field( ...,
description="""The UUID for the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field of the object. This can be an empty string if the object is a dataset and the field is the dataset values.""", description="""The field of the object. This can be an empty string if the object is a dataset and the field is the dataset values.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -179,10 +206,16 @@ class ExternalResourcesObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objects_idx: int = Field( objects_idx: NDArray[Shape["*"], int] = Field(
..., description="""The index to the 'objects' table for the object that holds the key.""" ...,
description="""The index to the 'objects' table for the object that holds the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The index to the 'keys' table for the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The index to the 'keys' table for the key.""")
# Model rebuild # Model rebuild

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_5_1.hdmf_common_base import Container, Data from ...hdmf_common.v1_5_1.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "0.2.0" version = "0.2.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -99,9 +101,10 @@ class ExternalResourcesKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key: str = Field( key: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the 'resources' table.""", description="""The user term that maps to one or more resources in the 'resources' table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -118,12 +121,25 @@ class ExternalResourcesEntities(Data):
"linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"} "linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"}
}, },
) )
keys_idx: int = Field(..., description="""The index to the key in the 'keys' table.""") keys_idx: NDArray[Shape["*"], int] = Field(
resources_idx: int = Field(..., description="""The index into the 'resources' table""") ...,
entity_id: str = Field(..., description="""The unique identifier entity.""") description="""The index to the key in the 'keys' table.""",
entity_uri: str = Field( json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
resources_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The index into the 'resources' table""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
entity_id: NDArray[Shape["*"], str] = Field(
...,
description="""The unique identifier entity.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
entity_uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the entity this reference applies to. This can be an empty string.""", description="""The URI for the entity this reference applies to. This can be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -140,9 +156,15 @@ class ExternalResourcesResources(Data):
"linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"} "linkml_meta": {"equals_string": "resources", "ifabsent": "string(resources)"}
}, },
) )
resource: str = Field(..., description="""The name of the resource.""") resource: NDArray[Shape["*"], str] = Field(
resource_uri: str = Field( ...,
..., description="""The URI for the resource. This can be an empty string.""" description="""The name of the resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
resource_uri: NDArray[Shape["*"], str] = Field(
...,
description="""The URI for the resource. This can be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -159,14 +181,20 @@ class ExternalResourcesObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
object_id: str = Field(..., description="""The UUID for the object.""") object_id: NDArray[Shape["*"], str] = Field(
relative_path: str = Field( ...,
description="""The UUID for the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
relative_path: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The relative path from the container with the object_id to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the container is a dataset which contains the value(s) that is associated with an external resource.""", description="""The relative path from the container with the object_id to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the container is a dataset which contains the value(s) that is associated with an external resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
field: str = Field( field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field of the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""", description="""The field of the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -183,10 +211,16 @@ class ExternalResourcesObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objects_idx: int = Field( objects_idx: NDArray[Shape["*"], int] = Field(
..., description="""The index to the 'objects' table for the object that holds the key.""" ...,
description="""The index to the 'objects' table for the object that holds the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The index to the 'keys' table for the key.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The index to the 'keys' table for the key.""")
# Model rebuild # Model rebuild

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_6_0.hdmf_common_base import Container, Data from ...hdmf_common.v1_6_0.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "0.3.0" version = "0.3.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -99,9 +101,10 @@ class ExternalResourcesKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key: str = Field( key: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""", description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -116,9 +119,10 @@ class ExternalResourcesFiles(Data):
"files", "files",
json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}}, json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}},
) )
file_object_id: str = Field( file_object_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The object id (UUID) of a file that contains objects that refers to external resources.""", description="""The object id (UUID) of a file that contains objects that refers to external resources.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -135,14 +139,20 @@ class ExternalResourcesEntities(Data):
"linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"} "linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"}
}, },
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""") keys_idx: NDArray[Shape["*"], int] = Field(
entity_id: str = Field( ...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
entity_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""", description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
entity_uri: str = Field( entity_uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""", description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -159,18 +169,30 @@ class ExternalResourcesObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
files_idx: int = Field( files_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the file in the `files` table containing the object.""" ...,
description="""The row index to the file in the `files` table containing the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
object_id: str = Field(..., description="""The object id (UUID) of the object.""") object_id: NDArray[Shape["*"], str] = Field(
object_type: str = Field(..., description="""The data type of the object.""") ...,
relative_path: str = Field( description="""The object id (UUID) of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
object_type: NDArray[Shape["*"], str] = Field(
...,
description="""The data type of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
relative_path: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""", description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
field: str = Field( field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""", description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -187,10 +209,16 @@ class ExternalResourcesObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objects_idx: int = Field( objects_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the object in the `objects` table that holds the key""" ...,
description="""The row index to the object in the `objects` table that holds the key""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""")
# Model rebuild # Model rebuild

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_7_0.hdmf_common_base import Container, Data from ...hdmf_common.v1_7_0.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "0.4.0" version = "0.4.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -102,9 +104,10 @@ class ExternalResourcesKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key: str = Field( key: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""", description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -119,9 +122,10 @@ class ExternalResourcesFiles(Data):
"files", "files",
json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}}, json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}},
) )
file_object_id: str = Field( file_object_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The object id (UUID) of a file that contains objects that refers to external resources.""", description="""The object id (UUID) of a file that contains objects that refers to external resources.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -138,13 +142,15 @@ class ExternalResourcesEntities(Data):
"linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"} "linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"}
}, },
) )
entity_id: str = Field( entity_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""", description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
entity_uri: str = Field( entity_uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""", description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -161,18 +167,30 @@ class ExternalResourcesObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
files_idx: int = Field( files_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the file in the `files` table containing the object.""" ...,
description="""The row index to the file in the `files` table containing the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
object_id: str = Field(..., description="""The object id (UUID) of the object.""") object_id: NDArray[Shape["*"], str] = Field(
object_type: str = Field(..., description="""The data type of the object.""") ...,
relative_path: str = Field( description="""The object id (UUID) of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
object_type: NDArray[Shape["*"], str] = Field(
...,
description="""The data type of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
relative_path: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""", description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
field: str = Field( field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""", description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -189,10 +207,16 @@ class ExternalResourcesObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objects_idx: int = Field( objects_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the object in the `objects` table that holds the key""" ...,
description="""The row index to the object in the `objects` table that holds the key""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""")
class ExternalResourcesEntityKeys(Data): class ExternalResourcesEntityKeys(Data):
@ -208,10 +232,16 @@ class ExternalResourcesEntityKeys(Data):
"linkml_meta": {"equals_string": "entity_keys", "ifabsent": "string(entity_keys)"} "linkml_meta": {"equals_string": "entity_keys", "ifabsent": "string(entity_keys)"}
}, },
) )
entities_idx: int = Field( entities_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the entity in the `entities` table.""" ...,
description="""The row index to the entity in the `entities` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""")
# Model rebuild # Model rebuild

View file

@ -8,6 +8,7 @@ from typing import Any, ClassVar, List, Literal, Dict, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
import numpy as np import numpy as np
from ...hdmf_common.v1_8_0.hdmf_common_base import Container, Data from ...hdmf_common.v1_8_0.hdmf_common_base import Container, Data
from numpydantic import NDArray, Shape
metamodel_version = "None" metamodel_version = "None"
version = "0.5.0" version = "0.5.0"
@ -45,6 +46,7 @@ class LinkMLMeta(RootModel):
return key in self.root return key in self.root
NUMPYDANTIC_VERSION = "1.2.1"
linkml_meta = LinkMLMeta( linkml_meta = LinkMLMeta(
{ {
"annotations": { "annotations": {
@ -102,9 +104,10 @@ class HERDKeys(Data):
"keys", "keys",
json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}}, json_schema_extra={"linkml_meta": {"equals_string": "keys", "ifabsent": "string(keys)"}},
) )
key: str = Field( key: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""", description="""The user term that maps to one or more resources in the `resources` table, e.g., \"human\".""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -119,9 +122,10 @@ class HERDFiles(Data):
"files", "files",
json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}}, json_schema_extra={"linkml_meta": {"equals_string": "files", "ifabsent": "string(files)"}},
) )
file_object_id: str = Field( file_object_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The object id (UUID) of a file that contains objects that refers to external resources.""", description="""The object id (UUID) of a file that contains objects that refers to external resources.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -138,13 +142,15 @@ class HERDEntities(Data):
"linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"} "linkml_meta": {"equals_string": "entities", "ifabsent": "string(entities)"}
}, },
) )
entity_id: str = Field( entity_id: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""", description="""The compact uniform resource identifier (CURIE) of the entity, in the form [prefix]:[unique local identifier], e.g., 'NCBI_TAXON:9606'.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
entity_uri: str = Field( entity_uri: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""", description="""The URI for the entity this reference applies to. This can be an empty string. e.g., https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=9606""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -161,18 +167,30 @@ class HERDObjects(Data):
"linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"} "linkml_meta": {"equals_string": "objects", "ifabsent": "string(objects)"}
}, },
) )
files_idx: int = Field( files_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the file in the `files` table containing the object.""" ...,
description="""The row index to the file in the `files` table containing the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
object_id: str = Field(..., description="""The object id (UUID) of the object.""") object_id: NDArray[Shape["*"], str] = Field(
object_type: str = Field(..., description="""The data type of the object.""") ...,
relative_path: str = Field( description="""The object id (UUID) of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
object_type: NDArray[Shape["*"], str] = Field(
...,
description="""The data type of the object.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
relative_path: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""", description="""The relative path from the data object with the `object_id` to the dataset or attribute with the value(s) that is associated with an external resource. This can be an empty string if the object is a dataset that contains the value(s) that is associated with an external resource.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
field: str = Field( field: NDArray[Shape["*"], str] = Field(
..., ...,
description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""", description="""The field within the compound data type using an external resource. This is used only if the dataset or attribute is a compound data type; otherwise this should be an empty string.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
@ -189,10 +207,16 @@ class HERDObjectKeys(Data):
"linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"} "linkml_meta": {"equals_string": "object_keys", "ifabsent": "string(object_keys)"}
}, },
) )
objects_idx: int = Field( objects_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the object in the `objects` table that holds the key""" ...,
description="""The row index to the object in the `objects` table that holds the key""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""")
class HERDEntityKeys(Data): class HERDEntityKeys(Data):
@ -208,10 +232,16 @@ class HERDEntityKeys(Data):
"linkml_meta": {"equals_string": "entity_keys", "ifabsent": "string(entity_keys)"} "linkml_meta": {"equals_string": "entity_keys", "ifabsent": "string(entity_keys)"}
}, },
) )
entities_idx: int = Field( entities_idx: NDArray[Shape["*"], int] = Field(
..., description="""The row index to the entity in the `entities` table.""" ...,
description="""The row index to the entity in the `entities` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
)
keys_idx: NDArray[Shape["*"], int] = Field(
...,
description="""The row index to the key in the `keys` table.""",
json_schema_extra={"linkml_meta": {"array": {"exact_number_dimensions": 1}}},
) )
keys_idx: int = Field(..., description="""The row index to the key in the `keys` table.""")
# Model rebuild # Model rebuild

View file

@ -334,18 +334,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -334,18 +334,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -334,18 +334,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -334,18 +334,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -258,18 +258,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -289,24 +295,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -334,18 +334,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -258,18 +258,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -289,24 +295,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -345,18 +345,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -258,18 +258,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -289,24 +295,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -41,6 +41,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
@ -48,12 +50,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch this epoch
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: The TimeSeries that this index applies to description: The TimeSeries that this index applies to
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: true required: true
multivalued: false multivalued: false

View file

@ -345,18 +345,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -100,6 +100,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
@ -107,12 +109,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch. this epoch.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: false required: false
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: the TimeSeries that this index applies to. description: the TimeSeries that this index applies to.
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: false required: false
multivalued: false multivalued: false

View file

@ -258,18 +258,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -289,24 +295,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -41,6 +41,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
@ -48,12 +50,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch this epoch
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: The TimeSeries that this index applies to description: The TimeSeries that this index applies to
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: true required: true
multivalued: false multivalued: false

View file

@ -345,18 +345,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -258,18 +258,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -289,24 +295,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -41,6 +41,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
@ -48,12 +50,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch this epoch
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: The TimeSeries that this index applies to description: The TimeSeries that this index applies to
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: true required: true
multivalued: false multivalued: false

View file

@ -345,18 +345,24 @@ classes:
x: x:
name: x name: x
description: x coordinate description: x coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: y coordinate description: y coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: z coordinate description: z coordinate
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -311,18 +311,24 @@ classes:
x: x:
name: x name: x
description: Pixel x-coordinate. description: Pixel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Pixel y-coordinate. description: Pixel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the pixel. description: Weight of the pixel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false
@ -342,24 +348,32 @@ classes:
x: x:
name: x name: x
description: Voxel x-coordinate. description: Voxel x-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
y: y:
name: y name: y
description: Voxel y-coordinate. description: Voxel y-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
z: z:
name: z name: z
description: Voxel z-coordinate. description: Voxel z-coordinate.
array:
exact_number_dimensions: 1
range: uint32 range: uint32
required: false required: false
multivalued: false multivalued: false
weight: weight:
name: weight name: weight
description: Weight of the voxel. description: Weight of the voxel.
array:
exact_number_dimensions: 1
range: float32 range: float32
required: false required: false
multivalued: false multivalued: false

View file

@ -41,6 +41,8 @@ classes:
description: Start index into the TimeSeries 'data' and 'timestamp' datasets description: Start index into the TimeSeries 'data' and 'timestamp' datasets
of the referenced TimeSeries. The first dimension of those arrays is always of the referenced TimeSeries. The first dimension of those arrays is always
time. time.
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
@ -48,12 +50,16 @@ classes:
name: count name: count
description: Number of data samples available in this time series, during description: Number of data samples available in this time series, during
this epoch this epoch
array:
exact_number_dimensions: 1
range: int32 range: int32
required: true required: true
multivalued: false multivalued: false
timeseries: timeseries:
name: timeseries name: timeseries
description: The TimeSeries that this index applies to description: The TimeSeries that this index applies to
array:
exact_number_dimensions: 1
range: TimeSeries range: TimeSeries
required: true required: true
multivalued: false multivalued: false

Some files were not shown because too many files have changed in this diff Show more