Correctly handle container classes, use dicts instead of lists to be able to index by name. overriding __getitem__ and __getattr__ later

This commit is contained in:
sneakers-the-rat 2023-09-26 20:50:11 -07:00
parent d16b4757e1
commit f672b931e5
7 changed files with 51 additions and 21 deletions

View file

@ -192,13 +192,15 @@ class ClassAdapter(Adapter):
required=True, required=True,
ifabsent=f'string({self.cls.name})', ifabsent=f'string({self.cls.name})',
equals_string=self.cls.name, equals_string=self.cls.name,
range='string' range='string',
identifier=True
) )
else: else:
name_slot = SlotDefinition( name_slot = SlotDefinition(
name='name', name='name',
required=True, required=True,
range='string' range='string',
identifier=True
) )
return name_slot return name_slot

View file

@ -18,8 +18,8 @@ class GroupAdapter(ClassAdapter):
def build(self) -> BuildResult: def build(self) -> BuildResult:
# Handle container groups with only * quantity unnamed groups # Handle container groups with only * quantity unnamed groups
if len(self.cls.groups) > 0 and \ if len(self.cls.groups) > 0 and \
all([self._check_if_container(g) for g in self.cls.groups]) and \ all([self._check_if_container(g) for g in self.cls.groups]): # and \
self.parent is not None: # self.parent is not None:
return self.handle_container_group(self.cls) return self.handle_container_group(self.cls)
# handle if we are a terminal container group without making a new class # handle if we are a terminal container group without making a new class
@ -58,22 +58,38 @@ class GroupAdapter(ClassAdapter):
""" """
# don't build subgroups as their own classes, just make a slot # don't build subgroups as their own classes, just make a slot
# that can contain them # that can contain them
if not self.cls.name: if self.cls.name:
name = 'children'
else:
name = cls.name name = cls.name
# elif len(cls.groups) == 1:
# name = camel_to_snake(cls.groups[0].neurodata_type_inc)
else:
name = 'children'
res = BuildResult( slot = SlotDefinition(
slots = [SlotDefinition(
name=name, name=name,
multivalued=True, multivalued=True,
description=cls.doc, any_of=[{'range': subcls.neurodata_type_inc} for subcls in cls.groups],
any_of=[{'range': subcls.neurodata_type_inc} for subcls in cls.groups] inlined=True,
)] inlined_as_list=False
) )
return res
if self.parent is not None:
# if we have a parent,
# just return the slot itself without the class
slot.description = cls.doc
return BuildResult(
slots=[slot]
)
else:
# We are a top-level container class like ProcessingModule
base = self.build_base()
# remove all the attributes and replace with child slot
base.classes[0].attributes = [slot]
return base
def handle_container_slot(self, cls:Group) -> BuildResult: def handle_container_slot(self, cls:Group) -> BuildResult:
""" """

View file

@ -67,7 +67,7 @@ def default_template(pydantic_ver: str = "1", extra_classes:Optional[List[Type[B
from __future__ import annotations from __future__ import annotations
from datetime import datetime, date from datetime import datetime, date
from enum import Enum from enum import Enum
from typing import List, Dict, Optional, Any, Union from typing import List, Dict, Optional, Any, Union, ClassVar
from pydantic import BaseModel as BaseModel, Field from pydantic import BaseModel as BaseModel, Field
from nptyping import Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64 from nptyping import Shape, Float, Float32, Double, Float64, LongLong, Int64, Int, Int32, Int16, Short, Int8, UInt, UInt32, UInt16, UInt8, UInt64, Number, String, Unicode, Unicode, Unicode, String, Bool, Datetime64
from nwb_linkml.types import NDArray from nwb_linkml.types import NDArray

View file

@ -57,6 +57,8 @@ AnyType = ClassDefinition(
description="""Needed because some classes in hdmf-common are datasets without dtype""" description="""Needed because some classes in hdmf-common are datasets without dtype"""
) )
NwbLangSchema = SchemaDefinition( NwbLangSchema = SchemaDefinition(
name="nwb.language", name="nwb.language",
id='nwb.language', id='nwb.language',

View file

@ -6,7 +6,7 @@ so we will make our own mapping class here and re-evaluate whether they should b
""" """
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from typing import Literal, List, Dict, Optional from typing import Literal, List, Dict, Optional, Type
import h5py import h5py
from enum import StrEnum from enum import StrEnum
@ -14,7 +14,7 @@ from enum import StrEnum
from pydantic import BaseModel, Field, ConfigDict from pydantic import BaseModel, Field, ConfigDict
from nwb_linkml.providers.schema import SchemaProvider from nwb_linkml.providers.schema import SchemaProvider
from nwb_linkml.maps.hdmf import dynamictable_to_df from nwb_linkml.maps.hdmf import dynamictable_to_model
from nwb_linkml.types.hdf5 import HDF5_Path from nwb_linkml.types.hdf5 import HDF5_Path
@ -71,6 +71,10 @@ class H5ReadResult(BaseModel):
If completed, built result. A dict that can be instantiated into the model. If completed, built result. A dict that can be instantiated into the model.
If completed is True and result is None, then remove this object If completed is True and result is None, then remove this object
""" """
model: Optional[Type[BaseModel]] = None
"""
The model that this item should be cast into
"""
completes: List[str] = Field(default_factory=list) completes: List[str] = Field(default_factory=list)
""" """
If this result completes any other fields, we remove them from the build queue If this result completes any other fields, we remove them from the build queue
@ -181,7 +185,7 @@ class ResolveDynamicTable(HDF5Map):
else: else:
base_model = None base_model = None
model = dynamictable_to_df(obj, base=base_model) model = dynamictable_to_model(obj, base=base_model)
completes = ['/'.join([src.path, child]) for child in obj.keys()] completes = ['/'.join([src.path, child]) for child in obj.keys()]
@ -227,9 +231,12 @@ class ResolveModelGroup(HDF5Map):
source=src, source=src,
completed=True, completed=True,
result = res, result = res,
model = model,
namespace=src.namespace, namespace=src.namespace,
neurodata_type=src.neurodata_type neurodata_type=src.neurodata_type
) )
# #
# class ResolveModelDataset(HDF5Map): # class ResolveModelDataset(HDF5Map):
# phase = ReadPhases.read # phase = ReadPhases.read

View file

@ -59,6 +59,9 @@ def model_from_dynamictable(group:h5py.Group, base:Optional[BaseModel] = None) -
#nptype = nptyping.typing_.name_per_dtype[group[col].dtype.type] #nptype = nptyping.typing_.name_per_dtype[group[col].dtype.type]
nptype = group[col].dtype.type nptype = group[col].dtype.type
if nptype == np.void:
warnings.warn(f"Cant handle numpy void type for column {col} in {group.name}")
continue
type_ = Optional[NDArray[Any, nptype]] type_ = Optional[NDArray[Any, nptype]]

View file

@ -10,7 +10,7 @@ from ..fixtures import tmp_output_dir, set_config_vars
from nwb_linkml.io.hdf5 import HDF5IO from nwb_linkml.io.hdf5 import HDF5IO
from nwb_linkml.io.hdf5 import truncate_file from nwb_linkml.io.hdf5 import truncate_file
@pytest.mark.skip() # @pytest.mark.skip()
def test_hdf_read(): def test_hdf_read():
NWBFILE = Path('/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773.nwb') NWBFILE = Path('/Users/jonny/Dropbox/lab/p2p_ld/data/nwb/sub-738651046_ses-760693773.nwb')
if not NWBFILE.exists(): if not NWBFILE.exists():