mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 13:44:27 +00:00
more docs work
move conftest to root so we find doctests? maybe we don't want to keep that tho
This commit is contained in:
parent
23a5412854
commit
eac5ef4c80
20 changed files with 422 additions and 159 deletions
|
@ -16,7 +16,7 @@ help:
|
|||
|
||||
serve:
|
||||
# env variable that makes it so we don't build all the models while in dev mode
|
||||
SPHINX_MINIMAL="True" sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) \
|
||||
SPHINX_MINIMAL="True" sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)/html" $(SPHINXOPTS) $(O) \
|
||||
--watch ../nwb_linkml/src/nwb_linkml \
|
||||
--watch ../nwb_schema_language/src/nwb_schema_language \
|
||||
--re-ignore ".*jupyter_execute.*"
|
||||
|
|
|
@ -54,7 +54,7 @@ dtypes can be
|
|||
|
||||
eg:
|
||||
|
||||
```yml
|
||||
```yaml
|
||||
- neurodata_type_def: Image
|
||||
neurodata_type_inc: NWBData
|
||||
dtype: numeric
|
||||
|
@ -122,7 +122,7 @@ we need to map:
|
|||
- dims, shape, and dtypes: these should have been just attributes rather than put in the spec
|
||||
language, so we'll just make an Array class and use that.
|
||||
- dims and shape should probably be a dictionary so you don't need a zillion nulls, eg rather than
|
||||
```yml
|
||||
```yaml
|
||||
dims:
|
||||
- - x
|
||||
- y
|
||||
|
@ -137,7 +137,7 @@ we need to map:
|
|||
- 3
|
||||
```
|
||||
do
|
||||
```yml
|
||||
```yaml
|
||||
dims:
|
||||
- - name: x
|
||||
- name: y
|
||||
|
@ -147,7 +147,7 @@ we need to map:
|
|||
shape: 3
|
||||
```
|
||||
or even
|
||||
```yml
|
||||
```yaml
|
||||
dims:
|
||||
- - x
|
||||
- y
|
||||
|
@ -160,7 +160,7 @@ we need to map:
|
|||
|
||||
And also is there any case that would break where there is some odd dependency between dims where it wouldn't work to just use an `optional` param
|
||||
|
||||
```yml
|
||||
```yaml
|
||||
dims:
|
||||
- name: x
|
||||
shape: null
|
||||
|
|
19
docs/_static/css/custom.css
vendored
19
docs/_static/css/custom.css
vendored
|
@ -18,5 +18,22 @@ pre {
|
|||
}
|
||||
|
||||
.hide.below-input span {
|
||||
color: var(--color-background-secondary);
|
||||
color: var(--color-highlighted-text);
|
||||
}
|
||||
|
||||
div.cell details.below-input > summary {
|
||||
background-color: var(--color-background-primary);
|
||||
}
|
||||
|
||||
.cell_output pre {
|
||||
border: 1px solid var(--color-code-foreground);
|
||||
padding: 1em;
|
||||
border-radius: 5px;
|
||||
}
|
||||
div.cell div.cell_input, div.cell details.above-input > summary {
|
||||
border-left-color: unset;
|
||||
}
|
||||
|
||||
div.cell details.below-input > summary {
|
||||
border-left-color: unset;
|
||||
}
|
|
@ -1,6 +1,17 @@
|
|||
# Adapters
|
||||
|
||||
Adapters translate NWB Schema Language to LinkML Schema.
|
||||
|
||||
- [**Adapter**](adapter.md) - Base Adapter Classes
|
||||
- [**Namespaces**](namespaces.md) - Top-level container of NWB namespace indices and schema
|
||||
- [**Schema**](schema.md) - Individual NWB Schema files within a namespace
|
||||
- [**Classes**](classes.md) - Root methods shared between classes and groups
|
||||
- [**Dataset**](dataset.md) - ... Datasets!
|
||||
- [**Group**](group.md) - Groups!
|
||||
|
||||
```{toctree}
|
||||
:hidden:
|
||||
|
||||
adapter
|
||||
classes
|
||||
dataset
|
||||
|
|
20
docs/conf.py
20
docs/conf.py
|
@ -29,7 +29,8 @@ extensions = [
|
|||
"sphinx_design",
|
||||
#'myst_parser',
|
||||
"myst_nb",
|
||||
'sphinx_togglebutton'
|
||||
'sphinx_togglebutton',
|
||||
'sphinx.ext.todo'
|
||||
]
|
||||
|
||||
|
||||
|
@ -102,10 +103,23 @@ autodoc_default_options = {
|
|||
nb_render_markdown_format = 'myst'
|
||||
nb_append_css = False
|
||||
|
||||
|
||||
# --------------------------------------------------
|
||||
# doctest
|
||||
doctest_global_setup = """
|
||||
from linkml_runtime.linkml_model import ClassDefinition, SlotDefinition, SchemaDefinition
|
||||
from nwb_schema_language import Namespaces, Namespace, Dataset, Group, Schema
|
||||
from linkml_runtime.dumpers import yaml_dumper
|
||||
import yaml
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
"""
|
||||
|
||||
from nwb_linkml.adapters import BuildResult
|
||||
"""
|
||||
|
||||
# --------------------------------------------------
|
||||
# Etc one-off settings
|
||||
|
||||
# todo
|
||||
todo_include_todos = True
|
||||
todo_link_only = True
|
||||
|
||||
|
|
|
@ -101,7 +101,16 @@ and `ClassDefinition` classes:
|
|||
print(core_linkml.schemas[0])
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Generating Pydantic Models
|
||||
|
||||
```{todo}
|
||||
Document Pydantic model generation
|
||||
```
|
||||
|
||||
## Caching Output with Providers
|
||||
|
||||
```{todo}
|
||||
Document provider usage
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@ to [LinkML](https://linkml.io/).
|
|||
* [Purpose](intro/purpose) - Why this package exists
|
||||
* [Overview](guide/overview) - Overview of how it works
|
||||
* [API Docs](api/nwb_linkml/index) - Ok *really* how it works
|
||||
* [TODO](meta/todo) - The work that remains to be done
|
||||
```
|
||||
|
||||
`nwb-linkml` is an independent implementation of the standard capable of:
|
||||
|
@ -25,9 +26,6 @@ to [LinkML](https://linkml.io/).
|
|||
|
||||
## Example Translation
|
||||
|
||||
|
||||
## TimeSeries
|
||||
|
||||
(Abbreviated for clarity)
|
||||
|
||||
`````{tab-set}
|
||||
|
@ -265,17 +263,6 @@ api/nwb_linkml/index
|
|||
api/nwb_schema_language/index
|
||||
api/nwb_linkml/schema/index
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:caption: Notes
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
_notes/linkml
|
||||
_notes/pynwb
|
||||
_notes/schema
|
||||
_notes/translation
|
||||
```
|
||||
````
|
||||
|
||||
````{only} full
|
||||
|
|
|
@ -1,10 +0,0 @@
|
|||
# Introduction
|
||||
|
||||
```{toctree}
|
||||
:caption: Introduction:
|
||||
:maxdepth: 3
|
||||
|
||||
purpose
|
||||
nwb
|
||||
translation
|
||||
```
|
|
@ -5,4 +5,9 @@ Important things that are not implemented yet!
|
|||
- {meth}`nwb_linkml.adapters.classes.ClassAdapter.handle_dtype` does not yet handle compound dtypes,
|
||||
leaving them as `AnyType` instead. This is fine for a first draft since they are used rarely within
|
||||
NWB, but we will need to handle them by making slots for each of the dtypes since they typically
|
||||
represent table-like data.
|
||||
represent table-like data.
|
||||
|
||||
## Docs TODOs
|
||||
|
||||
```{todolist}
|
||||
```
|
20
nwb_linkml/conftest.py
Normal file
20
nwb_linkml/conftest.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
import os
|
||||
import pytest
|
||||
from doctest import ELLIPSIS, NORMALIZE_WHITESPACE
|
||||
|
||||
from tests.fixtures import tmp_output_dir
|
||||
|
||||
from sybil import Sybil
|
||||
from sybil.parsers.rest import DocTestParser, PythonCodeBlockParser
|
||||
|
||||
pytest_collect_file = Sybil(
|
||||
parsers=[
|
||||
DocTestParser(optionflags=ELLIPSIS + NORMALIZE_WHITESPACE),
|
||||
PythonCodeBlockParser(),
|
||||
],
|
||||
patterns=['*.py'],
|
||||
).pytest()
|
||||
|
||||
@pytest.fixture(autouse=True, scope='session')
|
||||
def set_config_vars(tmp_output_dir):
|
||||
os.environ['NWB_LINKML_CACHE_DIR'] = str(tmp_output_dir)
|
17
nwb_linkml/poetry.lock
generated
17
nwb_linkml/poetry.lock
generated
|
@ -2411,6 +2411,21 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
|
|||
pymysql = ["pymysql"]
|
||||
sqlcipher = ["sqlcipher3-binary"]
|
||||
|
||||
[[package]]
|
||||
name = "sybil"
|
||||
version = "5.0.3"
|
||||
description = "Automated testing for the examples in your code and documentation."
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "sybil-5.0.3-py3-none-any.whl", hash = "sha256:6f3c30822169895c4fb34c8366bdb132cf62bb68fb1d03d2ebb05282eab08c95"},
|
||||
{file = "sybil-5.0.3.tar.gz", hash = "sha256:20dfe3a35a8d1ffcb4311434d1abf38c030c91064d75ff6b56ddd1060e08e758"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
build = ["furo", "sphinx", "twine", "urllib3 (<2)", "wheel"]
|
||||
test = ["myst-parser", "pytest (>=7.1.0)", "pytest-cov", "seedir", "testfixtures"]
|
||||
|
||||
[[package]]
|
||||
name = "tenacity"
|
||||
version = "8.2.3"
|
||||
|
@ -2686,4 +2701,4 @@ tests = ["coverage", "coveralls", "pytest", "pytest-cov", "pytest-depends", "pyt
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.11,<3.13"
|
||||
content-hash = "a3ce11b1eb6ecff528a0a7bce0695368a24218766d6eb0385002fb4e8d3ea8b4"
|
||||
content-hash = "673c81c4d38d7d0014804459ac152837e6f19bee122a5ea632c3499e86eaed9f"
|
||||
|
|
|
@ -27,6 +27,10 @@ linkml = "^1.6.1"
|
|||
nptyping = "^2.5.0"
|
||||
pydantic = "^2.3.0"
|
||||
h5py = "^3.9.0"
|
||||
pydantic-settings = "^2.0.3"
|
||||
dask = "^2023.9.2"
|
||||
blosc2 = "^2.2.7"
|
||||
tqdm = "^4.66.1"
|
||||
dash = {version="^2.12.1", optional=true}
|
||||
dash-cytoscape = {version="^0.3.0", optional=true}
|
||||
pytest = { version="^7.4.0", optional=true}
|
||||
|
@ -36,16 +40,13 @@ pytest-md = {version = "^0.2.0", optional = true}
|
|||
pytest-cov = {version = "^4.1.0", optional = true}
|
||||
coveralls = {version = "^3.3.1", optional = true}
|
||||
pytest-profiling = {version = "^1.7.0", optional = true}
|
||||
pydantic-settings = "^2.0.3"
|
||||
dask = "^2023.9.2"
|
||||
blosc2 = "^2.2.7"
|
||||
tqdm = "^4.66.1"
|
||||
sybil = {version = "^5.0.3", optional = true}
|
||||
|
||||
|
||||
[tool.poetry.extras]
|
||||
tests = [
|
||||
"pytest", "pytest-depends", "coverage", "pytest-md",
|
||||
"pytest-cov", "coveralls", "pytest-profiling"
|
||||
"pytest", "pytest-depends", "coverage", "pytest-md",
|
||||
"pytest-cov", "coveralls", "pytest-profiling", "sybil"
|
||||
]
|
||||
plot = ["dash", "dash-cytoscape"]
|
||||
|
||||
|
@ -61,6 +62,7 @@ pytest-md = "^0.2.0"
|
|||
pytest-cov = "^4.1.0"
|
||||
coveralls = "^3.3.1"
|
||||
pytest-profiling = "^1.7.0"
|
||||
sybil = "^5.0.3"
|
||||
|
||||
[tool.poetry.group.plot]
|
||||
optional = true
|
||||
|
@ -79,12 +81,13 @@ addopts = [
|
|||
"--cov=nwb_linkml",
|
||||
"--cov-append",
|
||||
"--cov-config=.coveragerc",
|
||||
"--doctest-modules",
|
||||
"-p no:doctest",
|
||||
"--ignore=tests/__tmp__"
|
||||
]
|
||||
testpaths = [
|
||||
"tests",
|
||||
'nwb_linkml/tests'
|
||||
'nwb_linkml/tests',
|
||||
'src/nwb_linkml'
|
||||
]
|
||||
doctest_optionflags = "NORMALIZE_WHITESPACE"
|
||||
filterwarnings = [
|
||||
|
|
|
@ -25,18 +25,73 @@ class DatasetMap(Map):
|
|||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
pass # pragma: no cover
|
||||
|
||||
class MapScalar(DatasetMap):
|
||||
"""
|
||||
Datasets that are just a single value should just be a scalar value, not an array with size 1
|
||||
|
||||
Replace the built class with
|
||||
Replaces the built class with a slot.
|
||||
|
||||
Examples:
|
||||
|
||||
.. grid:: 2
|
||||
:gutter: 1
|
||||
:margin: 0
|
||||
:padding: 0
|
||||
|
||||
.. grid-item-card::
|
||||
:margin: 0
|
||||
|
||||
NWB Schema
|
||||
^^^
|
||||
.. code-block:: yaml
|
||||
|
||||
datasets:
|
||||
- name: MyScalar
|
||||
doc: A scalar
|
||||
dtype: int32
|
||||
quantity: '?'
|
||||
|
||||
.. grid-item-card::
|
||||
:margin: 0
|
||||
|
||||
LinkML
|
||||
^^^
|
||||
.. code-block:: yaml
|
||||
|
||||
attributes:
|
||||
- name: MyScalar
|
||||
description: A scalar
|
||||
multivalued: false
|
||||
range: int32
|
||||
required: false
|
||||
|
||||
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
"""
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:align: left
|
||||
|
||||
* - Attr
|
||||
- Value
|
||||
* - ``neurodata_type_inc``
|
||||
- ``None``
|
||||
* - ``attributes``
|
||||
- ``None``
|
||||
* - ``dims``
|
||||
- ``None``
|
||||
* - ``shape``
|
||||
- ``None``
|
||||
* - ``name``
|
||||
- ``str``
|
||||
|
||||
"""
|
||||
if cls.neurodata_type_inc != 'VectorData' and \
|
||||
not cls.neurodata_type_inc and \
|
||||
not cls.attributes and \
|
||||
|
@ -48,7 +103,7 @@ class MapScalar(DatasetMap):
|
|||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
this_slot = SlotDefinition(
|
||||
name=cls.name,
|
||||
description=cls.doc,
|
||||
|
@ -65,6 +120,25 @@ class MapScalarAttributes(DatasetMap):
|
|||
"""
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
"""
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:align: left
|
||||
|
||||
* - Attr
|
||||
- Value
|
||||
* - ``neurodata_type_inc``
|
||||
- ``None``
|
||||
* - ``attributes``
|
||||
- Truthy
|
||||
* - ``dims``
|
||||
- ``None``
|
||||
* - ``shape``
|
||||
- ``None``
|
||||
* - ``name``
|
||||
- ``str``
|
||||
|
||||
"""
|
||||
if cls.neurodata_type_inc != 'VectorData' and \
|
||||
not cls.neurodata_type_inc and \
|
||||
cls.attributes and \
|
||||
|
@ -76,7 +150,7 @@ class MapScalarAttributes(DatasetMap):
|
|||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
value_slot = SlotDefinition(
|
||||
name='value',
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
|
@ -98,7 +172,7 @@ class MapListlike(DatasetMap):
|
|||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
dtype = camel_to_snake(ClassAdapter.handle_dtype(cls.dtype))
|
||||
slot = SlotDefinition(
|
||||
name=dtype,
|
||||
|
@ -125,7 +199,7 @@ class MapArraylike(DatasetMap):
|
|||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
array_class = make_arraylike(cls, name)
|
||||
name = camel_to_snake(cls.name)
|
||||
res = BuildResult(
|
||||
|
@ -171,7 +245,7 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
array_class = make_arraylike(cls, name)
|
||||
# make a slot for the arraylike class
|
||||
array_slot = SlotDefinition(
|
||||
|
@ -183,6 +257,90 @@ class MapArrayLikeAttributes(DatasetMap):
|
|||
res.classes[0].attributes.update({'array': array_slot})
|
||||
return res
|
||||
|
||||
# --------------------------------------------------
|
||||
# DynamicTable special cases
|
||||
# --------------------------------------------------
|
||||
|
||||
class Map1DVector(DatasetMap):
|
||||
"""
|
||||
``VectorData`` is subclassed with a name but without dims or attributes, treat this as a normal 1D array
|
||||
slot that replaces any class that would be built for this
|
||||
"""
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
if cls.neurodata_type_inc == 'VectorData' and \
|
||||
not cls.dims and \
|
||||
not cls.shape and \
|
||||
not cls.attributes \
|
||||
and cls.name:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
this_slot = SlotDefinition(
|
||||
name=cls.name,
|
||||
description=cls.doc,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
multivalued=True
|
||||
)
|
||||
# No need to make a class for us, so we replace the existing build results
|
||||
res = BuildResult(slots=[this_slot])
|
||||
return res
|
||||
|
||||
class MapNVectors(DatasetMap):
|
||||
"""
|
||||
An unnamed container that indicates an arbitrary quantity of some other neurodata type.
|
||||
|
||||
Most commonly: ``VectorData`` is subclassed without a name and with a '*' quantity to indicate
|
||||
arbitrary columns.
|
||||
"""
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
if cls.name is None and \
|
||||
cls.neurodata_type_def is None and \
|
||||
cls.neurodata_type_inc and \
|
||||
cls.quantity in ('*', '+'):
|
||||
#cls.neurodata_type_inc in ('VectorIndex', 'VectorData') and \
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, cls: Dataset, res: Optional[BuildResult] = None, name:Optional[str] = None) -> BuildResult:
|
||||
this_slot = SlotDefinition(
|
||||
name=camel_to_snake(cls.neurodata_type_inc),
|
||||
description=cls.doc,
|
||||
range=cls.neurodata_type_inc,
|
||||
**QUANTITY_MAP[cls.quantity]
|
||||
)
|
||||
# No need to make a class for us, so we replace the existing build results
|
||||
res = BuildResult(slots=[this_slot])
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
class DatasetAdapter(ClassAdapter):
|
||||
cls: Dataset
|
||||
|
||||
def build(self) -> BuildResult:
|
||||
res = self.build_base()
|
||||
|
||||
# find a map to use
|
||||
matches = [m for m in DatasetMap.__subclasses__() if m.check(self.cls)]
|
||||
|
||||
if len(matches) > 1: # pragma: no cover
|
||||
raise RuntimeError(f"Only one map should apply to a dataset, you need to refactor the maps! Got maps: {matches}")
|
||||
|
||||
# apply matching maps
|
||||
for m in matches:
|
||||
res = m.apply(self.cls, res, self._get_full_name())
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def make_arraylike(cls:Dataset, name:Optional[str] = None) -> ClassDefinition:
|
||||
# The schema language doesn't have a way of specifying a dataset/group is "abstract"
|
||||
# and yet hdmf-common says you don't need a dtype if the dataset is "abstract"
|
||||
|
@ -252,7 +410,7 @@ def make_arraylike(cls:Dataset, name:Optional[str] = None) -> ClassDefinition:
|
|||
else:
|
||||
raise ValueError(f"Dataset has no name or type definition, what do call it?")
|
||||
|
||||
name = '__'.join([name, 'Array'])
|
||||
name = '__'.join([name, 'Arraylike'])
|
||||
|
||||
array_class = ClassDefinition(
|
||||
name=name,
|
||||
|
@ -280,87 +438,3 @@ def has_attrs(cls:Dataset) -> bool:
|
|||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
# --------------------------------------------------
|
||||
# DynamicTable special cases
|
||||
# --------------------------------------------------
|
||||
|
||||
class Map1DVector(DatasetMap):
|
||||
"""
|
||||
``VectorData`` is subclassed with a name but without dims or attributes, treat this as a normal 1D array
|
||||
slot that replaces any class that would be built for this
|
||||
"""
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
if cls.neurodata_type_inc == 'VectorData' and \
|
||||
not cls.dims and \
|
||||
not cls.shape and \
|
||||
not cls.attributes \
|
||||
and cls.name:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
this_slot = SlotDefinition(
|
||||
name=cls.name,
|
||||
description=cls.doc,
|
||||
range=ClassAdapter.handle_dtype(cls.dtype),
|
||||
multivalued=True
|
||||
)
|
||||
# No need to make a class for us, so we replace the existing build results
|
||||
res = BuildResult(slots=[this_slot])
|
||||
return res
|
||||
|
||||
class MapNVectors(DatasetMap):
|
||||
"""
|
||||
An unnamed container that indicates an arbitrary quantity of some other neurodata type.
|
||||
|
||||
Most commonly: ``VectorData`` is subclassed without a name and with a '*' quantity to indicate
|
||||
arbitrary columns.
|
||||
"""
|
||||
@classmethod
|
||||
def check(c, cls:Dataset) -> bool:
|
||||
if cls.name is None and \
|
||||
cls.neurodata_type_def is None and \
|
||||
cls.neurodata_type_inc and \
|
||||
cls.quantity in ('*', '+'):
|
||||
#cls.neurodata_type_inc in ('VectorIndex', 'VectorData') and \
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def apply(c, res: BuildResult, cls:Dataset, name:Optional[str] = None) -> BuildResult:
|
||||
this_slot = SlotDefinition(
|
||||
name=camel_to_snake(cls.neurodata_type_inc),
|
||||
description=cls.doc,
|
||||
range=cls.neurodata_type_inc,
|
||||
**QUANTITY_MAP[cls.quantity]
|
||||
)
|
||||
# No need to make a class for us, so we replace the existing build results
|
||||
res = BuildResult(slots=[this_slot])
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
class DatasetAdapter(ClassAdapter):
|
||||
cls: Dataset
|
||||
|
||||
def build(self) -> BuildResult:
|
||||
res = self.build_base()
|
||||
|
||||
# find a map to use
|
||||
matches = [m for m in DatasetMap.__subclasses__() if m.check(self.cls)]
|
||||
|
||||
if len(matches) > 1: # pragma: no cover
|
||||
raise RuntimeError(f"Only one map should apply to a dataset, you need to refactor the maps! Got maps: {matches}")
|
||||
|
||||
# apply matching maps
|
||||
for m in matches:
|
||||
res = m.apply(res, self.cls, self._get_full_name())
|
||||
|
||||
return res
|
||||
|
||||
|
|
|
@ -25,7 +25,3 @@ def get_inner_types(annotation) -> List[Any]:
|
|||
types.extend(get_inner_types(arg))
|
||||
return types
|
||||
|
||||
def take_outer_type(annotation):
|
||||
if typing.get_origin(annotation) is list:
|
||||
return list
|
||||
return annotation
|
||||
|
|
|
@ -56,6 +56,38 @@ class HDF5IO():
|
|||
def read(self, path:str) -> BaseModel | Dict[str, BaseModel]: ...
|
||||
|
||||
def read(self, path:Optional[str] = None) -> Union['NWBFile', BaseModel, Dict[str, BaseModel]]:
|
||||
"""
|
||||
Read data into models from an NWB File.
|
||||
|
||||
The read process is in several stages:
|
||||
|
||||
* Use :meth:`.make_provider` to generate any needed LinkML Schema or Pydantic Classes using a :class:`.SchemaProvider`
|
||||
* :func:`flatten_hdf` file into a :class:`.ReadQueue` of nodes.
|
||||
* Apply the queue's :class:`ReadPhases` :
|
||||
|
||||
* ``plan`` - trim any blank nodes, sort nodes to read, etc.
|
||||
* ``read`` - load the actual data into temporary holding objects
|
||||
* ``construct`` - cast the read data into models.
|
||||
|
||||
Read is split into stages like this to handle references between objects, where the read result of one node
|
||||
might depend on another having already been completed. It also allows us to parallelize the operations
|
||||
since each mapping operation is independent of the results of all the others in that pass.
|
||||
|
||||
.. todo::
|
||||
|
||||
Implement reading, skipping arrays - they are fast to read with the ArrayProxy class
|
||||
and dask, but there are times when we might want to leave them out of the read entirely.
|
||||
This might be better implemented as a filter on ``model_dump`` , but to investigate further
|
||||
how best to support reading just metadata, or even some specific field value, or if
|
||||
we should leave that to other implementations like eg. after we do SQL export then
|
||||
not rig up a whole query system ourselves.
|
||||
|
||||
Args:
|
||||
path (Optional[str]): If ``None`` (default), read whole file. Otherwise, read from specific (hdf5) path and its children
|
||||
|
||||
Returns:
|
||||
``NWBFile`` if ``path`` is ``None``, otherwise whatever Model or dictionary of models applies to the requested ``path``
|
||||
"""
|
||||
|
||||
provider = self.make_provider()
|
||||
|
||||
|
@ -91,6 +123,31 @@ class HDF5IO():
|
|||
else:
|
||||
return queue.completed[path].result
|
||||
|
||||
def write(self, path: Path):
|
||||
"""
|
||||
Write to NWB file
|
||||
|
||||
.. todo::
|
||||
|
||||
Implement HDF5 writing.
|
||||
|
||||
Need to create inverse mappings that can take pydantic models to
|
||||
hdf5 groups and datasets. If more metadata about the generation process
|
||||
needs to be preserved (eg. explicitly notating that something is an attribute,
|
||||
dataset, group, then we can make use of the :class:`~nwb_linkml.generators.pydantic.LinkML_Meta`
|
||||
model. If the model to edit has been loaded from an HDF5 file (rather than
|
||||
freshly created), then the ``hdf5_path`` should be populated making
|
||||
mapping straightforward, but we probably want to generalize that to deterministically
|
||||
get hdf5_path from position in the NWBFile object -- I think that might
|
||||
require us to explicitly annotate when something is supposed to be a reference
|
||||
vs. the original in the model representation, or else it's ambiguous.
|
||||
|
||||
Otherwise, it should be a matter of detecting changes from file if it exists already,
|
||||
and then write them.
|
||||
|
||||
"""
|
||||
raise NotImplementedError('Writing to HDF5 is not implemented yet!')
|
||||
|
||||
def make_provider(self) -> SchemaProvider:
|
||||
"""
|
||||
Create a :class:`~.providers.schema.SchemaProvider` by
|
||||
|
@ -122,13 +179,13 @@ class HDF5IO():
|
|||
def read_specs_as_dicts(group: h5py.Group) -> dict:
|
||||
"""
|
||||
Utility function to iterate through the `/specifications` group and
|
||||
load
|
||||
load the schemas from it.
|
||||
|
||||
Args:
|
||||
group:
|
||||
group ( :class:`h5py.Group` ): the ``/specifications`` group!
|
||||
|
||||
Returns:
|
||||
|
||||
``dict`` of schema.
|
||||
"""
|
||||
spec_dict = {}
|
||||
def _read_spec(name, node):
|
||||
|
@ -158,6 +215,10 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
|||
This is extremely slow because we collect all references first,
|
||||
rather than checking them as we go and quitting early. PR if you want to make this faster!
|
||||
|
||||
.. todo::
|
||||
|
||||
Test :func:`.find_references` !
|
||||
|
||||
Args:
|
||||
h5f (:class:`h5py.File`): Open hdf5 file
|
||||
path (str): Path to search for references to
|
||||
|
|
|
@ -15,9 +15,12 @@ from nwb_linkml.adapters.namespaces import NamespacesAdapter
|
|||
from nwb_linkml.adapters.schema import SchemaAdapter
|
||||
|
||||
|
||||
def load_yaml(path:Path) -> dict:
|
||||
with open(path, 'r') as file:
|
||||
ns_dict = yaml.safe_load(file)
|
||||
def load_yaml(path:Path|str) -> dict:
|
||||
if isinstance(path, str) and not Path(path).exists():
|
||||
ns_dict = yaml.safe_load(path)
|
||||
else:
|
||||
with open(path, 'r') as file:
|
||||
ns_dict = yaml.safe_load(file)
|
||||
ns_dict = apply_postload(ns_dict)
|
||||
return ns_dict
|
||||
|
||||
|
|
|
@ -128,8 +128,8 @@ class GitRepo:
|
|||
|
||||
If ``None``: if :attr:`NamespaceRepo.versions`, use the last version. Otherwise use ``HEAD``
|
||||
|
||||
Should match :prop:`.active_commit`, differs semantically in that it is used to
|
||||
set the active_commit, while :prop:`.active_commit` reads what commit is actually checked out
|
||||
Should match :attr:`.active_commit`, differs semantically in that it is used to
|
||||
set the active_commit, while :attr:`.active_commit` reads what commit is actually checked out
|
||||
"""
|
||||
return self._commit
|
||||
|
||||
|
|
|
@ -14,6 +14,8 @@ Relationship to other modules:
|
|||
Providers create a set of directories with namespaces and versions,
|
||||
so eg. for the linkML and pydantic providers:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
cache_dir
|
||||
- linkml
|
||||
- nwb_core
|
||||
|
@ -280,6 +282,7 @@ class LinkMLProvider(Provider):
|
|||
>>> # Build a custom schema and then get it
|
||||
>>> # provider.build_from_yaml('myschema.yaml')
|
||||
>>> # my_schema = provider.get('myschema')
|
||||
|
||||
"""
|
||||
PROVIDES = 'linkml'
|
||||
PROVIDES_CLASS = SchemaDefinition
|
||||
|
@ -357,7 +360,7 @@ class LinkMLProvider(Provider):
|
|||
to build
|
||||
versions (dict): Dict of specific versions to use
|
||||
for cross-namespace imports. as ``{'namespace': 'version'}``
|
||||
If none is provided, use the most recent version
|
||||
If none is provided, use the most recent version
|
||||
available.
|
||||
dump (bool): If ``True`` (default), dump generated schema to YAML. otherwise just return
|
||||
force (bool): If ``False`` (default), don't build schema that already exist. If ``True`` , clear directory and rebuild
|
||||
|
|
|
@ -1,8 +0,0 @@
|
|||
import os
|
||||
import pytest
|
||||
|
||||
from .fixtures import tmp_output_dir
|
||||
|
||||
@pytest.fixture(autouse=True, scope='session')
|
||||
def set_config_vars(tmp_output_dir):
|
||||
os.environ['NWB_LINKML_CACHE_DIR'] = str(tmp_output_dir)
|
|
@ -4,7 +4,70 @@ import pytest
|
|||
|
||||
from ..fixtures import nwb_core_fixture
|
||||
|
||||
from nwb_schema_language import Namespaces, Namespace, Dataset, Group, Schema
|
||||
from linkml_runtime.dumpers import yaml_dumper
|
||||
import yaml
|
||||
from nwb_linkml.adapters import DatasetAdapter
|
||||
from nwb_linkml.adapters.dataset import (
|
||||
MapScalar,
|
||||
MapListlike,
|
||||
MapArraylike,
|
||||
MapNVectors,
|
||||
Map1DVector,
|
||||
MapScalarAttributes,
|
||||
MapArrayLikeAttributes
|
||||
)
|
||||
|
||||
|
||||
def test_nothing(nwb_core_fixture):
|
||||
pass
|
||||
|
||||
|
||||
def _compare_dicts(dict1, dict2) -> bool:
|
||||
"""just in one direction - that all the entries in dict1 are in dict2"""
|
||||
assert all([dict1[k] == dict2[k] for k in dict1.keys()])
|
||||
#assert all([dict1[k] == dict2[k] for k in dict2.keys()])
|
||||
|
||||
def test_map_scalar():
|
||||
|
||||
model = {
|
||||
'name': 'MyScalar',
|
||||
'doc': 'This should be a scalar',
|
||||
'dtype': 'int32',
|
||||
'quantity': '?'
|
||||
}
|
||||
test = {
|
||||
'name': 'MyScalar',
|
||||
'description': 'This should be a scalar',
|
||||
'multivalued': False,
|
||||
'range': 'int32',
|
||||
'required': False
|
||||
}
|
||||
|
||||
dataset = Dataset(**model)
|
||||
assert MapScalar.check(dataset)
|
||||
result = MapScalar.apply(dataset)
|
||||
assert len(result.classes) == 0
|
||||
_compare_dicts(test, result.slots[0])
|
||||
|
||||
|
||||
def test_map_scalar_attributes():
|
||||
pass
|
||||
|
||||
|
||||
def test_map_listlike():
|
||||
pass
|
||||
|
||||
|
||||
def test_map_arraylike():
|
||||
pass
|
||||
|
||||
def test_map_arraylike_attributes():
|
||||
pass
|
||||
|
||||
def test_map_1d_vector():
|
||||
pass
|
||||
|
||||
|
||||
def test_map_n_vectors():
|
||||
pass
|
Loading…
Reference in a new issue