mirror of
https://github.com/p2p-ld/nwb-linkml.git
synced 2025-01-09 21:54:27 +00:00
All ruff and black fixes done
This commit is contained in:
parent
7c6e69c87e
commit
f50275473c
30 changed files with 339 additions and 163 deletions
|
@ -380,6 +380,7 @@ class DatasetAdapter(ClassAdapter):
|
|||
"""
|
||||
Orchestrator class for datasets - calls the set of applicable mapping classes
|
||||
"""
|
||||
|
||||
cls: Dataset
|
||||
|
||||
def build(self) -> BuildResult:
|
||||
|
|
|
@ -16,6 +16,7 @@ class GroupAdapter(ClassAdapter):
|
|||
"""
|
||||
Adapt NWB Groups to LinkML Classes
|
||||
"""
|
||||
|
||||
cls: Group
|
||||
|
||||
def build(self) -> BuildResult:
|
||||
|
@ -190,4 +191,4 @@ class GroupAdapter(ClassAdapter):
|
|||
doc: Images objects containing images of presented stimuli.
|
||||
quantity: '*'
|
||||
"""
|
||||
return not group.name and group.quantity in ("*", "+") and group.neurodata_type_inc
|
||||
return not group.name and group.quantity in ("*", "+") and group.neurodata_type_inc
|
||||
|
|
|
@ -4,6 +4,7 @@ Namespaces adapter
|
|||
Wraps the :class:`nwb_schema_language.Namespaces` and other objects with convenience methods
|
||||
for extracting information and generating translated schema
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
@ -25,6 +26,7 @@ class NamespacesAdapter(Adapter):
|
|||
"""
|
||||
Translate a NWB Namespace to a LinkML Schema
|
||||
"""
|
||||
|
||||
namespaces: Namespaces
|
||||
schemas: List[SchemaAdapter]
|
||||
imported: List["NamespacesAdapter"] = Field(default_factory=list)
|
||||
|
|
|
@ -5,7 +5,7 @@ Utility functions for introspection on python annotations
|
|||
import typing
|
||||
from typing import Any, List, Optional, Type, TypeVar
|
||||
|
||||
T = TypeVar('T')
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def unwrap_optional(annotation: Type[Optional[T]]) -> Type[T]:
|
||||
|
|
|
@ -7,6 +7,4 @@ changes that are unlikely to be useful upstream
|
|||
|
||||
from nwb_linkml.generators.pydantic import PydanticGenerator
|
||||
|
||||
__all__ = [
|
||||
'PydanticGenerator'
|
||||
]
|
||||
__all__ = ["PydanticGenerator"]
|
||||
|
|
|
@ -5,7 +5,4 @@ Loading and dumping data from and to files
|
|||
from nwb_linkml.io import schema
|
||||
from nwb_linkml.io.hdf5 import HDF5IO
|
||||
|
||||
__all__ = [
|
||||
"HDF5IO",
|
||||
"schema"
|
||||
]
|
||||
__all__ = ["HDF5IO", "schema"]
|
||||
|
|
|
@ -135,7 +135,8 @@ class HDF5IO:
|
|||
Need to create inverse mappings that can take pydantic models to
|
||||
hdf5 groups and datasets. If more metadata about the generation process
|
||||
needs to be preserved (eg. explicitly notating that something is an attribute,
|
||||
dataset, group, then we can make use of the :class:`~nwb_linkml.generators.pydantic.LinkML_Meta`
|
||||
dataset, group, then we can make use of the
|
||||
:class:`~nwb_linkml.generators.pydantic.LinkML_Meta`
|
||||
model. If the model to edit has been loaded from an HDF5 file (rather than
|
||||
freshly created), then the ``hdf5_path`` should be populated making
|
||||
mapping straightforward, but we probably want to generalize that to deterministically
|
||||
|
@ -165,7 +166,8 @@ class HDF5IO:
|
|||
# get versions for each namespace
|
||||
versions = {}
|
||||
for ns_schema in schema.values():
|
||||
# each "namespace" can actually contain multiple namespaces which actually contain the version info
|
||||
# each "namespace" can actually contain multiple namespaces
|
||||
# which actually contain the version info
|
||||
for inner_ns in ns_schema["namespace"]["namespaces"]:
|
||||
versions[inner_ns["name"]] = inner_ns["version"]
|
||||
|
||||
|
@ -190,10 +192,10 @@ def read_specs_as_dicts(group: h5py.Group) -> dict:
|
|||
"""
|
||||
spec_dict = {}
|
||||
|
||||
def _read_spec(name, node) -> None:
|
||||
def _read_spec(name: str, node: h5py.Dataset) -> None:
|
||||
|
||||
if isinstance(node, h5py.Dataset):
|
||||
# make containing dict if they dont exist
|
||||
# make containing dict if they don't exist
|
||||
pieces = node.name.split("/")
|
||||
if pieces[-3] not in spec_dict:
|
||||
spec_dict[pieces[-3]] = {}
|
||||
|
@ -230,7 +232,7 @@ def find_references(h5f: h5py.File, path: str) -> List[str]:
|
|||
"""
|
||||
references = []
|
||||
|
||||
def _find_references(name, obj: h5py.Group | h5py.Dataset) -> None:
|
||||
def _find_references(name: str, obj: h5py.Group | h5py.Dataset) -> None:
|
||||
pbar.update()
|
||||
refs = []
|
||||
for attr in obj.attrs.values():
|
||||
|
@ -271,8 +273,10 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
|
||||
Args:
|
||||
source (:class:`pathlib.Path`): Source hdf5 file
|
||||
target (:class:`pathlib.Path`): Optional - target hdf5 file to write to. If ``None``, use ``{source}_truncated.hdf5``
|
||||
n (int): The number of items from datasets (samples along the 0th dimension of a dataset) to include
|
||||
target (:class:`pathlib.Path`): Optional - target hdf5 file to write to.
|
||||
If ``None``, use ``{source}_truncated.hdf5``
|
||||
n (int): The number of items from datasets
|
||||
(samples along the 0th dimension of a dataset) to include
|
||||
|
||||
Returns:
|
||||
:class:`pathlib.Path` path of the truncated file
|
||||
|
@ -308,7 +312,8 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
try:
|
||||
obj.resize(n, axis=0)
|
||||
except TypeError:
|
||||
# contiguous arrays can't be trivially resized, so we have to copy and create a new dataset
|
||||
# contiguous arrays can't be trivially resized,
|
||||
# so we have to copy and create a new dataset
|
||||
tmp_name = obj.name + "__tmp"
|
||||
original_name = obj.name
|
||||
obj.parent.move(obj.name, tmp_name)
|
||||
|
@ -324,7 +329,8 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
# use h5repack to actually remove the items from the dataset
|
||||
if shutil.which("h5repack") is None:
|
||||
warnings.warn(
|
||||
"Truncated file made, but since h5repack not found in path, file won't be any smaller"
|
||||
"Truncated file made, but since h5repack not found in path, file won't be any smaller",
|
||||
stacklevel=2,
|
||||
)
|
||||
return target
|
||||
|
||||
|
@ -333,7 +339,7 @@ def truncate_file(source: Path, target: Optional[Path] = None, n: int = 10) -> P
|
|||
["h5repack", "-f", "GZIP=9", str(target), str(target_tmp)], capture_output=True
|
||||
)
|
||||
if res.returncode != 0:
|
||||
warnings.warn(f"h5repack did not return 0: {res.stderr} {res.stdout}")
|
||||
warnings.warn(f"h5repack did not return 0: {res.stderr} {res.stdout}", stacklevel=2)
|
||||
# remove the attempt at the repack
|
||||
target_tmp.unlink()
|
||||
return target
|
||||
|
|
|
@ -17,6 +17,9 @@ from nwb_schema_language import Dataset, Group, Namespaces
|
|||
|
||||
|
||||
def load_yaml(path: Path | str) -> dict:
|
||||
"""
|
||||
Load yaml file from file, applying postload modifications
|
||||
"""
|
||||
if isinstance(path, str) and not Path(path).exists():
|
||||
ns_dict = yaml.safe_load(path)
|
||||
else:
|
||||
|
@ -86,8 +89,10 @@ def load_namespace_adapter(
|
|||
|
||||
Args:
|
||||
namespace (:class:`:class:`.Namespace`):
|
||||
path (:class:`pathlib.Path`): Optional: Location of the namespace file - all relative paths are interpreted relative to this
|
||||
version (str): Optional: tag or commit to check out namespace is a :class:`.NamespaceRepo`. If ``None``, use ``HEAD`` if not already checked out,
|
||||
path (:class:`pathlib.Path`): Optional: Location of the namespace file -
|
||||
all relative paths are interpreted relative to this
|
||||
version (str): Optional: tag or commit to check out namespace is a
|
||||
:class:`.NamespaceRepo`. If ``None``, use ``HEAD`` if not already checked out,
|
||||
or otherwise use whatever version is already checked out.
|
||||
|
||||
Returns:
|
||||
|
@ -128,16 +133,18 @@ def load_namespace_adapter(
|
|||
return adapter
|
||||
|
||||
|
||||
def load_nwb_core(core_version="2.6.0", hdmf_version="1.5.0") -> NamespacesAdapter:
|
||||
def load_nwb_core(core_version: str = "2.6.0", hdmf_version: str = "1.5.0") -> NamespacesAdapter:
|
||||
"""
|
||||
Convenience function for loading the NWB core schema + hdmf-common as a namespace adapter.
|
||||
|
||||
.. note::
|
||||
|
||||
NWB Core schema are implicitly linked to a specific version of HDMF common by virtue of which version
|
||||
NWB Core schema are implicitly linked to a specific version of HDMF common by
|
||||
virtue of which version
|
||||
of `hdmf-common-schema` is checked out as a submodule in the repository. We don't
|
||||
attempt to resolve that linkage here because it's not in the schema, but the defaults
|
||||
are for the latest nwb core ( ``'2.6.0'`` ) and its linked hdmf-common version ( ``'1.5.0'`` )
|
||||
are for the latest nwb core ( ``'2.6.0'`` ) and its linked hdmf-common version
|
||||
( ``'1.5.0'`` )
|
||||
|
||||
Args:
|
||||
core_version (str): an entry in :attr:`.NWB_CORE_REPO.versions`
|
||||
|
|
|
@ -13,6 +13,5 @@ __all__ = [
|
|||
"QUANTITY_MAP",
|
||||
"Map",
|
||||
"flat_to_linkml",
|
||||
"flat_to_nptyping"
|
||||
"flat_to_nptyping",
|
||||
]
|
||||
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
"""
|
||||
Dtype mappings
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
from typing import Any, Type
|
||||
|
||||
|
|
|
@ -5,6 +5,10 @@ We have sort of diverged from the initial idea of a generalized map as in :class
|
|||
so we will make our own mapping class here and re-evaluate whether they should be unified later
|
||||
"""
|
||||
|
||||
# FIXME: return and document whatever is left of this godforsaken module after refactoring
|
||||
# ruff: noqa: D102
|
||||
# ruff: noqa: D101
|
||||
|
||||
import contextlib
|
||||
import datetime
|
||||
import inspect
|
||||
|
@ -45,11 +49,17 @@ class H5SourceItem(BaseModel):
|
|||
h5f_path: str
|
||||
"""Path to the source hdf5 file"""
|
||||
leaf: bool
|
||||
"""If ``True``, this item has no children (and thus we should start instantiating it before ascending to parent classes)"""
|
||||
"""
|
||||
If ``True``, this item has no children
|
||||
(and thus we should start instantiating it before ascending to parent classes)
|
||||
"""
|
||||
h5_type: Literal["group", "dataset"]
|
||||
"""What kind of hdf5 element this is"""
|
||||
depends: List[str] = Field(default_factory=list)
|
||||
"""Paths of other source items that this item depends on before it can be instantiated. eg. from softlinks"""
|
||||
"""
|
||||
Paths of other source items that this item depends on before it can be instantiated.
|
||||
eg. from softlinks
|
||||
"""
|
||||
attrs: dict = Field(default_factory=dict)
|
||||
"""Any static attrs that can be had from the element"""
|
||||
namespace: Optional[str] = None
|
||||
|
@ -159,7 +169,8 @@ class HDF5Map(Map):
|
|||
|
||||
def check_empty(obj: h5py.Group) -> bool:
|
||||
"""
|
||||
Check if a group has no attrs or children OR has no attrs and all its children also have no attrs and no children
|
||||
Check if a group has no attrs or children OR has no attrs and all its children
|
||||
also have no attrs and no children
|
||||
|
||||
Returns:
|
||||
bool
|
||||
|
@ -216,12 +227,14 @@ class ResolveDynamicTable(HDF5Map):
|
|||
"""
|
||||
Handle loading a dynamic table!
|
||||
|
||||
Dynamic tables are sort of odd in that their models don't include their fields (except as a list of
|
||||
strings in ``colnames`` ), so we need to create a new model that includes fields for each column,
|
||||
and then we include the datasets as :class:`~.nwb_linkml.types.ndarray.NDArrayProxy` objects which
|
||||
lazy load the arrays in a thread/process safe way.
|
||||
Dynamic tables are sort of odd in that their models don't include their fields
|
||||
(except as a list of strings in ``colnames`` ),
|
||||
so we need to create a new model that includes fields for each column,
|
||||
and then we include the datasets as :class:`~.nwb_linkml.types.ndarray.NDArrayProxy`
|
||||
objects which lazy load the arrays in a thread/process safe way.
|
||||
|
||||
This map also resolves the child elements, indicating so by the ``completes`` field in the :class:`.ReadResult`
|
||||
This map also resolves the child elements,
|
||||
indicating so by the ``completes`` field in the :class:`.ReadResult`
|
||||
"""
|
||||
|
||||
phase = ReadPhases.read
|
||||
|
@ -272,8 +285,8 @@ class ResolveDynamicTable(HDF5Map):
|
|||
class ResolveModelGroup(HDF5Map):
|
||||
"""
|
||||
HDF5 Groups that have a model, as indicated by ``neurodata_type`` in their attrs.
|
||||
We use the model to determine what fields we should get, and then stash references to the children to
|
||||
process later as :class:`.HDF5_Path`
|
||||
We use the model to determine what fields we should get, and then stash references
|
||||
to the children to process later as :class:`.HDF5_Path`
|
||||
|
||||
**Special Case:** Some groups like ``ProcessingGroup`` and others that have an arbitrary
|
||||
number of named children have a special ``children`` field that is a dictionary mapping
|
||||
|
@ -305,9 +318,9 @@ class ResolveModelGroup(HDF5Map):
|
|||
}
|
||||
}
|
||||
|
||||
We will do some nice things in the model metaclass to make it possible to access the children like
|
||||
``nwbfile.processing.cr_ellipse_fits.center_x`` rather than having to switch between indexing and
|
||||
attribute access :)
|
||||
We will do some nice things in the model metaclass to make it possible to access the children
|
||||
like ``nwbfile.processing.cr_ellipse_fits.center_x``
|
||||
rather than having to switch between indexing and attribute access :)
|
||||
"""
|
||||
|
||||
phase = ReadPhases.read
|
||||
|
@ -328,7 +341,7 @@ class ResolveModelGroup(HDF5Map):
|
|||
depends = []
|
||||
with h5py.File(src.h5f_path, "r") as h5f:
|
||||
obj = h5f.get(src.path)
|
||||
for key in model.model_fields.keys():
|
||||
for key in model.model_fields:
|
||||
if key == "children":
|
||||
res[key] = {name: resolve_hardlink(child) for name, child in obj.items()}
|
||||
depends.extend([resolve_hardlink(child) for child in obj.values()])
|
||||
|
@ -361,7 +374,8 @@ class ResolveModelGroup(HDF5Map):
|
|||
class ResolveDatasetAsDict(HDF5Map):
|
||||
"""
|
||||
Resolve datasets that do not have a ``neurodata_type`` of their own as a dictionary
|
||||
that will be packaged into a model in the next step. Grabs the array in an :class:`~nwb_linkml.types.ndarray.NDArrayProxy`
|
||||
that will be packaged into a model in the next step. Grabs the array in an
|
||||
:class:`~nwb_linkml.types.ndarray.NDArrayProxy`
|
||||
under an ``array`` key, and then grabs any additional ``attrs`` as well.
|
||||
|
||||
Mutually exclusive with :class:`.ResolveScalars` - this only applies to datasets that are larger
|
||||
|
@ -522,7 +536,12 @@ class CompleteContainerGroups(HDF5Map):
|
|||
def check(
|
||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return (src.model is None and src.neurodata_type is None and src.source.h5_type == "group" and all([depend in completed for depend in src.depends]))
|
||||
return (
|
||||
src.model is None
|
||||
and src.neurodata_type is None
|
||||
and src.source.h5_type == "group"
|
||||
and all([depend in completed for depend in src.depends])
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
|
@ -546,7 +565,12 @@ class CompleteModelGroups(HDF5Map):
|
|||
def check(
|
||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return (src.model is not None and src.source.h5_type == "group" and src.neurodata_type != "NWBFile" and all([depend in completed for depend in src.depends]))
|
||||
return (
|
||||
src.model is not None
|
||||
and src.source.h5_type == "group"
|
||||
and src.neurodata_type != "NWBFile"
|
||||
and all([depend in completed for depend in src.depends])
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
|
@ -562,14 +586,15 @@ class CompleteModelGroups(HDF5Map):
|
|||
# but whose attributes are fixed (and thus should just be an array, rather than a subclass)
|
||||
for k, v in src.model.model_fields.items():
|
||||
annotation = unwrap_optional(v.annotation)
|
||||
if inspect.isclass(annotation) and not issubclass(annotation, BaseModel):
|
||||
if (
|
||||
isinstance(res, dict)
|
||||
and k in res
|
||||
and isinstance(res[k], dict)
|
||||
and "array" in res[k]
|
||||
):
|
||||
res[k] = res[k]["array"]
|
||||
if (
|
||||
inspect.isclass(annotation)
|
||||
and not issubclass(annotation, BaseModel)
|
||||
and isinstance(res, dict)
|
||||
and k in res
|
||||
and isinstance(res[k], dict)
|
||||
and "array" in res[k]
|
||||
):
|
||||
res[k] = res[k]["array"]
|
||||
|
||||
instance = src.model(**res)
|
||||
return H5ReadResult(
|
||||
|
@ -592,7 +617,8 @@ class CompleteNWBFile(HDF5Map):
|
|||
|
||||
.. todo::
|
||||
|
||||
This is truly hideous, just meant as a way to get to the finish line on a late night, will be cleaned up later
|
||||
This is truly hideous, just meant as a way to get to the finish line on a late night,
|
||||
will be cleaned up later
|
||||
|
||||
"""
|
||||
|
||||
|
@ -603,7 +629,9 @@ class CompleteNWBFile(HDF5Map):
|
|||
def check(
|
||||
cls, src: H5ReadResult, provider: SchemaProvider, completed: Dict[str, H5ReadResult]
|
||||
) -> bool:
|
||||
return (src.neurodata_type == "NWBFile" and all([depend in completed for depend in src.depends]))
|
||||
return src.neurodata_type == "NWBFile" and all(
|
||||
[depend in completed for depend in src.depends]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def apply(
|
||||
|
@ -638,12 +666,6 @@ class CompleteNWBFile(HDF5Map):
|
|||
trodes = trode_type.model_construct(trodes_original.model_dump())
|
||||
res["general"]["extracellular_ephys"]["electrodes"] = trodes
|
||||
|
||||
# type(res['general']['extracellular_ephys']['electrodes']).__mro__ = tuple(anmro)
|
||||
# electrodes_dict = res['general']['extracellular_ephys']['electrodes'].model_dump()
|
||||
# with h5py.File(src.source.h5f_path, 'r') as h5f:
|
||||
# electrodes_dict['group'] = [egroup_dict[h5f[e].name] for e in electrodes_dict['group'][:]]
|
||||
# res['general']['extracellular_ephys']['electrodes'] = electrodes_dict
|
||||
|
||||
instance = src.model(**res)
|
||||
return H5ReadResult(
|
||||
path=src.path,
|
||||
|
@ -685,7 +707,7 @@ class ReadQueue(BaseModel):
|
|||
default_factory=list, description="Phases that have already been completed"
|
||||
)
|
||||
|
||||
def apply_phase(self, phase: ReadPhases, max_passes=5) -> None:
|
||||
def apply_phase(self, phase: ReadPhases, max_passes: int = 5) -> None:
|
||||
phase_maps = [m for m in HDF5Map.__subclasses__() if m.phase == phase]
|
||||
phase_maps = sorted(phase_maps, key=lambda x: x.priority)
|
||||
|
||||
|
@ -695,11 +717,13 @@ class ReadQueue(BaseModel):
|
|||
for item in self.queue.values():
|
||||
for op in phase_maps:
|
||||
if op.check(item, self.provider, self.completed):
|
||||
# Formerly there was an "exclusive" property in the maps which let potentially multiple
|
||||
# operations be applied per stage, except if an operation was `exclusive` which would break
|
||||
# iteration over the operations. This was removed because it was badly implemented, but
|
||||
# if there is ever a need to do that, then we would need to decide what to do with the
|
||||
# multiple results.
|
||||
# Formerly there was an "exclusive" property in the maps which let
|
||||
# potentially multiple operations be applied per stage,
|
||||
# except if an operation was `exclusive` which would break
|
||||
# iteration over the operations.
|
||||
# This was removed because it was badly implemented,
|
||||
# but if there is ever a need to do that,
|
||||
# then we would need to decide what to do with the multiple results.
|
||||
results.append(op.apply(item, self.provider, self.completed))
|
||||
break # out of inner iteration
|
||||
|
||||
|
@ -748,9 +772,12 @@ class ReadQueue(BaseModel):
|
|||
self.apply_phase(phase, max_passes=max_passes - 1)
|
||||
|
||||
|
||||
def flatten_hdf(h5f: h5py.File | h5py.Group, skip="specifications") -> Dict[str, H5SourceItem]:
|
||||
def flatten_hdf(
|
||||
h5f: h5py.File | h5py.Group, skip: str = "specifications"
|
||||
) -> Dict[str, H5SourceItem]:
|
||||
"""
|
||||
Flatten all child elements of hdf element into a dict of :class:`.H5SourceItem` s keyed by their path
|
||||
Flatten all child elements of hdf element into a dict of :class:`.H5SourceItem` s
|
||||
keyed by their path
|
||||
|
||||
Args:
|
||||
h5f (:class:`h5py.File` | :class:`h5py.Group`): HDF file or group to flatten!
|
||||
|
|
|
@ -61,14 +61,7 @@ def dynamictable_to_model(
|
|||
try:
|
||||
items[col] = da.from_array(group[col])
|
||||
except NotImplementedError:
|
||||
# if str in get_inner_types(col_type.annotation):
|
||||
# # dask can't handle this, we just arrayproxy it
|
||||
items[col] = NDArrayProxy(h5f_file=group.file.filename, path=group[col].name)
|
||||
# else:
|
||||
# warnings.warn(f"Dask can't handle object type arrays like {col} in {group.name}. Skipping")
|
||||
# pdb.set_trace()
|
||||
# # can't auto-chunk with "object" type
|
||||
# items[col] = da.from_array(group[col], chunks=-1)
|
||||
|
||||
return model.model_construct(hdf5_path=group.name, name=group.name.split("/")[-1], **items)
|
||||
|
||||
|
|
|
@ -1,5 +1,12 @@
|
|||
"""
|
||||
Abstract base classes for Map types
|
||||
|
||||
.. todo::
|
||||
Make this consistent or don't call them all maps lmao
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
from typing import Any, Mapping, Sequence
|
||||
|
||||
|
||||
class Map(ABC):
|
||||
|
@ -10,10 +17,10 @@ class Map(ABC):
|
|||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def check(cls, *args, **kwargs) -> bool:
|
||||
def check(cls, *args: Sequence, **kwargs: Mapping) -> bool:
|
||||
"""Check if this map applies to the given item to read"""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def apply(cls, *args, **kwargs) -> Any:
|
||||
def apply(cls, *args: Sequence, **kwargs: Mapping) -> Any:
|
||||
"""Actually apply the map!"""
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
"""
|
||||
String manipulation methods for names
|
||||
"""
|
||||
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -40,7 +44,7 @@ def version_module_case(name: str) -> str:
|
|||
return name
|
||||
|
||||
|
||||
def relative_path(target: Path, origin: Path):
|
||||
def relative_path(target: Path, origin: Path) -> Path:
|
||||
"""
|
||||
return path of target relative to origin, even if they're
|
||||
not in the same subpath
|
||||
|
@ -49,7 +53,7 @@ def relative_path(target: Path, origin: Path):
|
|||
- https://stackoverflow.com/a/71874881
|
||||
"""
|
||||
|
||||
def _relative_path(target: Path, origin: Path):
|
||||
def _relative_path(target: Path, origin: Path) -> Path:
|
||||
try:
|
||||
return Path(target).resolve().relative_to(Path(origin).resolve())
|
||||
except ValueError: # target does not start with origin
|
||||
|
|
|
@ -10,16 +10,39 @@ from typing import ClassVar, List, Optional
|
|||
|
||||
|
||||
class SCOPE_TYPES(StrEnum):
|
||||
"""When a mapping should be applied
|
||||
|
||||
.. todo::
|
||||
|
||||
This is likely deprecated, check usage.
|
||||
|
||||
"""
|
||||
|
||||
namespace = "namespace"
|
||||
|
||||
|
||||
class PHASES(StrEnum):
|
||||
"""The times that a mapping can happen
|
||||
|
||||
.. todo::
|
||||
|
||||
This is likely deprecated, check usage.
|
||||
"""
|
||||
|
||||
postload = "postload"
|
||||
"""After the YAML for a model has been loaded"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class KeyMap:
|
||||
"""
|
||||
Map for renaming keys used in schemas according to some rule
|
||||
|
||||
.. todo::
|
||||
|
||||
This is likely deprecated, check usage.
|
||||
"""
|
||||
|
||||
scope: str
|
||||
"""The namespace that the map is relevant to"""
|
||||
scope_type: SCOPE_TYPES
|
||||
|
@ -74,11 +97,20 @@ MAP_HDMF_DATATYPE_INC = KeyMap(
|
|||
|
||||
|
||||
class MAP_TYPES(StrEnum):
|
||||
"""
|
||||
Types of mapping that can exist
|
||||
|
||||
.. todo::
|
||||
|
||||
This is likely deprecated, check usage.
|
||||
"""
|
||||
|
||||
key = "key"
|
||||
"""Mapping the name of one key to another key"""
|
||||
|
||||
|
||||
def apply_postload(ns_dict) -> dict:
|
||||
def apply_postload(ns_dict: dict) -> dict:
|
||||
"""Apply all post-load maps to a YAML schema"""
|
||||
maps = [m for m in KeyMap.instances if m.phase == PHASES.postload]
|
||||
for amap in maps:
|
||||
ns_dict = amap.apply(ns_dict)
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
Monkeypatches to external modules
|
||||
"""
|
||||
|
||||
# ruff: noqa: ANN001 - not well defined types for this module
|
||||
|
||||
|
||||
def patch_npytyping_perf() -> None:
|
||||
"""
|
||||
|
@ -115,6 +117,7 @@ def patch_schemaview() -> None:
|
|||
|
||||
|
||||
def apply_patches() -> None:
|
||||
"""Apply all monkeypatches"""
|
||||
patch_npytyping_perf()
|
||||
patch_nptyping_warnings()
|
||||
patch_schemaview()
|
||||
|
|
|
@ -9,15 +9,17 @@ import dash_cytoscape as cyto
|
|||
from dash import Dash, html
|
||||
from rich import print
|
||||
|
||||
cyto.load_extra_layouts()
|
||||
|
||||
from nwb_linkml.io import load_nwb_core
|
||||
from nwb_linkml.io.schema import load_nwb_core
|
||||
from nwb_schema_language import Dataset, Group, Namespace
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from nwb_linkml.adapters import NamespacesAdapter
|
||||
|
||||
# from nwb_schema_language.datamodel import Namespaces
|
||||
# ruff: noqa: D101
|
||||
# ruff: noqa: D102
|
||||
# ruff: noqa: D103
|
||||
|
||||
cyto.load_extra_layouts()
|
||||
|
||||
|
||||
class _CytoNode(TypedDict):
|
||||
|
@ -52,7 +54,9 @@ class Node:
|
|||
return node
|
||||
|
||||
|
||||
def make_node(element: Group | Dataset, parent=None, recurse: bool = True) -> List[Node]:
|
||||
def make_node(
|
||||
element: Group | Dataset, parent: Optional[str] = None, recurse: bool = True
|
||||
) -> List[Node]:
|
||||
if element.neurodata_type_def is None:
|
||||
if element.name is None:
|
||||
name = "anonymous" if element.neurodata_type_inc is None else element.neurodata_type_inc
|
||||
|
|
|
@ -1 +1,7 @@
|
|||
"""
|
||||
Classes used for acquiring things from elsewhere, managing build processes, and caching results.
|
||||
"""
|
||||
|
||||
from nwb_linkml.providers.schema import LinkMLProvider, PydanticProvider, SchemaProvider
|
||||
|
||||
__all__ = ["LinkMLProvider", "PydanticProvider", "SchemaProvider"]
|
||||
|
|
|
@ -38,6 +38,7 @@ class NamespaceRepo(BaseModel):
|
|||
)
|
||||
|
||||
def provide_from_git(self, commit: str | None = None) -> Path:
|
||||
"""Provide a namespace file from a git repo"""
|
||||
git = GitRepo(self, commit)
|
||||
git.clone()
|
||||
return git.namespace_file
|
||||
|
@ -78,7 +79,7 @@ DEFAULT_REPOS = {
|
|||
|
||||
|
||||
class GitError(OSError):
|
||||
pass
|
||||
"""Exceptions caused by git!"""
|
||||
|
||||
|
||||
class GitRepo:
|
||||
|
@ -93,13 +94,14 @@ class GitRepo:
|
|||
Args:
|
||||
namespace (:class:`.NamespaceRepo`): The namespace repository to clone!
|
||||
commit (str): A specific commit or tag to check out
|
||||
path (:class:`pathlib.Path`): A directory to clone to - if ``None``, use :attr:`~.Config.git_dir` / :attr:`.NamespaceRepo.name`
|
||||
path (:class:`pathlib.Path`): A directory to clone to -
|
||||
if ``None``, use :attr:`~.Config.git_dir` / :attr:`.NamespaceRepo.name`
|
||||
"""
|
||||
self._temp_directory = path
|
||||
self.namespace = namespace
|
||||
self._commit = commit
|
||||
|
||||
def _git_call(self, *args) -> subprocess.CompletedProcess:
|
||||
def _git_call(self, *args: List[str]) -> subprocess.CompletedProcess:
|
||||
res = subprocess.run(["git", "-C", self.temp_directory, *args], capture_output=True)
|
||||
if res.returncode != 0:
|
||||
raise GitError(
|
||||
|
@ -152,7 +154,8 @@ class GitRepo:
|
|||
If ``None``: if :attr:`NamespaceRepo.versions`, use the last version. Otherwise use ``HEAD``
|
||||
|
||||
Should match :attr:`.active_commit`, differs semantically in that it is used to
|
||||
set the active_commit, while :attr:`.active_commit` reads what commit is actually checked out
|
||||
set the active_commit, while :attr:`.active_commit`
|
||||
reads what commit is actually checked out
|
||||
"""
|
||||
return self._commit
|
||||
|
||||
|
@ -252,7 +255,8 @@ class GitRepo:
|
|||
if self.remote != str(self.namespace.repository):
|
||||
warnings.warn(
|
||||
"Repository exists, but has the wrong remote URL.\nExpected:"
|
||||
f" {self.namespace.repository}\nGot:{self.remote.strip('.git')}"
|
||||
f" {self.namespace.repository}\nGot:{self.remote.strip('.git')}",
|
||||
stacklevel=2,
|
||||
)
|
||||
return False
|
||||
|
||||
|
@ -274,7 +278,8 @@ class GitRepo:
|
|||
):
|
||||
warnings.warn(
|
||||
"Temp directory is outside of the system temp dir or git directory set by"
|
||||
" environmental variables, not deleting in case this has been changed by mistake"
|
||||
" environmental variables, not deleting in case this has been changed by mistake",
|
||||
stacklevel=2,
|
||||
)
|
||||
self._temp_directory = None
|
||||
return
|
||||
|
@ -299,7 +304,8 @@ class GitRepo:
|
|||
if not self.check():
|
||||
warnings.warn(
|
||||
"Destination directory is not empty and does not pass checks for"
|
||||
" correctness! cleaning up"
|
||||
" correctness! cleaning up",
|
||||
stacklevel=2,
|
||||
)
|
||||
self.cleanup()
|
||||
else:
|
||||
|
|
|
@ -9,7 +9,8 @@ pydantic models on the fly.
|
|||
Relationship to other modules:
|
||||
* :mod:`.adapters` manage the conversion from NWB schema language to linkML.
|
||||
* :mod:`.generators` create models like pydantic models from the linkML schema
|
||||
* :mod:`.providers` then use ``adapters`` and ``generators`` to provide models from generated schema!
|
||||
* :mod:`.providers` then use ``adapters`` and ``generators``
|
||||
to provide models from generated schema!
|
||||
|
||||
Providers create a set of directories with namespaces and versions,
|
||||
so eg. for the linkML and pydantic providers:
|
||||
|
@ -47,6 +48,7 @@ import shutil
|
|||
import sys
|
||||
from abc import ABC, abstractmethod
|
||||
from importlib.abc import MetaPathFinder
|
||||
from importlib.machinery import ModuleSpec
|
||||
from pathlib import Path
|
||||
from types import ModuleType
|
||||
from typing import Any, Dict, List, Optional, Type, TypedDict, TypeVar
|
||||
|
@ -108,7 +110,7 @@ class Provider(ABC):
|
|||
"""
|
||||
|
||||
@abstractmethod
|
||||
def build(self, *args: Any):
|
||||
def build(self, *args: Any) -> P:
|
||||
"""
|
||||
Whatever needs to be done to build this thing, if applicable
|
||||
"""
|
||||
|
@ -247,7 +249,8 @@ class LinkMLProvider(Provider):
|
|||
|
||||
All of which feed into...
|
||||
|
||||
* :class:`~.adapters.NamespacesAdapter` used throughout the rest of ``nwb_linkml`` - :meth:`.build`
|
||||
* :class:`~.adapters.NamespacesAdapter` used throughout the rest of ``nwb_linkml`` -
|
||||
:meth:`.build`
|
||||
|
||||
After a namespace is built, it can be accessed using :meth:`.LinkMLProvider.get`, which
|
||||
can also be consumed by other providers, so a given namespace and version should only need
|
||||
|
@ -277,9 +280,12 @@ class LinkMLProvider(Provider):
|
|||
|
||||
@property
|
||||
def path(self) -> Path:
|
||||
"""``linkml_dir`` provided by :class:`.Config`"""
|
||||
return self.config.linkml_dir
|
||||
|
||||
def build_from_yaml(self, path: Path, **kwargs):
|
||||
def build_from_yaml(
|
||||
self, path: Path, **kwargs: dict
|
||||
) -> Dict[str | SchemaDefinitionName, LinkMLSchemaBuild]:
|
||||
"""
|
||||
Build a namespace's schema
|
||||
|
||||
|
@ -291,7 +297,7 @@ class LinkMLProvider(Provider):
|
|||
return self.build(ns_adapter, **kwargs)
|
||||
|
||||
def build_from_dicts(
|
||||
self, schemas: Dict[str, dict], **kwargs
|
||||
self, schemas: Dict[str, dict], **kwargs: dict
|
||||
) -> Dict[str | SchemaDefinitionName, LinkMLSchemaBuild]:
|
||||
"""
|
||||
Build from schema dictionaries, eg. as come from nwb files
|
||||
|
@ -314,14 +320,14 @@ class LinkMLProvider(Provider):
|
|||
ns_adapters[ns_name] = ns_adapter
|
||||
|
||||
# get the correct imports
|
||||
for ns_name, adapter in ns_adapters.items():
|
||||
for adapter in ns_adapters.values():
|
||||
for schema_needs in adapter.needed_imports.values():
|
||||
for needed in schema_needs:
|
||||
adapter.imported.append(ns_adapters[needed])
|
||||
|
||||
# then do the build
|
||||
res = {}
|
||||
for ns_name, adapter in ns_adapters.items():
|
||||
for adapter in ns_adapters.values():
|
||||
res.update(self.build(adapter, **kwargs))
|
||||
|
||||
return res
|
||||
|
@ -335,17 +341,19 @@ class LinkMLProvider(Provider):
|
|||
) -> Dict[str | SchemaDefinitionName, LinkMLSchemaBuild]:
|
||||
"""
|
||||
Arguments:
|
||||
namespaces (:class:`.NamespacesAdapter`): Adapter (populated with any necessary imported namespaces)
|
||||
to build
|
||||
namespaces (:class:`.NamespacesAdapter`): Adapter
|
||||
(populated with any necessary imported namespaces) to build
|
||||
versions (dict): Dict of specific versions to use
|
||||
for cross-namespace imports. as ``{'namespace': 'version'}``
|
||||
If none is provided, use the most recent version
|
||||
available.
|
||||
dump (bool): If ``True`` (default), dump generated schema to YAML. otherwise just return
|
||||
force (bool): If ``False`` (default), don't build schema that already exist. If ``True`` , clear directory and rebuild
|
||||
force (bool): If ``False`` (default), don't build schema that already exist.
|
||||
If ``True`` , clear directory and rebuild
|
||||
|
||||
Returns:
|
||||
Dict[str, LinkMLSchemaBuild]. For normal builds, :attr:`.LinkMLSchemaBuild.result` will be populated with results
|
||||
Dict[str, LinkMLSchemaBuild]. For normal builds,
|
||||
:attr:`.LinkMLSchemaBuild.result` will be populated with results
|
||||
of the build. If ``force == False`` and the schema already exist, it will be ``None``
|
||||
"""
|
||||
|
||||
|
@ -473,9 +481,8 @@ class LinkMLProvider(Provider):
|
|||
|
||||
class PydanticProvider(Provider):
|
||||
"""
|
||||
Provider for pydantic models built from linkml-style nwb schema (ie. as provided by :class:`.LinkMLProvider`)
|
||||
|
||||
|
||||
Provider for pydantic models built from linkml-style nwb schema
|
||||
(ie. as provided by :class:`.LinkMLProvider`)
|
||||
"""
|
||||
|
||||
PROVIDES = "pydantic"
|
||||
|
@ -488,6 +495,7 @@ class PydanticProvider(Provider):
|
|||
|
||||
@property
|
||||
def path(self) -> Path:
|
||||
"""``pydantic_dir`` provided by :class:`.Config`"""
|
||||
return self.config.pydantic_dir
|
||||
|
||||
def build(
|
||||
|
@ -499,7 +507,7 @@ class PydanticProvider(Provider):
|
|||
split: bool = True,
|
||||
dump: bool = True,
|
||||
force: bool = False,
|
||||
**kwargs,
|
||||
**kwargs: dict,
|
||||
) -> str | List[str]:
|
||||
"""
|
||||
|
||||
|
@ -515,18 +523,25 @@ class PydanticProvider(Provider):
|
|||
:class:`.LinkMLProvider` to get the converted schema. If a path,
|
||||
assume we have been given an explicit ``namespace.yaml`` from a converted
|
||||
NWB -> LinkML schema to load from.
|
||||
out_file (Optional[Path]): Optionally override the output file. If ``None``, generate from namespace and version
|
||||
out_file (Optional[Path]): Optionally override the output file. If ``None``,
|
||||
generate from namespace and version
|
||||
version (Optional[str]): The version of the schema to build, if present.
|
||||
Works similarly to ``version`` in :class:`.LinkMLProvider`. Ignored if ``namespace`` is a Path.
|
||||
Works similarly to ``version`` in :class:`.LinkMLProvider`.
|
||||
Ignored if ``namespace`` is a Path.
|
||||
versions (Optional[dict]): An explicit mapping of namespaces and versions to use when
|
||||
building the combined pydantic `namespace.py` file. Since NWB doesn't have an explicit
|
||||
version dependency system between schema, there is intrinsic ambiguity between which version
|
||||
of which schema should be used when imported from another. This mapping allows those ambiguities to be resolved.
|
||||
building the combined pydantic `namespace.py` file.
|
||||
Since NWB doesn't have an explicit version dependency system between schema,
|
||||
there is intrinsic ambiguity between which version
|
||||
of which schema should be used when imported from another.
|
||||
This mapping allows those ambiguities to be resolved.
|
||||
See :class:`.NWBPydanticGenerator` 's ``versions`` argument for more information.
|
||||
split (bool): If ``False`` (default), generate a single ``namespace.py`` file, otherwise generate a python file for each schema in the namespace
|
||||
split (bool): If ``False`` (default), generate a single ``namespace.py`` file,
|
||||
otherwise generate a python file for each schema in the namespace
|
||||
in addition to a ``namespace.py`` that imports from them
|
||||
dump (bool): If ``True`` (default), dump the model to the cache, otherwise just return the serialized string of built pydantic model
|
||||
force (bool): If ``False`` (default), don't build the model if it already exists, if ``True`` , delete and rebuild any model
|
||||
dump (bool): If ``True`` (default), dump the model to the cache,
|
||||
otherwise just return the serialized string of built pydantic model
|
||||
force (bool): If ``False`` (default), don't build the model if it already exists,
|
||||
if ``True`` , delete and rebuild any model
|
||||
**kwargs: Passed to :class:`.NWBPydanticGenerator`
|
||||
|
||||
Returns:
|
||||
|
@ -549,7 +564,8 @@ class PydanticProvider(Provider):
|
|||
else:
|
||||
# given a path to a namespace linkml yaml file
|
||||
path = Path(namespace)
|
||||
# FIXME: this is extremely fragile, but get the details from the path. this is faster than reading yaml for now
|
||||
# FIXME: this is extremely fragile, but get the details from the path.
|
||||
# this is faster than reading yaml for now
|
||||
name = path.parts[-3]
|
||||
version = path.parts[-2]
|
||||
fn = path.parts[-1]
|
||||
|
@ -578,7 +594,15 @@ class PydanticProvider(Provider):
|
|||
else:
|
||||
return self._build_unsplit(path, versions, default_kwargs, dump, out_file, force)
|
||||
|
||||
def _build_unsplit(self, path, versions, default_kwargs, dump, out_file, force):
|
||||
def _build_unsplit(
|
||||
self,
|
||||
path: Path,
|
||||
versions: dict,
|
||||
default_kwargs: dict,
|
||||
dump: bool,
|
||||
out_file: Path,
|
||||
force: bool,
|
||||
) -> Optional[str]:
|
||||
if out_file.exists() and not force:
|
||||
with open(out_file) as ofile:
|
||||
serialized = ofile.read()
|
||||
|
@ -602,7 +626,13 @@ class PydanticProvider(Provider):
|
|||
return serialized
|
||||
|
||||
def _build_split(
|
||||
self, path: Path, versions, default_kwargs, dump, out_file, force
|
||||
self,
|
||||
path: Path,
|
||||
versions: dict,
|
||||
default_kwargs: dict,
|
||||
dump: bool,
|
||||
out_file: Path,
|
||||
force: bool,
|
||||
) -> List[str]:
|
||||
serialized = []
|
||||
for schema_file in path.parent.glob("*.yaml"):
|
||||
|
@ -654,6 +684,12 @@ class PydanticProvider(Provider):
|
|||
|
||||
@classmethod
|
||||
def module_name(self, namespace: str, version: str) -> str:
|
||||
"""Module name for the built module
|
||||
|
||||
e.g.::
|
||||
|
||||
nwb_linkml.models.pydantic.{namespace}.{version}
|
||||
"""
|
||||
name_pieces = [
|
||||
"nwb_linkml",
|
||||
"models",
|
||||
|
@ -674,7 +710,8 @@ class PydanticProvider(Provider):
|
|||
|
||||
Args:
|
||||
namespace (str): Name of namespace
|
||||
version (Optional[str]): Version to import, if None, try and get the most recently built version.
|
||||
version (Optional[str]): Version to import, if None,
|
||||
try and get the most recently built version.
|
||||
|
||||
Returns:
|
||||
:class:`types.ModuleType`
|
||||
|
@ -712,7 +749,8 @@ class PydanticProvider(Provider):
|
|||
"""
|
||||
Get the imported module for a given namespace and version.
|
||||
|
||||
A given namespace will be stored in :data:`sys.modules` as ``nwb_linkml.models.{namespace}``,
|
||||
A given namespace will be stored in :data:`sys.modules` as
|
||||
``nwb_linkml.models.{namespace}``,
|
||||
so first check if there is any already-imported module, and return that if so.
|
||||
|
||||
Then we check in the temporary directory for an already-built ``namespace.py`` file
|
||||
|
@ -722,8 +760,10 @@ class PydanticProvider(Provider):
|
|||
|
||||
Notes:
|
||||
The imported modules shadow the "actual"
|
||||
``nwb_linkml.models`` module as would be imported from the usual location within the package directory.
|
||||
This is intentional, as models can then be used as if they were integrated parts of the package,
|
||||
``nwb_linkml.models`` module as would be imported from the usual location
|
||||
within the package directory.
|
||||
This is intentional, as models can then be used as if they were
|
||||
integrated parts of the package,
|
||||
and also so the active version of a namespace can be cleanly accessed
|
||||
(ie. without ``from nwb_linkml.models.core import v2_2_0 as core`` ).
|
||||
Accordingly, we assume that people will only be using a single version of NWB in a given
|
||||
|
@ -731,13 +771,18 @@ class PydanticProvider(Provider):
|
|||
|
||||
|
||||
Args:
|
||||
namespace (str): Name of namespace to import. Must have either been previously built with :meth:`.PydanticProvider.build` or
|
||||
a matching namespace/version combo must be available to the :class:`.LinkMLProvider`
|
||||
version (Optional[str]): Version to import. If ``None``, get the most recently build module
|
||||
allow_repo (bool): Allow getting modules provided within :mod:`nwb_linkml.models.pydantic`
|
||||
namespace (str): Name of namespace to import. Must have either been previously built
|
||||
with :meth:`.PydanticProvider.build` or
|
||||
a matching namespace/version combo must be available to the
|
||||
:class:`.LinkMLProvider`
|
||||
version (Optional[str]): Version to import. If ``None``,
|
||||
get the most recently build module
|
||||
allow_repo (bool): Allow getting modules provided within
|
||||
:mod:`nwb_linkml.models.pydantic`
|
||||
|
||||
Returns:
|
||||
The imported :class:`types.ModuleType` object that has all the built classes at the root level.
|
||||
The imported :class:`types.ModuleType` object that has all the built
|
||||
classes at the root level.
|
||||
|
||||
"""
|
||||
if allow_repo is None:
|
||||
|
@ -795,8 +840,9 @@ class PydanticProvider(Provider):
|
|||
Get a class from a given namespace and version!
|
||||
|
||||
Args:
|
||||
namespace (str): Name of a namespace that has been previously built and cached, otherwise
|
||||
we will attempt to build it from the :data:`.providers.git.DEFAULT_REPOS`
|
||||
namespace (str): Name of a namespace that has been previously built and cached,
|
||||
otherwise we will attempt to build it from the
|
||||
:data:`.providers.git.DEFAULT_REPOS`
|
||||
class_ (str): Name of class to retrieve
|
||||
version (Optional[str]): Optional version of the schema to retrieve from
|
||||
|
||||
|
@ -825,7 +871,10 @@ class EctopicModelFinder(MetaPathFinder):
|
|||
super().__init__(*args, **kwargs)
|
||||
self.path = path
|
||||
|
||||
def find_spec(self, fullname, path, target=None):
|
||||
def find_spec(
|
||||
self, fullname: str, path: Optional[str], target: Optional[ModuleType] = None
|
||||
) -> Optional[ModuleSpec]:
|
||||
"""If we are loading a generated pydantic module, return an importlib spec"""
|
||||
if not fullname.startswith(self.MODEL_STEM):
|
||||
return None
|
||||
else:
|
||||
|
@ -873,9 +922,10 @@ class SchemaProvider(Provider):
|
|||
def __init__(self, versions: Optional[Dict[str, str]] = None, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
versions (dict): Dictionary like ``{'namespace': 'v1.0.0'}`` used to specify that this provider should always
|
||||
return models from a specific version of a namespace (unless explicitly requested otherwise
|
||||
in a call to :meth:`.get` ).
|
||||
versions (dict): Dictionary like ``{'namespace': 'v1.0.0'}``
|
||||
used to specify that this provider should always
|
||||
return models from a specific version of a namespace
|
||||
(unless explicitly requested otherwise in a call to :meth:`.get` ).
|
||||
**kwargs: passed to superclass __init__ (see :class:`.Provider` )
|
||||
"""
|
||||
self.versions = versions
|
||||
|
@ -883,6 +933,7 @@ class SchemaProvider(Provider):
|
|||
|
||||
@property
|
||||
def path(self) -> Path:
|
||||
"""``cache_dir`` provided by :class:`.Config`"""
|
||||
return self.config.cache_dir
|
||||
|
||||
def build(
|
||||
|
@ -899,8 +950,10 @@ class SchemaProvider(Provider):
|
|||
Args:
|
||||
ns_adapter:
|
||||
verbose (bool): If ``True`` (default), show progress bars
|
||||
linkml_kwargs (Optional[dict]): Dictionary of kwargs optionally passed to :meth:`.LinkMLProvider.build`
|
||||
pydantic_kwargs (Optional[dict]): Dictionary of kwargs optionally passed to :meth:`.PydanticProvider.build`
|
||||
linkml_kwargs (Optional[dict]): Dictionary of kwargs optionally passed to
|
||||
:meth:`.LinkMLProvider.build`
|
||||
pydantic_kwargs (Optional[dict]): Dictionary of kwargs optionally passed to
|
||||
:meth:`.PydanticProvider.build`
|
||||
**kwargs: Common options added to both ``linkml_kwargs`` and ``pydantic_kwargs``
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -1 +1,7 @@
|
|||
"""
|
||||
Custom types (likely deprecated)
|
||||
"""
|
||||
|
||||
from nwb_linkml.types.ndarray import NDArray
|
||||
|
||||
__all__ = ["NDArray"]
|
||||
|
|
|
@ -3,8 +3,10 @@ Pydantic models that behave like pandas dataframes
|
|||
|
||||
.. note::
|
||||
|
||||
This is currently unused but kept in place as a stub in case it is worth revisiting in the future.
|
||||
It turned out to be too momentarily difficult to make lazy-loading work with dask arrays per column
|
||||
This is currently unused but kept in place as a stub in case it is worth
|
||||
revisiting in the future.
|
||||
It turned out to be too momentarily difficult to make lazy-loading work with
|
||||
dask arrays per column
|
||||
while still keeping pandas-like API intact. In the future we should investigate modifying the
|
||||
:func:`dask.dataframe.read_hdf` function to treat individual hdf5 datasets like columns
|
||||
|
||||
|
@ -133,6 +135,7 @@ class DataFrame(BaseModel, pd.DataFrame):
|
|||
def dynamictable_to_df(
|
||||
group: h5py.Group, model: Optional[Type[DataFrame]] = None, base: Optional[BaseModel] = None
|
||||
) -> DataFrame:
|
||||
"""Generate a dataframe from an NDB DynamicTable"""
|
||||
if model is None:
|
||||
model = model_from_dynamictable(group, base)
|
||||
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
"""
|
||||
Types used with hdf5 io
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import GetCoreSchemaHandler
|
||||
|
@ -5,7 +9,9 @@ from pydantic_core import CoreSchema, core_schema
|
|||
|
||||
|
||||
class HDF5_Path(str):
|
||||
"""Trivial subclass of string to indicate that it is a reference to a location within an HDF5 file"""
|
||||
"""
|
||||
Trivial subclass of string to indicate that it is a reference to a location within an HDF5 file
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
|
|
|
@ -4,6 +4,10 @@ Extension of nptyping NDArray for pydantic that allows for JSON-Schema serializa
|
|||
* Order to store data in (row first)
|
||||
"""
|
||||
|
||||
# ruff: noqa: ANN001
|
||||
# ruff: noqa: ANN202
|
||||
# FIXME: this has been moved to numpydantic, remove.
|
||||
|
||||
import base64
|
||||
import sys
|
||||
from copy import copy
|
||||
|
@ -191,11 +195,5 @@ class NDArrayProxy:
|
|||
_source_type: _NDArray,
|
||||
_handler: Callable[[Any], core_schema.CoreSchema],
|
||||
) -> core_schema.CoreSchema:
|
||||
# return core_schema.no_info_after_validator_function(
|
||||
# serialization=core_schema.plain_serializer_function_ser_schema(
|
||||
# lambda instance: instance.tolist(),
|
||||
# when_used='json'
|
||||
# )
|
||||
# )
|
||||
|
||||
return NDArray_.__get_pydantic_core_schema__(cls, _source_type, _handler)
|
||||
return NDArray.__get_pydantic_core_schema__(cls, _source_type, _handler)
|
||||
|
|
|
@ -13,6 +13,8 @@ if TYPE_CHECKING:
|
|||
|
||||
|
||||
class AdapterProgress:
|
||||
"""Progress bar built with rich"""
|
||||
|
||||
def __init__(self, ns: "NamespacesAdapter"):
|
||||
self.ns = ns
|
||||
self.task_ids = {}
|
||||
|
@ -46,12 +48,15 @@ class AdapterProgress:
|
|||
)
|
||||
|
||||
def update(self, namespace: str, **kwargs) -> None:
|
||||
"""Update the progressbar with a given namespace"""
|
||||
self.progress.update(self.task_ids[namespace], **kwargs)
|
||||
|
||||
def start(self) -> None:
|
||||
"""Start displaying progress"""
|
||||
self.progress.start()
|
||||
|
||||
def stop(self) -> None:
|
||||
"""Stop displaying progress"""
|
||||
self.progress.stop()
|
||||
|
||||
def __enter__(self) -> Live:
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
"""
|
||||
Pydantic representation of the NWB Schema Language specification
|
||||
"""
|
||||
|
||||
import warnings
|
||||
from typing import List, Union
|
||||
|
||||
|
@ -21,7 +25,8 @@ try:
|
|||
except (NameError, RecursionError):
|
||||
warnings.warn(
|
||||
"Error importing pydantic classes, passing because we might be in the process of patching"
|
||||
" them, but it is likely they are broken and you will be unable to use them!"
|
||||
" them, but it is likely they are broken and you will be unable to use them!",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
|
|
|
@ -1,3 +1 @@
|
|||
# from .nwb_schema_language import *
|
||||
|
||||
# create additional derived
|
||||
"""Autogenerated models from linkML schema"""
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
"""
|
||||
Shorthand instantiated schemaview from the linkml schema
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from linkml_runtime.utils.schemaview import SchemaView
|
||||
|
|
|
@ -12,6 +12,8 @@ from typing import ClassVar, List
|
|||
|
||||
|
||||
class Phases(StrEnum):
|
||||
"""Phases of the loading and generation process"""
|
||||
|
||||
post_generation_pydantic = "post_generation_pydantic"
|
||||
post_load_yaml = "post_load_yaml"
|
||||
"""After the yaml of the nwb schema classes is loaded"""
|
||||
|
@ -19,6 +21,10 @@ class Phases(StrEnum):
|
|||
|
||||
@dataclass
|
||||
class Patch:
|
||||
"""
|
||||
Structured change to make to generated models
|
||||
"""
|
||||
|
||||
phase: Phases
|
||||
path: Path
|
||||
"""Path relative to repository root"""
|
||||
|
@ -47,20 +53,6 @@ patch_schema_slot = Patch(
|
|||
replacement=r'\n schema_:\2alias="schema", \3',
|
||||
)
|
||||
|
||||
# patch_neurodata_type_def_alias = Patch(
|
||||
# phase=Phases.post_generation_pydantic,
|
||||
# path=Path('src/nwb_schema_language/datamodel/nwb_schema_pydantic.py'),
|
||||
# match=r"(\n\s*neurodata_type_def.*Field\(None, )(.*)",
|
||||
# replacement=r'\1alias="data_type_def", \2',
|
||||
# )
|
||||
#
|
||||
# patch_neurodata_type_inc_alias = Patch(
|
||||
# phase=Phases.post_generation_pydantic,
|
||||
# path=Path('src/nwb_schema_language/datamodel/nwb_schema_pydantic.py'),
|
||||
# match=r"(\n\s*neurodata_type_inc.*Field\(None, )(.*)",
|
||||
# replacement=r'\1alias="data_type_inc", \2',
|
||||
# )
|
||||
|
||||
patch_dtype_single_multiple = Patch(
|
||||
phase=Phases.post_generation_pydantic,
|
||||
path=Path("src/nwb_schema_language/datamodel/nwb_schema_pydantic.py"),
|
||||
|
@ -84,6 +76,9 @@ patch_contact_single_multiple = Patch(
|
|||
|
||||
|
||||
def run_patches(phase: Phases, verbose: bool = False) -> None:
|
||||
"""
|
||||
Apply all declared :class:`.Path` instances
|
||||
"""
|
||||
patches = [p for p in Patch.instances if p.phase == phase]
|
||||
for patch in patches:
|
||||
if verbose:
|
||||
|
@ -97,6 +92,9 @@ def run_patches(phase: Phases, verbose: bool = False) -> None:
|
|||
|
||||
|
||||
def main() -> None:
|
||||
"""
|
||||
Run patches from the command line
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="Run patches for a given phase of code generation")
|
||||
parser.add_argument("--phase", choices=list(Phases.__members__.keys()), type=Phases)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -58,6 +58,9 @@ select = [
|
|||
"D419",
|
||||
]
|
||||
ignore = [
|
||||
# annotations for *args and **kwargs
|
||||
"ANN002", "ANN003",
|
||||
# annoying annotation rules
|
||||
"ANN101", "ANN102", "ANN401", "ANN204",
|
||||
# explicit strict arg for zip
|
||||
"B905",
|
||||
|
|
Loading…
Reference in a new issue